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Abstract

We consider the problem of disambiguating
concept mentions appearing in documents and
grounding them in multiple knowledge bases,
where each knowledge base addresses some
aspects of the domain. This problem poses
a few additional challenges beyond those ad-
dressed in the popular Wikification problem.
Key among them is that most knowledge bases
do not contain the rich textual and structural
information Wikipedia does; consequently,
the main supervision signal used to train Wik-
ification rankers does not exist anymore. In
this work we develop an algorithmic approach
that, by carefully examining the relations be-
tween various related knowledge bases, gen-
erates an indirect supervision signal it uses to
train a ranking model that accurately chooses
knowledge base entries for a given mention;
moreover, it also induces prior knowledge that
can be used to support a global coherent map-
ping of all the concepts in a given document
to the knowledge bases.

Using the biomedical domain as our appli-
cation, we show that our indirectly super-
vised ranking model outperforms other unsu-
pervised baselines and that the quality of this
indirect supervision scheme is very close to a
supervised model. We also show that consid-
ering multiple knowledge bases together has
an advantage over grounding concepts to each
knowledge base individually.

1 Introduction

Grounding entities and concepts appearing in text
documents to a knowledge base (KB) has become

a popular method for contextually disambiguating
them and can be used also for focused knowledge
acquisition. It has been shown a valuable component
for several natural language processing and informa-
tion extraction tasks across different domains. In the
news domain, the task is often called Wikification or
Entity Linking and has been studied extensively re-
cently (Bunescu and Pasca, 2006; Cucerzan, 2007;
Mihalcea and Csomai, 2007; Ratinov et al., 2011;
Cheng and Roth, 2013). Wikipedia is widely used
as the target KB due to its broad coverage and de-
tailed information of concepts. While Wikipedia is
an excellent general purpose encyclopedic resource,
when the text is domain specific, it may not be the
single ideal resource; the text could be better “cov-
ered” by multiple ontological or encyclopedic re-
sources.

This is clearly the case for scientific text which
is often covered by multiple ontologies, each ad-
dressing some aspects of the domain. For exam-
ple, in the biological domain there are multiple on-
tologies: Entrez Gene (Lu and Wilbur, 2010) fo-
cuses on genomes that have been completely se-
quenced; Gene Ontology (Ashburner et al., 2000)
more broadly describes gene product characteristics;
and ChEBI, is a dictionary of molecular entities fo-
cused on “small” chemical compounds. The ontolo-
gies provide complementary information, but they
overlap and, in these cases, make use of different
vocabulary and provide different relevant informa-
tion.

In this paper, we consider the problem of ground-
ing concepts appearing in documents to multiple
KBs. We use the biomedical domain as our appli-



cation domain, both due to its importance and to the
fact that thousands of person-years have been spent
on putting together a large number of relevant KBs.
We discuss other potential applications in the end of
the paper. The challenges in this problem are due
both to ambiguity and variability in expressing con-
cepts: a given mention in text can be used to express
different concepts in the KBs, and a KB (ontology)
concept may be expressed in text in multiple ways,
such as synonyms or nicknames. In the case of using
multiple KBs, an additional challenge is due to the
overlap between KBs: a mention can refer to multi-
ple concepts in different KBs and we want to ground
the mention to all of them. Figure 1 shows an ex-
ample of concept annotations from the CRAFT cor-
pus (Bada et al., 2012). The mention BRCA2 refers
both to “breast cancer type 2 susceptibility protein
(PR:000004804)” from the Protein Ontology and to
“BRCA2 (EG:675)” from the Entrez Gene database,
which has more than one hundred genes across dif-
ferent species that can be referred to as BRCA2.

In the context of Wikification, people often train a
ranking model to score how relevant a KB concept is
to a mention. It is straightforward to use Wikipedia
to supervise this model, since the hyperlink struc-
ture in Wikipedia text indicates which title a mention
refers to. However, other KBs may not have such
useful information. An entry in a typical biological
KB only consists of a name, a few sentences of def-
inition, synonyms, and a few relations (Figure 1). In
addition, it is relatively difficult to obtain human an-
notations in the biomedical domain due to the high
level of expertise required and to highly ambiguous
concepts.

Our key contribution in this paper is to show
that, by exploring the overlap and the relationship
between KBs, we can obtain high quality indirect
supervision signals for sufficiently many examples,
and thus train a ranking model. Without using any
document in training and no annotated supervision,
our approach achieves better ranking results than all
previous approaches tried on this problem.

We then explore another advantage of using mul-
tiple KBs; we show that, since concepts are repre-
sented in different ways in different KBs, there are
some natural constraints between these representa-
tions. In the above example, if we determine that
a gene mention is relevant to the human genome

Figure 1: An example of concept annotations in the
CRAFT dataset and of common attributes of concepts in
the KBs.

and should therefore be grounded to human con-
cepts in the NCBI Taxonomy, we can easily rule out
all the candidate genes from other species, which
are not mentioned in the document; we can develop
these constraints since genes in the Entrez Gene KB
have NCBI Taxonomy IDs as species attributes. If
we do not use the NCBI Taxonomy as a knowl-
edge source to ground concepts but rather only fo-
cus on disambiguating gene names in a document,
we may lose this valuable information. Our final
model combines this kind of prior knowledge with
our ranker scores using a Constrained Conditional
Model (CCM) (Roth and Yih, 2004; Chang et al.,
2012) to enforce a coherent global mapping of all
mentions in a given document to their corresponding
concepts. The proposed system, CCMIS (CCM with
Indirect Supervision), performs significantly better
than the best unsupervised baseline and is competi-
tive with a directly supervised model we use to as-
sess the quality of the automatically generated indi-
rect supervision.

2 Related Work

In the news domain, many researchers have studied
ways to train a model to disambiguate concepts by
directly using hyperlinks in Wikipedia documents
as supervision. Earlier works (Bunescu and Pasca,
2006; Mihalcea and Csomai, 2007) focus on local
features which compare context words with the con-
tent of candidate Wikipedia pages. Later, several



works (Cucerzan, 2007; Milne and Witten, 2008;
Han and Zhao, 2009; Ferragina and Scaiella, 2010;
Ratinov et al., 2011) explore global features, trying
to capture coherence among concepts that appear in
close proximity in the text. Shen et al. (2012) and
Dredze et al. (2010) train their model on a small
manually created data set to handle documents in
different domains. Cheng and Roth (2013) use re-
lations between entities as constraints to support
global inference with ranker scores, and show sub-
stantial improvement on several datasets. The main
difference between our method and these Wikifica-
tion approaches is that we train a ranking model by
constructing indirect supervision signals from mul-
tiple KBs without using any annotated documents.

Concept Grounding and Word Sense Disambigua-
tion (WSD) are closely related tasks as they both ad-
dress the lexical ambiguity of language. Recently,
several works try to relate the two by incorporating
the lexical resources used in these tasks. Cholakov et
al. (2014) disambiguate verbs to the senses in Word-
Net by creating semantic patterns from multiple lex-
ical KBs, i.e., Wikipedia, Wikitionary, WordNet,
FrameNet, and VerbNet, and also for each verb men-
tion in the text. Moro et al. (2014) propose a graph-
based approach which uses Wikipedia and Word-
Net as lexical resources. Their unified approach can
achieve state of the art results on 6 Wikification and
WSD datasets. The observation from these two pa-
pers are consistent with our conclusion that using
multiple KBs jointly can improve individual tasks.
Matuschek and Gurevych (2014) try to align dif-
ferent lexical resources (WordNet, Wikitionary, and
Wikipedia in different languages). This approach is
related to our construction of indirect supervision,
and it would be interesting to see if the alignments
could improve the quality of the indirect supervision
and thus the quality of the disambiguation.

In the biomedical domain, the extensively stud-
ied word sense disambiguation problem (Weeber
et al., 2001) focuses on disambiguating mentions
to UMLS (Unified Medical Language System)
Metathesaurus (Bodenreider, 2004). The main dif-
ference from our problem is that the WSD prob-
lem only addresses a small number of terms and
the candidate concepts for each ambiguous men-
tion are provided as part of the input. Researchers
have developed various unsupervised methods that

make use of information in the KB. McInnes (2008)
compared the context words of the ambiguous men-
tion to a profile built from UMLS concepts. View-
ing the KB as a graph and adding context informa-
tion into the graph, Agirre et al. (2010) compared
the original PageRank algorithm with a personal-
ized version. Jimeno-Yepes and Aronson (2010) au-
tomatically built training examples for each sense
by retrieving documents from a large corpus. This
approach is infeasible for our problem because we
have a large amount of candidate concepts. The
popular system MetaMap (Aronson and Lang, 2010)
disambiguates mentions to semantic categories in
UMLS using journal descriptor indexing. It is de-
signed specifically for UMLS and it does not disam-
biguate two candidates if they are classified into the
same semantic category. However, Jimeno-Yepes
and Aronson (2010) showed that most of the unsu-
pervised methods cannot even outperform the max-
imum frequency baseline and are not as good as the
supervised methods (Joshi et al., 2005; Leroy and
Rindflesch, 2005).

Recently, there has been a series of BioCreative
challenges on gene normalization (Morgan et al.,
2008; Lu and Wilbur, 2010; Mao et al., 2013)
and chemical document indexing (Krallinger et al.,
2013). These tasks are closer to the problem of auto-
matic indexing of biomedical literature, however, all
these studies focus on a single KB or even a subset
of it.

In our experiments we make use of the CRAFT
dataset that has been studied extensively; however,
most of these studies focus on mention extraction
rather than disambiguating mentions. Funk et al.
(2014) comprehensively compared three dictionary-
based systems: MetaMap, NCBO Annotator (Jon-
quet et al., 2009), and ConceptMapper (Tanenblatt
et al., 2010) and shows that the latter has the best
performance. However, it only applies various string
matching strategies on the surface string of the men-
tion and the concept names in KBs, and does not
attempt any disambiguation based on the context of
the mentions.

3 Task Definition and Model Overview

We formalize the problem as follows. We are
given a document d with a set of mentions M =



Figure 2: Algorithmic components of our system.

{m1, . . . ,mn}, and l KBs, k1, . . . , kl. Each KB kj
is a graph (Tj , Rj), where a concept t ∈ Tj rep-
resents a node and a relation r ∈ Rj between two
concepts is an undirected edge. For each mention
in the document, our goal is to retrieve a set of con-
cepts C ⊆ T1 ∪ · · · ∪ Tl that the mention refers to.
Note that a mention may refer to multiple concepts
in a single or multiple KBs.

Figure 2 shows the algorithmic components in our
system. The first step is concept candidates genera-
tion. Given a mention mi from a document, it pro-
duces a candidate set Cmi ⊆ T1 ∪ · · · ∪ Tl. That is,
Cmi is a subset of all concepts in the KBs. We only
look at the surface string of the mention in this step,
no contextual information is examined. The goal of
this step is to quickly produce a short list of con-
cepts which includes the correct answers. We call
these concept candidates “grounding candidates” for
mention mi.

The second and key step is the ranking step where,
given a concept mention in text, we assign a score
to each of its potential KB grounding candidates,
which indicates how relevant it is to the given men-
tion. We train a linear ranking SVM model using
the information in the KBs. Note that unlike the
Wikification problem in which it is possible to use
the Wikipedia structure to learn a ranker, most other
KBs do not have text with hyperlinks. To overcome
this problem, we propose a novel method to utilize
the redundancy and relationship between KBs as in-
direct supervision. Specifically, if two concepts in
different KBs are determined to be the same, we can
assume that one is the “gold label” for the other,
and extract textual and relational features between
them, making this pair an approximation of the real
grounding instance. This method only requires in-
formation from the KBs hence no annotated docu-
ment is needed.

We would like to use multiple sources of knowl-
edge in order to train a robust ranking function over a
set of candidates. Some of these can be captured via
features of the ranking function (e.g., textual simi-
larity between the context of a mention and the de-
scription of a concept in a KB); some, are better cap-
tured as constraints over the ranking produced by
a ranking function. For example, if we choose to
map a mention into a node in the KB that is species-
specific, we insist on the species being mentioned in
the context of the target mention. We will not link
otherwise. As a way to combine statistical informa-
tion and such declarative constraints we formulate
our problem using Constrained Conditional Model
(CCM) (Roth and Yih, 2004; Chang et al., 2012).
We formulate the following Integer Linear Program
(ILP) objective function to enforce a coherent global
solution of all mentions in a document:

arg max
e

n∑
i=1

|Cmi |∑
j=1

sjie
j
i −

∑
k

ρkγk(e) (1)

s.t. eji ∈ {0, 1}, ∀i, j

where eji is a boolean variable that indicates if we
choose the j-th candidate of the i-th mention, e is a
vector that contains all the eji ’s, and sji is the ranker
score, capturing the relatedness of mention mi and
its j-th candidate. In the second component, γk is a
boolean variable that indicates whether the k-th con-
straint is violated, and ρk is the pre-defined penalty
for violating the k-th constraint. Constraints are of-
ten defined on a subset of variables from our prior
knowledge. For example, one constraint used in our
system states that genes of a species can only be se-
lected if that species is mentioned somewhere in the
document. This ILP problem can be solved quickly
by an off-the-shelf ILP package since only a small
number of variables are constrained. In the end, all



the selected concept candidates are ranked accord-
ing to sji , and a list of ranked concepts is returned
for each mention.

In the following sections, we describe each com-
ponent in detail.

4 Concept Candidate Generation

In the first step of our system, given a mention m
from a document, we produce a set of concept can-
didates Cm which is a subset of all concepts in the
KBs. We want to reduce the number of concept can-
didates from millions to a manageable size, so that
a more sophisticated and resource-hungry algorithm
can be applied to disambiguate them. There is a
trade-off here: we want Cm to contain all the an-
swers that correspond tom, but if there are too many
candidates, the performance of the ranker may suf-
fer. Therefore, we first do synonym matching, which
gives a high precision candidate list. Word matching
is then applied only if synonym matching fails to
generate any candidate. We describe the synonym
matching and word matching procedures in the fol-
lowing sections.

4.1 Synonym Matching

We construct a dictionary from all synonyms and
name fields across all KBs. This dictionary maps
a string (synonym or name) to all possible concepts.
In order to handle variations of words, we use the
SPECIALIST Lexical Tools 1 to normalize each to-
ken of synonyms and the given input mention. Do-
ing exact matching between the mention and all the
names in KBs gives a high precision candidate list.

4.2 Word Matching

After synonym matching, many mentions may still
have an empty candidate list because the KBs do not
cover all possible ways to express a concept. If no
candidate is generated after applying the first dic-
tionary lookup method, we compare words in the
mention with words in the KBs and their synonyms.
We use as candidates all those concepts that match
in this process. Note that this strategy may return
a large number of concepts, therefore we only keep
the top k concepts to maintain feasibility. We use the

1http://lexsrv3.nlm.nih.gov/LexSysGroup/
Projects/lvg/current/web/index.html

score from the PageRank algorithm (Section 8.4) to
rank concepts initially.

5 Concept Candidate Ranking

This section describes how we obtain the relevance
scores sji in Eq. (1) for each (mention, concept) pair.
Given a mentionm and a concept candidate c ∈ Cm,
we define the relevance of c to m as:

s(m, c) = φ(m, c) + ψ(c,Γm). (2)

The first component φ(m, c) measures the local
compatibility between the mention and the concept
candidate. It uses text-based features to capture the
intuition that a given concept c is more likely to be
referred to by the mention m if the entry of c in a
KB has high textual similarity to the text around m.
We model it as a linear combination of a set of local
features φi:

φ(m, c) =
∑
i

wiφi(m, c).

The second component of the scoring function (2),
ψ(c,Γm) is a global component that captures how
well does the concept c fit into the disambiguation
context Γm of the mention m. The disambiguation
context consists of other concepts in the document
or close to the mention. Of course, we do not know
what the concepts that correspond to other men-
tions in the document are, and different ways to con-
struct disambiguation context have been proposed
(Cucerzan, 2007; Milne and Witten, 2008; Ratinov
et al., 2011). Since in our case (in difference from
the standard Wikification) a mention may refer to
multiple concepts, using the current top ranked con-
cept candidate from other mentions (Ratinov et al.,
2011) may lose some useful information. Therefore,
we develop an approach that is similar to Cucerzan
(2007). Instead of considering all the ambiguous
mentions in the document, we take all concept can-
didates from mentions in nearby sentences as our
disambiguation context. Although some irrelevant
concepts are included, we rely on a high precision
candidate generation process to reduce errors. Simi-
lar to the local score model, we design a set of global
features ψj across multiple KBs and define:

ψ(m, c) =
∑
j

wjψj(c,Γm).

http://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lvg/current/web/index.html
http://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lvg/current/web/index.html


In addition to local and global features, we use the
PageRank score of the concept candidates as a base-
line feature. To rank concept candidates c ∈ Cm of a
mentionm, we use a linear ranking SVM to learn the
weights wi and wj of the local and global features,
respectively. The features used in our experiments
are listed in the following sections.

5.1 Local Features

The local features used in our system are calculated
from context(m) and def(c), where context(m)
represents the bag of words from p sentences before
and after the mention m, and def(c) is the bag of
words from the definition of c in a KB. Words are
lowercased and stemmed.
• |context(m) ∩ def(c)|. The total number of

common words in the context of m and c.
• Cosine similarity between the tf-idf vectors of
context(m) and def(c). The i-th component
in the vector is the tf-idf score of the i-th word
in the vocabulary. The document frequency of
words is calculated from all definitions in KBs,
each definition representing a document.
• Common words in context(m) and def(c).

This is a sparse boolean vector with length that
is the size of vocabulary. The i-th feature is
on if the i-th word in the vocabulary exists in
both context(m) and def(c). Instead of using
tf-idf vectors to capture the importance of each
word, we use this feature to learn a weight for
each word.

5.2 Global Features

Global features are defined on neighbor(c) and Γm,
where neighbor(c) is the set of concepts which have
relations with c in any of the KBs, and Γm is a set of
candidate concepts from other mentions in the con-
text of mention m. We consider all the mentions in
p sentences before and after m in our experiments.
• |neighbor(c)∩Γm|. The total number of com-

mon concepts in neighbor(c) and Γm. We also
split this number according to different KBs,
and keep a feature that indicates the total num-
ber of common concepts from each KB.
• Common concepts in neighbor(c) and Γm.

This is a sparse boolean vector with length that
is the total number of concepts. The i-th fea-
ture is on if the i-th concept exists in both

neightbor(c) and Γm.

6 Indirect Supervision

One of our key contributions in this paper is a way to
train the model described above, without any super-
vision and no information (such as hypelinks) from
the documents. To accomplish that, we devise an
indirect supervision method that explores the redun-
dancy of information in the KBs and the relationship
between KBs to construct training examples, so that
we can train a ranking SVM model without any an-
notated document.

We make the assumption that if two concepts
from different KBs have the same cross reference
field, they are, in fact, the same concept. For in-
stance, the concept named chromosome is in the
Gene Ontology (GO:0005694) and the Sequence
Ontology (SO:0000340). These two entries both
have an attribute “xref: Wikipedia:Chromosome”2,
which points to the Wikipedia page of chromo-
some thus indicating that they are the same concept.
This redundancy allows us to generate an “anno-
tated” example as follows: we make the definition
of GO:0005694 the context of an ambiguous men-
tion, and annotate it as the concept SO:0000340.
This way, we can exploit the fact that definitions (of
concepts) and related concepts are described differ-
ently in different KBs, to learn the importance of
words and neighboring concepts, facilitating gener-
alization. Another resource that we leverage is the
“has participant” relationship. For example, fruc-
tose metabolic process (GO:0006000) in the Gene
Ontology has a participant fructose (CHEBI:28757)
from the Chemical Entities ontology. This allows us
to generate another “annotated” example, where we
annotate the fructose in fructose metabolic process
with the concept CHEBI:28757. Note that while this
information usually exists across multiple KBs, it is
also possible to apply this method on a single KB.

Next we describe the indirect supervision process
in some more details. The first step of constructing
our training examples is to cluster concepts in the
KBs by the cross reference attributes and also ex-
tract all pairs of concepts that have “has participant”
relations. In each concept cluster, we randomly pick

2Besides Wikipedia, other knowledge bases can also be in
the cross-reference field.



one concept as the fake “mention” and the rest of
concepts as the gold annotations to this mention.

6.1 Negative Concept Candidates
After the clustering step, we have obtained sev-
eral positive concept candidates. To generate neg-
ative candidates, we apply our candidate generation
method on the name of the concept which is treated
as the mention, and also uniformly sample 200 con-
cepts from all KBs. However, there is no guarantee
that these candidates are really negative. Instead of
using binary relevance score to train a linear rank-
ing SVM, we take the number of common ancestors
between a candidate and the positive candidates as
the relevance score for the candidate. This way, if
we missed a gold concept in the cluster, we won’t
assign it a completely irrelevant score if it has close
proximity in the hierarchy of KB with other golds.

6.2 Feature Extraction
The local and global features we designed to capture
the relatedness between a concept candidate and a
mention are defined on context(m) and Γm, which
are the textual clues around the ambiguous mention
m. The indirect supervision examples we have are
not from any document, so there is no contextual
clues. To approximate the features used at prediction
time for the concept m which is treated as the men-
tion, we use def(m) to replace context(m) and Γm

is replaced by neighbor(m), the neighboring con-
cepts in the KB. By doing these approximations, we
can generate features for a pair of concepts to facili-
tate training a ranker.

7 Constraints for Global Inference

At this point, we only use two types of hard con-
straints in Eq. (1) to enforce the consistency be-
tween concepts of different mentions. More specif-
ically, a gene can be selected only if it is from a
species mentioned somewhere in the document. We
first form a species candidate set by gathering all
concept candidates from NCBI Taxonomy3 in a doc-
ument. The assumption is that the genes mentioned
in this document should be from at least one of the

3NCBI Taxonomy Database is a curated classification
and nomenclature for all of the organisms in the public
sequence databases (http://www.ncbi.nlm.nih.gov/
taxonomy)

species in the species candidate set. Some concepts
from the Protein Ontology and all concepts from the
Entrez Gene Database have attributes that indicate
the corresponding species, thus we design the fol-
lowing two constraints:
• A concept from the Entrez Gene Database must

have an NCBI Taxonomy ID in the species can-
didate set of the document.
• If a concept from the Protein Ontology and a

concept from NCBI Taxonomy have a relation
“only in taxon”, the concept from the Protein
Ontology will be picked only if the concept
from NCBI Taxonomy is in the species candi-
date set.

These two constraints are defined only on a sin-
gle concept candidate, and we set the penalty ρk of
them to be infinity to make these constraints hard
constraints. Therefore, if a concept violates any of
these two constraints, it will be excluded from the
final concept list.

8 Evaluation

In this section, we compare the proposed CCMIS
with five other approaches on the CRAFT dataset.
In addition, we present experimental analysis de-
signed to evaluate the candidate generation method,
features of the ranking model, the quality of indirect
supervision, and the benefit of using multiple KBs.

8.1 Dataset

The Colorado Richly Annotated Full-Text (CRAFT)
corpus (Bada et al., 2012) is the largest gold standard
corpus with high-quality annotations from multiple
KBs: the Cell Type Ontology (CL), the Chemical
Entities of Biological Interest ontology (CHEBI),
the NCBI Taxonomy (NCBITaxon), the Protein On-
tology (PR), the Sequence Ontology (SO), the En-
trez Gene database (EG), and the Gene Ontology
(GO). It identifies nearly all concepts from 67 full
text of biomedical journal articles. We use the on-
tologies released along with the annotated docu-
ments in CRAFT-1.0 except EG which is not in-
cluded in the package. We use the version which
was available on October 30th, 2014. The CRAFT
corpus consists of 82,634 concept mentions in total.
The total number of concepts and unique concepts
from each ontology is shown in Table 1. Note that

http://www.ncbi.nlm.nih.gov/taxonomy
http://www.ncbi.nlm.nih.gov/taxonomy


Ontology #Concepts #Anno. #Uniq. Anno.

PR 26,879 15,593 889
NCBITaxon 789,509 7,449 149
GO 25,471 29,443 1,235
CHEBI 19,633 8,137 553
EG 17,097,474 12,266 1,021
SO 1,704 21,284 259
CL 857 5,760 155

Total 17,961,527 99,932 4,261

Table 1: Statistics of the concepts in the ontologies and
the CRAFT corpus. We use “concepts” to refer to the
entires in the ontologies, and “annotations” are concepts
which are associated with mentions in the text. The sec-
ond column shows the total number of concepts in each
ontology. The third and fourth columns show the number
of annotations and unique annotations of each ontology
in the CRAFT corpus.

the total number of gold annotations (99,932 the last
row of the third column) is larger than the number
of mentions which indicates that a mention may re-
fer to more than one concepts across multiple on-
tologies. The interannotator-agreement of concept
annotations is above 90% F1 score for all the on-
tologies (Bada et al., 2012).

8.2 Evaluation Metrics

We mainly use the mean area under the precision-
recall curve (AUC of PR-curve) (Agarwal et al.,
2005) as the evaluation metric. Each mention has a
ranked concept list as an output, and a set of gold
concepts. We calculate the precision and recall at
every ranking position, forming a PR-curve. Note
that the recall is calculated using the total number
of gold concepts, not just the total number of golds
in the output list. This way we ensure this metric
reflects the fact that some gold concepts are missing
in the output. The AUC of the PR-curves of all
mentions are averaged to get a final single number.
We also report a hierarchical version of the AUC.
The intuition is that if a concept is the parent or
child of the gold concept, it should be penalized less
than a concept which is far away from the gold in
the hierarchy. We calculate hierarchical precision
and recall using the method proposed in Kiritchenko
et al. (2005), which replaces each concept by its
ancestors (including itself), and then calculates the

precision and recall at every ranking position by
matching the ancestors of a concept candidate with
the ancestors of the gold concepts. If a predicted
concept has more common ancestors with the gold
concepts, the score will be higher.

8.3 Baselines

We compare our proposed method with the follow-
ing unsupervised methods.
• TF-IDF Cosine similarity between the TF-IDF

vectors of mention context and the concept can-
didate’s definition.
• PageRank (Brin and Page, 1998) We run the

PageRank algorithm on the graph constructed
from all the KBs with damping factor 0.85.
This method doesn’t consider any context of
the ambiguous mentions at all, so a candidate
concept always gets the same score, regardless
of the mention it is a candidate for.
• CollectiveInf (Zheng et al., 2015) In this

method, the initial score for each concept is
calculated by a modified PageRank algorithm,
in which the entropy of relations are used as
the edges’ weights. The final score of a con-
cept candidate is further adjusted by the match-
ing between neighboring concepts in the KB
and the concept candidates around the mention.
That is, if a neighbor concept in the KBs also
appears in the context of the mention, the score
of the concept candidate is increased accord-
ing to the initial score of the matched neighbor
concept.
• Ppr (Agirre and Soroa, 2009) The Personalized

PageRank algorithm implemented in the UKB
package4. This method first inserts the con-
text mentions into the graph as nodes, and links
them with directed edges to the corresponding
concept candidates. The PageRank algorithm is
then applied by concentrating the initial proba-
bility mass uniformly over the mention nodes.
We take a window of 30 mentions as the con-
text. Note that in order to have a fair compar-
ison of the disambiguation ability, we use the
proposed candidate generation method in Sec-
tion 4 to produce the confusion set for each

4http://ixa2.si.ehu.es/ukb/

http://ixa2.si.ehu.es/ukb/


Approach Mean AUC Mean hAUC

TF-IDF 40.44 48.50
PageRank 42.78 50.04
CollectiveInf 35.67 42.93
Ppr 43.39 51.88
Ppr w2w 46.51 55.46
CCMIS 48.58 57.37

Table 2: A comparison of CCMIS and other five unsuper-
vised approaches on the CRAFT corpus. The evaluation
metrics are mean AUC of PR-curve and its hierarchical
version. CCMIS outperforms other methods significantly
in both metrics (using bootstrapped t-test with p-value
< 0.05

Feature Mean AUC Mean hAUC

PageRank 42.78 50.04
+ Local Features 45.58 54.53
+ Global Features 46.64 56.00
+ Constraints 48.58 57.37

Table 3: Feature ablation study of the proposed method,
CCMIS. The initial ranking of candidates is according to
the PageRank score. Training an indirectly supervised
ranker with local and global features improves the per-
formance by 3.3 points of mean AUC. Doing global in-
ference with constraints improves almost 2 points overall.

mention.
• Ppr w2w This is another variant of the Per-

sonalized PageRank algorithm and it has the
best performance in Agirre and Soroa (2009).
It builds a graph for each target mention and
concentrates the initial probability mass in the
concept candidates of the target mention. We
also directly use the implementation released in
the UKB package and take 30 mentions around
the target mention as the context. As dis-
cussed in Agirre and Soroa (2009), the draw-
back of this method is its slow running time,
since it performs a PageRank algorithm on the
whole graph for each mention. Given the large
number of mentions and the huge graph in the
CRAFT dataset, we set the number of iteration
of PageRank to 3 in order to make the run-
ning time tractable. It takes around 3 days on a
machine with 3.0GHz CPU, whereas other ap-
proaches only need less than one hour.

8.4 Experimental Results

We use a public linear ranking SVM package (Lee
and Lin, 2014) with default parameters to learn the
ranking model. Feature engineering is done by do-
ing cross validation on the indirect supervision ex-
amples, therefore, we can use all documents as the
test set for all approaches. Table 2 shows the overall
performance of each approach. The results of graph-
based approaches are consistent with the results in
Agirre and Soroa (2009): Ppr w2w performs bet-
ter than Ppr, and these two Personalized PageRank
approaches outperform the static PageRank method.
However, given the large size of KBs and the num-
ber of mentions in the CRAFT corpus, Ppr w2w re-
quires two days to run on a 3.0GHz CPU, whereas
Ppr only takes two hours and other methods can be
done within an hour. TF-IDF does not performs well
since the definitions of concepts are very short and
concise, which makes them hard to be matched with
any context words. Our algorithm CCMIS gets 2
points higher than Ppr w2w in terms of mean AUC,
even though no additional external information is
being used; specifically, no annotated document is
needed to train the ranking model. Regarding the re-
laxed metric, mean hierarchical AUC (hAUC), the
relative performance is the same but the gaps be-
tween hAUC and AUC indicate that many concept
candidates are the ancestors or descendants of the
gold concept, which might be proven good enough
in practice.

Table 3 shows a feature ablation study of CCMIS.
The initial ranking of candidates is according to the
static PageRank score. Training an indirectly super-
vised ranker with local features adds almost 3 points
of mean AUC. Without adding the two constraints to
enforce species coherence, the ranking scores from
our ranker already perform better than other ap-
proaches. Using these constraints adds about 1.9
points of mean AUC overall.

The candidate generation method plays an impor-
tant role in getting good ranking performance. In
CCMIS, we include the top 10 candidates from word
matching only when synonym matching fails to gen-
erate any candidate since candidates generated by
word matching are nosier. This way covers 68.11%
of the gold concepts, which indicates that the ceil-
ing of the ranking performance is close to 68.11. To



Approach k = 0 k = 10 k = 20 k = 30

TF-IDF 38.60 21.30 17.58 15.12
PageRank 40.09 21.78 20.23 19.73
CollectiveInf 33.93 16.6 12.74 11.17
Ppr 40.91 20.71 20.40 19.74
Ppr w2w 42.58 24.56 23.13 21.21
CCMIS 45.95 29.32 26.46 24.48

Gold coverage 62.70 68.92 70.02 70.62

Table 4: Comparing ranking performance by changing
the parameter in the candidate generation algorithm. Be-
sides synonym matching, we use word matching to make
sure each mention has at least k candidates. Note that in
the setting of Table 2, word matching is only applied if
synonym matching fails to generate any candidates. The
gold coverage is the percentage of gold annotations in-
cluded in the candidate list, a performance upper bound.
The metric is mean AUC.

Approach Mean AUC Mean hAUC

CCMIS 48.58 57.34
Gold Clusters 50.85 56.50
Direct Supervision 58.98 62.59

Table 5: Evaluating the quality of indirectly supervised
examples. The only difference between these three ap-
proaches is the way we obtain training examples. That is,
only the ranking model is changed. Concept candidates,
features, and learning algorithm are stay the same.

show how the candidate generation method affects
ranking performance we add candidates from word
matching to mentions so that each mention has at
least k concept candidates. The results are shown
in Table 4. The last row of Table 4 shows the per-
centage of gold concepts included as candidates. We
can see that after k = 20, the gold coverage merely
increases. This indicates that lexical level matching
is not sufficient for generating more gold concepts
into the candidate set. From k = 0 to 10, the perfor-
mance of each approach drops a lot. CCMIS is more
robust when there are more irrelevant candidates. It
is also interesting to see that simply increasing the
gold coverage may result in worse overall perfor-
mance. We need a more powerful ranking algorithm
to handle larger number of candidates.

8.5 Quality of Indirect Supervision

We assess the quality of our indirect supervision
training examples by comparing CCMIS’s perfor-
mance with two other approaches. These two ap-
proaches only change the way CCMIS constructs
training examples for linear ranking SVM. That is,
only the ranking model is changed while other com-
ponents (concept candidates, features, and learning
algorithm) of the system are identical.

Instead of finding concept clusters using cross ref-
erence fields and has participant relations as in our
proposed method, the first approach used the gold
clusters from the mentions which have more than
one gold annotation in the CRAFT corpus. Each
mention forms a concept cluster in which members
are the gold annotations. We conduct 5-fold cross
validation on the CRAFT corpus, where gold clus-
ters are extracted from the training documents. Note
that the features of the training examples are gener-
ated in the same way as in our indirect supervision
method, that is, although concept clusters are taken
from documents, no text is used to generate features.
This way we can focus on comparing the quality of
the concept clusters obtained from the KBs with hu-
man annotation. This approach is named Gold Clus-
ters in Table 5. Interestingly, its performance is bet-
ter than CCMIS in terms of mean AUC but slightly
worse in mean hAUC, which indicates that the con-
cept clusters obtained by the proposed method have
as good a quality as the gold annotations.

The second comparison is against direct supervi-
sion; here we use gold annotations from the CRAFT
corpus itself and generate features of training exam-
ples in the same way used at prediction time. The
results of 5-fold cross validation are listed in the
third row of Table 5. Apparently, but not surpris-
ingly, training with gold achieves about 10 points
better than CCMIS. Note that in this case, the test
examples, which are generated given the text docu-
ments, are expected to be more similar to the train-
ing examples, which are also generated from the text
documents, in difference from the training examples
used by CCMIS. This gap indicates how well the
indirect supervision method approximates the distri-
bution of the features in the test data, without using
any document to obtain a good model.



Approach Individual KBs Joint Approach (on individual KBs)

PR GO NC EG CH SO CL PR GO NC EG CH SO CL

PageRank 83.1 36.9 44.7 11.6 56.4 57.9 74.3 83.4 41.7 45.2 37.9 71.4 56.9 77.8
CollectInf 83.4 35.7 44.7 11.6 56.3 57.7 74.2 84.0 39.2 45.0 45.5 60.5 57.2 80.5
Ppr 83.2 36.5 44.7 11.6 58.0 57.8 76.1 82.9 41.3 45.1 53.9 71.2 57.2 78.9
Ppr w2w 84.5 35.7 44.3 23.2 70.6 56.9 76.6 84.5 40.3 44.9 32.3 71.2 57.5 77.6
CCMIS 84.4 35.5 43.7 25.9 68.6 57.0 76.5 83.9 42.3 45.1 38.5 70.7 57.7 78.0

Table 6: A comparison between linking to each ontology individually and jointly. The evaluation metric is mean
AUC of PR-curve. Note that the numbers are not directly comparable with the ones in the previous tables since the
mentions in the CRAFT corpus are split into different datasets according to the annotations. For each approach and
ontology, jointly using multiple KBs yields better results in most cases. The averaged performance over all datasets is
summarized in Table 7.

8.6 Using KBs Individually v.s. Jointly

We compare the ranking performance of using KBs
individually versus jointly. The joint case is exactly
the setup of our task: grounding a given mention to
multiple KBs, where the information from multiple
KBs is used together. In the individual case, we only
use the information from a single KB to ground con-
cepts to this target KB, and do this for each KB. We
create a dataset for each KB by splitting the annota-
tions in the CRAFT dataset. For example, when we
create the dataset for the Gene Ontology (GO), we
only keep the mentions that have at least one gold
annotation from GO, and remove all the other anno-
tations. Approaches applied on this dataset can only
access the information in GO. Note that we keep the
candidate generation process the same as what we
do in the joint case, but only keep the concept candi-
dates from the target ontology. Hence, we can see
how does ranking performance changes given the
same set of candidates. The evaluation is done on
each ontology’s dataset separately. We also evalu-
ate the joint methods on each ontology separately
by splitting the final ranked concepts according to
their knowledge source. It allows for a fair compar-
ison of the performance of the joint method with the
individual methods. Note that the performance num-
bers in this section are not directly comparable to the
ones in previous sections as the dataset has changed.

The results of applying different approaches to
each KB’s dataset are shown in Table 6. We can
see that for each pair of (approach, ontology), us-
ing multiple KBs jointly usually yields a better re-
sult than using each KB individually. The improve-

ment is more obvious for some ontologies, for in-
stance, EG and CH, which contain sparse relations.
In these cases, using multiple KBs together provides
more information of the neighbor concepts thus may
have a better match with the context of the ambigu-
ous mention.

Table 7 shows the overall performance by av-
eraging the AUC score of each mention in each
ontology’s dataset. CCMIS outperforms other ap-
proaches in the joint case, but has the largest gap be-
tween the individual and joint cases. The reason is
that the concept clusters used to generate our train-
ing examples have worse quality and quantity within
a single KB. In addition, using a single KB makes
the global features sparser. This result indicates that
CCMIS leverages the information across multiple
knowledge bases well to achieve the best overall per-
formance. Interestingly, Ppr w2w achieves the best
performance in the individual case. It seems that ap-
proach performs relatively well in a homogeneous
network. It would be interesting to see if we can
combine the power of Ppr w2w as a feature in our
ranking model (while avoiding its unrealistic com-
putational cost).

9 Discussion and Conclusions

This work studied the concept grounding problem
where the target knowledge bases do not contain
rich textual and structural information. We showed
that we can achieve better performance than existing
methods by leveraging the relations between mul-
tiple KBs. The proposed approach of construct-
ing indirect supervision examples enables us to ap-
ply the well-studied statistical learning model even



Approach Individual KBs Joint Approach

PageRank 49.85 55.74
CollectiveInf 49.46 55.42
Ppr 52.12 54.88
Ppr w2w 52.23 56.18
CCMIS 49.93 57.65

Table 7: The overall performance of using KBs individ-
ually and jointly. Note that the numbers are averaged
AUC of mentions across different KBs’ datasets, a dif-
ferent evaluation metric from Table 2. Using multiple
KBs jointly always yields a better result and the gain of
CCMIS is the largest.

when there is no direct supervision. Inducing simple
constraints to enforce solution consistency across re-
lated KBs was shown to further improve the ranking
results. This work and the analysis shown suggest
a range of questions from how to combine other re-
sources to obtain higher quality of supervision, to is-
sues of handling feature sparsity and improving the
crucially important candidate generation precision.

An immediate question that follows from our
work is whether (and what) other tasks can be ben-
efit from the proposed technique. The proposed
method of constructing indirect supervision exam-
ples is based on (1) Redundant information between
multiple knowledge bases. The fact that dupli-
cated concepts with different descriptions/relations
appear in different KBs allows the algorithm to fig-
ure out what is important in the concept descrip-
tions and thus provides a way to distinguish among
concepts. (2) The features extracted from concept-
concept pairs. These, as we show, approximate well
the features of mention-concept pairs at test time. If
(1) is satisfied, that is, there are multiple KBs and
enough entries in them that can be aligned, then the
proposed method can be applied. However, the per-
formance of this method highly depends on (2), the
quality of features and how well the indirect super-
vision examples approximate the text at prediction
time.

An application which fits this setting is the
verb sense disambiguation problem, where there
are multiple sense inventories (e.g., VerbNet (Kip-
per et al., 2000), FrameNet (Baker et al., 1998),
and PropBank (Palmer et al., 2005)) and many of
the senses are aligned by different resources (e.g.,

UBY (Gurevych et al., 2012) and Unified Verb In-
dex5). There are corpora which have annotations
from one or more these verb sense inventories avail-
able, such as OntoNotes (Pradhan et al., 2007) and
MASC6. However, unlike the biomedical ontologies
which have many common attributes and relatively
uniform structure, different verb sense inventories
vary in format and content: some resources have
descriptions or example sentences of the senses,
but others only have the names of semantic roles;
some have relations between senses but some do not.
Therefore, the question of what features would be
useful in this case could be very different from those
proposed in this paper and would require additional
research.

In one of the related works we mention in Sec-
tion 2, Cholakov et al. (2014) actually utilized mul-
tiple verb sense inventories to link verbs to VerbNet.
They generate a “semantic pattern” for each sense
using the connections between different sense inven-
tories, and those to each verb mention in the text.
The prediction is based on the similarity between se-
mantic patterns. Although this unsupervised method
is very different from our indirect supervision ap-
proach, they confirm that using links between differ-
ent sense inventories improves the performance. It
would be very interesting to try our method on this
problem.
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