Exploiting Partially Annotated Data for Temporal Relation Extraction

Qiang (John) Ning, Chuchu Fan **Department of Electrical and Computer Engineering University of Illinois**

Zhongzhi (Mark) Yu **Department of Computer Science University of Illinois**

Dan Roth **Department of Computer Science University of Pennsylvania University of Illinois**

Introduction

Extracting temporal relations (TempRel) between events (e.g., before, after, includes, equal) is an important task in natural language understanding.

The TempRels in a doc can be conveniently modeled as a graph:

- Node = Event
- Edge = TempRel

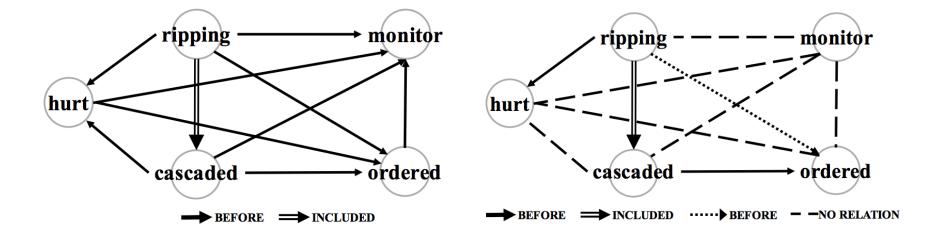
Example: . . . tons of earth **cascaded** down a hillside, **ripping** two houses from their foundations. No one was **hurt**, but firefighters **ordered** the evacuation of nearby homes and said they'll **monitor** the shifting ground....

Algorithm 1: Joint learning from \mathcal{F} and \mathcal{P} by bootstrapping **Input:** \mathcal{F} , \mathcal{P} , Learn, Inference 1 $S_{\mathcal{F}} = \text{Learn}(\mathcal{F})$ 2 Initialize $S_{\mathcal{F}+\mathcal{P}} = S_{\mathcal{F}}$ **3 while** convergence criteria not satisfied **do** $\mathcal{P} = \emptyset$ foreach $p \in \mathcal{P}$ do 5 $\hat{\mathbf{y}} = \text{Inference}(p; S_{\mathcal{F}+\mathcal{P}})$ $ilde{\mathcal{P}} = ilde{\mathcal{P}} \cup \{(\mathbf{x}, \hat{\mathbf{y}})\}$

 $\hat{\mathcal{I}} = \operatorname*{argmax}_{\mathcal{I}} \sum_{i < j} \sum_{r \in \mathcal{R}} f_r(ij) \mathcal{I}_r(ij)$ s.t. $\Sigma_r \mathcal{I}_r(ij) = 1$, (uniqueness) $\mathcal{I}_{r_1}(ij) + \mathcal{I}_{r_2}(jk) - \sum_{m=1}^N \mathcal{I}_{r_3^m}(ik) \le 1,$ (transitivity)

Three components to keep in mind:

CoDL Framework • Bootstrapping: New annotations are predicted on P



TempRel annotation requires labeling all the edges, which is very labor intensive.

- Annotating each edge is time-consuming
- Too many edges! $O(n^2)$ \bullet

As a result, only a small number of docs are fully annotated. Less docs = Less coverage of phenomena!

Possible solution:

- Collect more documents
- Learn from partial annotation (this paper)

Data

- F: 36 fully annotated docs from TBDense
- P: 220 partially annotated docs from TBAQ

Train: 22 F docs + 220 P docsDev: 5 F docs

$$S_{\mathcal{F}+\mathcal{P}} = \text{Learn}(\mathcal{F}+\tilde{\mathcal{P}})$$

9 return $S_{\mathcal{F}+\mathcal{P}}$

- Structural constraints: Enforced via ILP constraints
- Partial annotation: Enforced via equality constraints

Benchmark Performance on the Test Split of TimeBank-Dense

How to Make Use of Partially Annotated Data

No.	Training		Same Sentence			Nearby Sentence		Overall		Awareness				
NO.	Data	Bootstrap	Р	R	F	Р	R	F	Р	R	F	Р	R	F
1	${\mathcal F}$	-	47.1	49.7	48.4	40.2	37.9	39.0	42.1	41.0	41.5	40.0	40.7	40.3
2	\mathcal{P}^{Full}	-	37.0	33.1	35.0	34.4	19.6	24.9	37.7	23.6	29.0	36.9	24.0	29.1
3	${\cal P}$	-	34.1	52.5	41.3	26.1	48.1	33.8	30.2	52.1	38.2	28.6	49.9	36.4
4	\mathcal{F} + \mathcal{P}^{Full}	-	38.5	32.2	35.1	40.1	38.1	39.1	40.8	35.3	37.8	37.1	36.2	36.6
5	\mathcal{F} + \mathcal{P}	-	43.7	43.9	43.8	39.1	38.3	38.7	41.8	40.7	41.2	38.6	41.4	40.0
6	\mathcal{F} + \mathcal{P}^{Empty}	Local	41.7	50.3	45.6	39.5	48.1	43.4	41.8	50.4	45.7	40.9	47.5	43.9
7	\mathcal{F} + \mathcal{P}^{Empty}	Global	44.7	55.5	49.5	40.1	48.7	44	42.0	51.4	46.2	41.1	48.3	44.4
8	\mathcal{F} + \mathcal{P}	Local	43.6	50	46.6	43	46.9	44.8	43.7	47.8	45.6	42	45.6	43.7
9	\mathcal{F} + \mathcal{P}	Global	44.9	56.1	49.9	43.4	52.3	47.5	44.7	54.1	49.0	44.1	50.8	47.2

. I with missing annotations mice by vague

P^{Empty}: P with all annotations removed

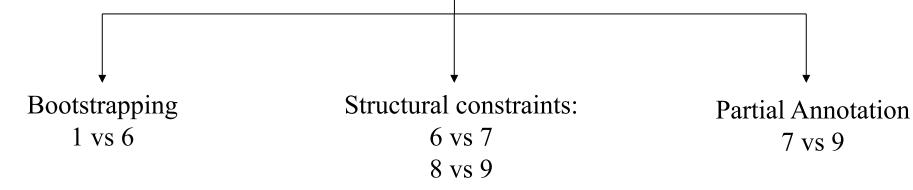
Bootstrap: referring to specific implementations of Line 6 in Algorithm 1.

- Local=don't enforce structural constraints.
- Global=enforce structural constraints.

Discussion

Machine Learning requires supervision, but task specific annotation is significantly limited by expertise and cost. This raises three key questions:

Overall improvement. 1 vs 9



Conclusion

TempRel annotation is labor intensive. Fully annotated datasets (F) are relatively small and there are more partial datasets (P). This work first investigates learning from both types of datasets, and shows promise, which is a good starting point for further investigations of incidental supervision and data collection schemes, of the TempRel extraction task and of other general machine learning tasks.

Test: 9 F docs

Data	#Doc	#Edges	Ratio	Туре
TB-Dense	36	6.5K	100%	\mathcal{F}
TBAQ	220	2.7K	12%	${\cal P}$

Table 1: Corpus statistics of the fully and partially annotated dataset used in this work. TBAQ: The union of Time-Bank and AQUAINT, which is the training set provided by the TempEval3 workshop. #Edges: The number of annotated edges. Ratio: The proportion of annotated edges.

- How can we learn from imperfect supervision, e.g., partial, noisy, or indirect? (Answered by this paper)
- How can we characterize the improvement from bootstrapping, structural constraints and partial data?
- What is the implication of structured data on annotation?

[0] D. Hovy and E. Hovy. NAACL'12. Exploiting Partial Annotations with EM Training. [1] M. Chang et al. 2012. Structured learning with constrained conditional models. [2] N. UzZaman et al. SemEval'13. Task 1: TempEval-3: Evaluating time expressions, events, and temporal relations. [3] T. Cassidy et al. ACL'14. An annotation framework for dense event ordering. [4] D. Roth. AAAI'17. Incidental supervision: Moving beyond supervised learning. [5] Q. Ning et al. EMNLP'17. A structured learning approach to temporal relation extraction.

