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• Part 2: Learning a Structured Prediction Model 
(45min)

• Definition of structured learning

• Local Learning v.s. Global Learning 

• Global Learning Algorithms 
• Online learning: Structured Perceptron

• Batch learning: Structured SVM 

• Optimization methods for Structured SVM
• Stochastic Gradient Decent

• Dual Coordinate Descent 

• Learning on a multi-core machine
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CCM Formulations

y = 𝒂𝒓𝒈𝒎𝒂𝒙𝒚 ∈ 𝒀𝒘
𝑻𝝓 𝒙, 𝒚 + 𝒖𝑻𝑪(𝒙, 𝒚)

This part of the tutorial focuses on learning w (and u)
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Learning a Structured Prediction Model

 Input: 𝑥 ∈ 𝑋

Truth: y∗ ∈ 𝑌(𝑥)

Predicted: ℎ(𝑥) ∈ 𝑌(𝑥)

 Loss: Δ 𝑦, 𝑦∗

I can can a can

Pro Md Vb Dt Nn

Pro Md Nn Dt Vb

Pro Md Nn Dt Md

Pro Md Md Dt Nn

Pro Md Md Dt Vb

Goal: find ℎ ∈ 𝐻 such that ℎ x ∈ 𝑌(𝑋)

minimizing 𝐸 𝑥,𝑦 ~𝐷 Δ 𝑦, ℎ 𝑥 based on 𝑁

samples 𝑥𝑛, 𝑦𝑛 ~𝐷
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Learning Paradigms [Punyakanok+ 05]

 Local Learning

Learning local models independently

Ensure output is coherent at test time

E.g., One-against-all multiclass classification

Global Learning

Learning with inference

Training and testing are consistent

Constrained classification for multiclass
[Har-Peled et. el 2002; Crammer et. al 2002]
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Visualizing One-vs-all

From the full dataset, 
construct three binary 
classifiers, one for each class

wblue
Tx > 0 for 

blue inputs
wred

Tx > 0 for 
red inputs

wgreen
Tx > 0 for 

green inputs

Winner Take All will predict the right answer. 
Only the correct label will have a positive score

Notation: Score 
for blue label
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One-vs-all may not always work

Black points are not separable with a single 
binary classifier

The decomposition will not work for these cases!

wblue
Tx > 0 

for blue
inputs

wred
Tx > 0 

for red 
inputs

wgreen
Tx > 0 

for green 
inputs

???
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Local Learning: One-vs-all classification

Easy to learn

Use any binary classifier learning algorithm

Problems

Calibration issues

We are comparing scores produced by K 

classifiers trained independently. No reason for 

the scores to be in the same numerical range!

Might not always work

 Yet, works fairly well in many cases, especially if 

the underlying binary classifiers are tuned, 

regularized
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Global Learning Motivation

Decomposition methods 

Do not account for how the final predictor will 

be used

Do not optimize any global measure of 

correctness

Goal: To train a multiclass classifier that is 

“global”
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Global “One-vs-all” Approach

 Idea: Create K classifiers w1, w2, …, wK.

For examples with label i, we want 

wi
Tx > wj

Tx for all j

 Prediction: argmaxi wi
Tx

 Training: For each training example (𝒙𝒊, 𝒚𝒊) :         

 𝑦 ← 𝑎𝑟𝑔max
𝒋

𝒘𝒋
𝑇𝜙(𝒙𝑖 , 𝑦𝑖)

if  𝑦 ≠ 𝑦𝑖
𝒘𝑦𝑖 ← 𝒘𝑦𝑖 + 𝜂𝒙𝑖 (promote)

𝒘  𝑦 ← 𝒘  𝑦 − 𝜂𝒙𝑖 (demote)

𝜂: learning rate
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Joint Inference with General Constraint Structure 
[Roth&Yih’04,07,….]

Recognizing Entities and Relations

Bernie’s wife, Jane, is a native of Brooklyn

E1 E2 E3

R12 R23

other 0.05

per 0.85

loc 0.10

other 0.05

per 0.50

loc 0.45

other 0.10

per 0.60

loc 0.30

irrelevant 0.10

spouse_of 0.05

born_in 0.85

irrelevant 0.05

spouse_of 0.45

born_in 0.50

irrelevant 0.05

spouse_of 0.45

born_in 0.50

other 0.05

per 0.85

loc 0.10

other 0.10

per 0.60

loc 0.30

other 0.05

per 0.50

loc 0.45

irrelevant 0.05

spouse_of 0.45

born_in 0.50

irrelevant 0.10

spouse_of 0.05

born_in 0.85

other 0.05

per 0.50

loc 0.45

Models could be learned separately/jointly; constraints may come up only at decision time.
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f1(x)

f2(x)

f3(x)
f4(x)

f5(x)

Training Methods

x1

x6

x2

x5

x4
x3

x7

y1
y2

y5

y4

y3

X

Y

Learning + Inference  (L+I)
Learn models independently

Inference Based Training (IBT)
Learn one model, all y’s together!

Intuition: Learning with 
constraints may make 
learning more difficult 
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Local Learning v.s. Global Learning

Advantages of local training:

Modular, very simple to implement

Often efficient

Advantages of global training:

Models directly capture correlations between 

outputs (have better theoretical guarantees)

Might achieve better performance when data is 

sufficient 
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Structured Prediction: Learning

 Learning is thus driven by the attempt to find a 

weight vector w such that for each given 

annotated example (xi, yi):

 The update of the weight vector w can be done in 

an on-line or a batch fashion

Score of annotated 
structure

Score of any 
other structure

Penalty for predicting 
other structure
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Global Learning Algorithms

 Online e.g., Structured Perceptron [Collins 02]

 Receive an instance; and update  

 Batch e.g., Structured SVM [Taskar+05]

 Collect a set of data; formulate learning as an 
optimization problem 

Solve inferences Update the model
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Structured Perceptron

 Perceptron (binary classification):

For each training example (𝒙𝒊, 𝑦𝒊) :         

 𝑦 ← 𝑠𝑔𝑛 𝒘𝑇𝒙𝒊
if 𝑦𝑖 ≠  𝑦, then 𝒘 ← 𝒘+ 𝜂𝑦𝒊𝒙𝒊

 Structured Perceptron

For each training example (𝒙𝒊, 𝒚𝒊) :         

 𝒚 ← 𝑎𝑟𝑔max
𝒚∈𝑌

𝒘𝑇𝜙(𝒙𝑖 , 𝒚𝒊)

𝒘 ← 𝒘+ 𝜂′ [𝜙 𝒙𝑖 , 𝒚𝑖 − 𝜙 𝒙𝑖 ,  𝒚 ]

Perceptron is a special 
case when

𝜙 𝒙, 𝑦 = 𝑦𝒙

𝜂′ =
1

2
𝜂
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Structured Perceptron Variations

 (Marginal) Structured Perceptron

For each training example (𝒙𝒊, 𝒚𝒊) :         

 𝒚 ← 𝑎𝑟𝑔max
𝒚∈𝑌

𝒘𝑇𝜙(𝒙𝑖 , 𝒚𝒊) + Δ 𝐲, 𝐲i

𝒘 ← 𝒘+ 𝜂′ [𝜙 𝒙𝑖 , 𝒚𝑖 − 𝜙 𝒙𝑖 ,  𝒚 ]

 Parallel Structured Perceptron [McDonald et al 10]: 

1. Split data into 𝒑 parts.

2. Train Structured Perceptron on each data block in parallel.

3. Mixed the models using a linear combination.

4. Repeat Step 2 and use the mixed model as the initial model.
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Recap

 Learning is thus driven by the attempt to find a 

weight vector w such that for each given 

annotated example (xi, yi):

 Introduce slack variables {𝝃𝒊}

𝒘𝑻𝝓 𝒙𝒊, 𝒚𝒊 −𝒘𝑻𝝓 𝒙𝒊, 𝒚 ≥ 𝚫 𝐲𝐢, 𝐲 − 𝝃𝒊

Score of annotated 
structure

Score of any 
other structure

Penalty for predicting 
other structure
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Given a set of training examples 𝐷 = {𝒙𝒊, 𝒚𝒊}𝑖=1
𝑙

min
𝒘,𝝃

𝟏

𝟐
𝒘𝑻𝒘+ 𝑪 𝒊 𝝃𝒊

𝒔. 𝒕. 𝒘𝑻𝝓 𝒙𝒊, 𝒚𝒊 −𝒘𝑻𝝓 𝒙𝒊, 𝒚 ≥ 𝚫 𝐲𝐢, 𝐲 − 𝝃𝒊 ∀𝒊, 𝒚 ∈ 𝒀𝒊

Note:

1. 𝒘𝑻𝝓(𝒙, 𝒚) is the scoring function used in inference.

2. Equivalent to the following optimization problem:

min
𝒘

𝟏

𝟐
𝒘𝑻𝒘+ 𝑪 𝒊 max

𝒚
𝚫 𝐲𝐢, 𝐲 + 𝒘𝑻𝝓 𝒙𝒊, 𝒚 − 𝒘𝑻𝝓 𝒙𝒊, 𝒚𝒊

For all samples and 
feasible structures

Structured SVM (Batch)
(Tsochantaridis et al. 05)
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Optimization Methods for Structured SVM

 Online e.g., Structured Perceptron [Collins 02]

 Batch e.g., Structured SVM [Taskar+05]

• Cutting plane: [Tsochantaridis+ 05, Joachims+ 09]

• Dual Coordinate Descent: [Shevade+ 11, Chang+ 13]

• Block-Coordinate Frank-Wolfe: [Lacoste-Julien+ 13]

• Parallel Dual Coordinate Descent: [Chang+ 13a]

Solve inferences Update the model
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Stochastic (sub-)gradient descent

To minimize a function g 𝑧 that has the form  𝑖 𝑔𝑖 𝑧

 Initialize z0

 Iterate until convergence

Pick a random 𝑔𝑖 and compute its (sub)gradient 

at 𝑧𝑡: 𝛻𝑔𝑖 𝑧𝑡

Update: 𝑧𝑡+1 ← 𝑧𝑡 − 𝛾𝑡𝛻𝑔𝑖 𝑧𝑡

General idea: Replace the gradient with a noisy estimate

𝛾𝑡: learning rate
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Sub-gradient computation

Solve the max. Suppose solution is y’

The loss-augmented/loss-sensitive/cost-

augmented inference step

Compute gradient of

Subgradient is

min
𝒘

𝟏

𝟐
𝒘𝑻𝒘+ 𝑪 𝒊 max

𝒚
𝚫 𝐲𝐢, 𝐲 + 𝒘𝑻𝝓 𝒙𝒊, 𝒚 − 𝒘𝑻𝝓 𝒙𝒊, 𝒚𝒊

𝟏

𝟐
𝒘𝑻𝒘+ 𝑪 𝚫 𝐲𝐢, 𝐲 + 𝒘𝑻𝝓 𝒙𝒊, 𝒚 − 𝒘𝑻𝝓 𝒙𝒊, 𝒚𝒊
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SGD for structural SVM: The update

Solve inference and compute sub-gradient:

At each step, go down the gradient:

Compared to Structured Perception update:

𝒘 ← 𝒘+ 𝜂′ [𝜙 𝒙𝑖 , 𝒚𝑖 − 𝜙 𝒙𝑖 ,  𝒚 ]

(𝜸𝒕, 𝜂: learning rate)
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L2-loss Structured SVM

Given a set of training examples 𝐷 = {𝒙𝒊, 𝒚𝒊}𝑖=1
𝑙

min
𝒘,𝝃

𝟏

𝟐
𝒘𝑻𝒘+ 𝑪 𝒊 𝝃𝒊

𝟐

𝒔. 𝒕. 𝒘𝑻𝝓 𝒙𝒊, 𝒚𝒊 −𝒘𝑻𝝓 𝒙𝒊, 𝒚 ≥ 𝚫 𝐲𝐢, 𝐲 − 𝝃𝒊 ∀𝒊, 𝒚 ∈ 𝒀𝒊

 Solve problem in the dual space
 Recall that in dual SVM: one dual variable for each instance

 In structured case: one for (instance, output assignment)
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• Quadratic programming with bounded constraints

where

• Number of 𝛼 variables can be exponentially large.

• Relationship between 𝑤∗ and 𝛼∗

For linear model: maintain the relationship between 𝑤 and 𝛼
though out the learning process [Hsieh et.al. 08].

Dual Problem of Structural SVM

Corresponds to different 𝑦.
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 Number of dual variables can be exponentially large

 Maintain an active set 𝐴 of dual variables:

 Identify dual variables that will be likely non-zero

 Single-thread implementation:

Select and maintain 𝐴 (active set selection step).

Update the values of 𝛼𝑖,𝑦 ∈ 𝐴 (learning step).

 (Approximately) solving a sub-problem.

Structured Learning by Dual 
Coordinate Descent 
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A Master-Slave architecture (MS-DCD):

 Given 𝒑 processors: split data into 𝒑 parts.

 At each iterations:

 Master sends current model to slave threads.

 Each slave thread solves loss-augmented inference problems 
associated with a data block and updates the active set.

 After all slave threads finish, master thread updates the model 
𝒘 according to the active set.

A parallel Dual Coordinate 
Descent Algorithm

Master 

Slave Slave Slave Slave

Sent current w

Solve loss-augmented inference
and update A

Master Update w based on  A
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DEMI-DCD:  Decouple Model-update and 

Inference with Dual Coordinate Descent.

 Let 𝒑 be #threads, and split training data into 

B1, B2, …Bp−1.

 Active set selection thread 𝒋 : select and maintain 

the active set 𝑨𝒊 for each example 𝒊 in 𝐵𝑗 .

 Learning thread: loop over all examples and 

update model 𝑤.

 𝑨 and 𝑤 are shared between threads using shared 

memory buffers.

DEMI-DCD
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Animation 

Learning

Inference

P-1

Buffer

: {𝛼i,y} variables

29



Convergence on Primal Function Value

Relative primal function value difference along training 
time (Entity-Relation task)

Log-scale
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Test Performance

Test Performance (F1 score) along training time
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• Part 2: Learning a Structured Prediction Model
• Definition of structured learning

• Local Learning v.s. Global Learning 

• Global Learning Algorithms 
• Online learning: Structured Perceptron

• Batch learning: Structured SVM 

• Optimization methods for Structured SVM
• Stochastic Gradient Decent

• Dual Coordinate Descent 

• Learning on a multi-core machine

In part 4, we will describe how to use them in 
practice
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