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Inference
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He

is

reading
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book

After inferring the POS structure for S1, 
Can we speed up inference for S2 ?
Can we make the k-th inference problem cheaper than the first?

S2

They

are

watching

a

movie

POS

PRP

VBZ

VBG

DT

NN

S1 & S2 look very 
different but their 
output structures are 
the same  

The inference outcomes 
are the same
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Amortized Inference  [Kundu, Srikumar & Roth, EMNLP-12,ACL-13]

 We formulate the problem of amortized inference: reducing 
inference time over the lifetime of an NLP tool 

 We develop conditions under which the solution of a new, 
previously unseen problem, can be exactly inferred from 
earlier solutions without invoking a solver. 

 This results in a family of exact inference schemes
 Algorithms are invariant to the underlying solver; we simply reduce 

the number of calls to the solver 

 Significant improvements both in terms of solver calls and wall 
clock time in several structured prediction tasks
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 The goal is to find a consistent assignment of entity types to 
all entities and  relation types to all relations
 Consistency constraint: A spouse relation can only hold between two 

person entities and cannot hold between two location entities

Entity Relation Extraction task

Dole ’s wife, Elizabeth , is a native of Champaign  , Illinois   .

Person Person Location     Location

spouse born_in Located_at
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Dole ’s wife, Elizabeth , is a native of Champaign  , Illinois   

ILP Formulation for Entity Relation Task

spouse born_in Located_at
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PER 0.5

LOC 0.3

ORG 0.2

PER 0.6

LOC 0.1

ORG 0.3

spouse 0.7

born_in 0.1

Located_at 0.1

No-relation 0.1

Dole Elizabeth Dole-Elizabeth

Person Person Location Location



ILP Formulation
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PER 0.5 y1

LOC 0.3 y2

ORG 0.2 y3

PER 0.6 y4

LOC 0.1 y5

ORG 0.3 y6

spouse 0.7 y7

born_in 0.1 y8

Located_at 0.1 y9

No-relation 0.1 y10

Dole Elizabeth

Dole-Elizabeth

0.5y1 + 0.3y2 + 0.2y3 + 

0.6y4 + 0.1y5 + 0.3y6 + 

0.7y7 + 0.1y8 + 0.1y9 + 0.1y10

subj to yi ε {0,1}
y1 + y2 + y3 = 1

y4 + y5 + y6 = 1

maximize

y7 + y8 + y9 + y10 = 1
2y7-y1-y4<=0

A spouse relation can only hold between two person entities



Amortized Inference for ILP

 We can write the ILP  as 

arg maxy cy

Ay ≤ b

yi 2 {0,1} 

 Inference problems discussed 
in previous sections can be 
represented as 0-1 ILPs.
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0.5y1 + 0.3y2 + 0.2y3 + 

0.6y4 + 0.1y5 + 0.3y6 + 

0.7y7 + 0.1y8 + 0.1y9 + 0.1y10

subj to yi ε {0,1}
y1 + y2 + y3 = 1

y4 + y5 + y6 = 1

maximize

y7 + y8 + y9 + y10 = 1
2y7-y1-y4<=0



max 2y1+3y2+2y3+1.0y4

y1 + y2 ≤ 1
y3 + y4 ≤ 1

Preliminary (1)

P
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2
3
2
1

cP =

objective vector



max 2y1+3y2+2y3+1.0y4

y1 + y2 ≤ 1
y3 + y4 ≤ 1

Preliminary (2)

P

Page 10

2
3
2
1

cP = 0
1
1
0

y*
P =

objective vector optimal solution



max 2y1+3y2+2y3+1.0y4

y1 + y2 ≤ 1
y3 + y4 ≤ 1

Preliminary (3)

P
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1

cP = 0
1
1
0

y*
P = cP . y*

P = 5

objective vector optimal solution

score for optimal solution



# of variables = 4

max 2y1+4y2+2y3+0.5y4

y1 + y2 ≤ 1
y3 + y4 ≤ 1

max 2y1+3y2+2y3+y4

y1 + y2 ≤ 1
y3 + y4 ≤ 1

Preliminary (4)

P Q

Same equivalence                   
class

 We define an equivalence class as the 
set of ILPs that have: 

 the same number of inference variables 

 the same feasible set 

(same constraints modulo renaming)
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# of variables = 4

Constraints are same



Recap: The Recipe

Given:

 A cache of solved ILPs and a new  problem

 We will show four different theorems.

If THEOREM_SATISFIED(cache, new problem)

then 

SOLUTION(new problem) = old solution

Else

Call base solver and update cache

End

Page 13



Amortized Inference

 Part 3: Amortized Inference
 Overview

 Amortization at Inference Time: 

 Theorems
 Decomposition

 Amortization during Learning: 

 Approximate Inference

 Results 

Page 14

CCM-Tut-P1.ppt


Intuition of Theorem I
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c1 c2 c3 c4

P Q

The objective coefficients of two ILPs
Coefficients for 
variables that are 1 
have not decreased

Coefficients for 
variables that are 0 
have not increased

Two ILPs with same constraints, 
but different objective 
coefficients

10 01

P and Q have the same 
solution

Solution to problem P



Theorem I

 Denote: δc = cQ - cP

y*
P,i = 0 cQ,i ≤ cP,i

y*
P,i = 1 cQ,i ≥ cP,i
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δci ≤ 0 (2y*
P,i – 1)δci ≥ 0

δci ≥ 0 (2y*
P,i – 1)δci ≥ 0



Full Statement of Theorem I

Theorem:

 Let y*
P be the optimal solution of an ILP P. Assume 

that an ILP Q

 Is in the same equivalence class as P 

And, For each i ϵ {1, …, np } (2y*
P,i – 1)δci ≥ 0,

where δc = cQ - cP

 Then, without solving Q, we can guarantee that the 
optimal solution of Q is y*

Q= y*
P
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cP1

cP2

Solution y*

Feasible 

region

ILPs corresponding to all 
these objective vectors will 
share the same maximizer
for this feasible region

All ILPs in the cone will 

share the maximizer

Intuition of Theorem II (Geometric Interpretation)

Page 18



Formal Statement of Theorem II

Theorem:

 Assume we have seen m ILP problems {P1, P2, …, Pm} 

All are in the same equivalence class 

All have the same optimal solution

 Let ILP Q be a new problem s.t.

Q is in the same equivalence class as P1, P2, …, Pm

There exists an z ≥ 0 such that cQ = ∑ zi cPi

 Then, without solving Q, we can guarantee that the 
optimal solution of Q is y*

Q= y*
Pi
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Proof of Theorem II

 Let y* be the optimal solution of both P1 and P2

cP1 . y* ≥ cP1 . y’ and  cP2 . y* ≥ cP2 . y’

 (z1cP1 + z2cP2) . y* ≥ (z1cP1 + z2cP2) . y’ if z1,z2 ≥ 0

 y* is optimal for any ILP with objective (z1cP1 + z2cP2) 
with z1,z2 ≥ 0 and same constraint set.
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max        cP1 . y
subj to   Ay ≤ b

P1

max        cP2 . y
subj to   Ay ≤ b

P2



Formal Statement of Theorem III

Theorem:

 Assume we have seen m ILP problems {P1, P2, …, Pm} 

All are in the same equivalence class 

All have the same optimal solution

 Let ILP Q be a new problem s.t.

Q is in the same equivalence class as P1, P2, …, Pm 

There exists an z ≥ 0 such that δc = cQ - ∑ zi cPi and 
(2y*

P,i – 1) δci ≥ 0 

 Then, without solving Q, we can guarantee that the 
optimal solution of Q is y*

Q= y*
Pi
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 Let y* be the optimal solution of both P1 and P2

 Theorem II: P1,P2 => R

 if cR = z1cP1+z2cP2, z1,z2>=0 => y*R = y*P1 = y*P2

 Theorem I: R => Q

 if (2y*
R,i – 1)δci ≥ 0, δc = cQ – cR => y*Q=y*R

 if (2y*
P1,i – 1)δci ≥ 0, δc = cQ – ∑ zi cPi => y*Q=y*P1

Proof of Theorem III
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max        cP1 . y
subj to   Ay ≤ b

P1
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subj to   Ay ≤ b

P2

max        cR . y
subj to   Ay ≤ b

R Q
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Theorem IV

Objective values 
for problem P

Structured 
Margin d

Objective values 
for problem Q

Increase in objective 
value of the competing
structures B = (CQ – CP) y 

Decrease in objective 
value of the solution
A = (CP – CQ) y*

In
cr

ea
si

n
g 

o
b

je
ct

iv
e 

va
lu

e

Two competing structures

y* the solution 
to problem P

Theorem (margin based 
amortized inference): If A + B   is 
less than the structured margin, 
then y* is still the optimum for Q
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Formally

 Let y* be optimal for P with structured margin d

cP.y* ≥ cP.y + d for all y, A1y≤ b1,A2y ≤ b2

 Objective increase for y from P to Q is (cQ-cP).y

 Objective decrease for y* from P to Q is (cP-cQ).y*

 y* is optimal for Q if

(cQ-cP).y + (cP-cQ).y* ≤ d for all y, A1y ≤ b1,A2y ≤ b2

(cQ-cP).y + (cP-cQ).y* ≤ d for all y, A1y ≤ b1
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max        cP . y
subj to   A1y ≤ b1,A2y ≤ b2

P

max    cQ . y
subj to A1y ≤ b1,A2y ≤ b2

Q



Amortized Inference Experiments

 Setup

 Verb semantic role labeling 
 Other results also at the end of the section

 Speedup & Accuracy are measured over WSJ test set 
(Section 23)

 Baseline is solving ILP using Gurobi solver.

 For amortization

 Cache 250,000 SRL inference problems from Gigaword

 For each problem in test set, invoke  an amortized 
inference algorithm
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Speedup & Accuracy

50
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65
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0.8

1.3

1.8

2.3

2.8

3.3

baseline Th1 Th2 Th3 Margin
based

Speedup

F1

Amortization schemes [EMNLP’12, ACL’13]

S
p
e
e
d
u
p

1.0

Amortized inference gives a 
speedup without losing accuracy 

Solve only one in 
three problems
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So far…

 Amortized inference
 Making inference faster by re-using previous computations

 Techniques for amortized inference 

 But these are not useful if the full structure is not redundant!

0

100

200

300

400

500

600

0 10 20 30 40 50

Smaller 
Structures are 

more redundant 
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Decomposed amortized inference

 Taking advantage of redundancy in components of structures
 Extend amortization techniques to cases where the full structured 

output may not be repeated

 Store partial computations of “components” for use in future 
inference problems
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Entity Relation Extraction task

Dole ’s wife, Elizabeth , is a native of Champaign  , Illinois   .

Person Person Location     Location

spouse born_in Located_at
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0.5y1 + 0.3y2 + 0.2y3 + 

0.6y4 + 0.1y5 + 0.3y6 + 

0.7y7 + 0.1y8 + 0.1y9 + 0.1y10

subj to yi ε {0,1}
y1 + y2 + y3 = 1

y4 + y5 + y6 = 1

maximize

y7 + y8 + y9 + y10 = 1
2y7-y1-y4<=0

+ additional variable
+ additional constraints



Decomposed inference for ER task

Joint constraints
Re-introduce constraints using Lagrangian Relaxation 
Rush & Collins, A Tutorial on Dual Decomposition and Lagrangian Relaxation for

Inference in Natural Language Processing,JAIR, 2011.

Dole ’s wife, Elizabeth , is a native of Champaign  , Illinois   .

Person Person Location     Location

spouse Located_at

Consistent assignment of 
entity types to first two 
entities (Dole, Elizabeth) 

and relation types to 
relations among these 

entities

Consistent assignment of 
entity types to last two 

entities (Champaign, Illinois) 
and relation types to 

relations among these 
entities

born_in
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Speedup & Accuracy
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Amortized inference gives a 
speedup without losing accuracy 

Solve only one in 
six problems

Amortization schemes [EMNLP’12, ACL’13]
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Reduction in inference calls (SRL)

100

41
32.7

24.4
16.6

Inference Engine Theorem 1 Margin based inference

Num. inference calls +decomposition

Solve only one in 
six problems
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Reduction in inference calls (Entity-relation extraction)

100

59.5

28.2

57

24.4

Infrence Engine Theorem 1 Margin based inference

Num. inference calls +decomposition

Solve only one in 
four problems
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So far…

 We have given theorems that allow savings of 5/6 of the calls 
to your favorite inference engine.  

 But, there is some cost in 
 Checking the conditions of the theorems

 Accessing the cache

 Our implementations are clearly not state-of-the-art but….
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Reduction in wall-clock time (SRL)

100

54.8
45.9

40 38.1

ILP Solver Theorem 1 Margin based inference

Num. inference calls +decomposition

Solve only one in 
2.6 problems
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Redundancy in Learning Phase

 [AAAI 15]: Structural Learning with Amortized Inference

Page 39

Counts

100k

80k

60k

40k

20k

0
0

# training rounds 

0         10        20        30        40       50

Inference problems

Distinct solutions



Amortization during Learning w/ Theorem I

 We can apply Theorem I to amortize inference calls 
during learning. 

 Recall: Condition of Theorem 1:

For each i ϵ {1, …, np } (2y*
P,i – 1)δci ≥ 0, where δc =

cQ - cP

 Guarantee of exactness: y*
Q= y*

P

Page 40



Amortization during Learning w/ Approximate Solution

 Approximate solutions to inference problems can be 
good enough to guide learning.

 New Condition: 

For each i ϵ {1, …, np } (2y*
P,i – 1)δci ≥ -ε |cQ,i|,

where δc = cQ - cP

 Guarantee of Approximation
 y*P is a 1 / (1 + M ε )  approximate solution to Q.
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Learning with Approximate Amortized Inference

 Learning Structured SVM with approximate amortized 
inference gives a model with bounded empirical risk
 Finley, T., and Joachims, T. 2008. Training structural SVMs when exact 

inference is intractable. In ICML 2008

 our formulation is an under-generating approximation with 
approximation ratio 1 / (1 + Mε)

 Dual coordinate descent for structured SVM can still return an 
exact model even if approx. amortized inference is used.
 call exact inference after every τ iterations

Page 42



Amortized Inference

 Part 3: Amortized Inference
 Overview

 Amortization at Inference Time: 

 Theorems

 Decomposition

 Results

 Amortization during Learning:
 Approximate Inference

 Results 

Page 43

CCM-Tut-P1.ppt


# Solver Calls (Entity-Relation Extraction)
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