

How Good (really) are Grammatical Error Correction Systems?

Alla Rozovskaya Queens College, CUNY

Problem with Reference-Based Evaluation

- ☐ The set of possible golds (space of valid corrections) for a given source sentence is extremely large
- ☐ Most GEC datasets contain 1 gold for a given source sentence
- ☐ This (**random**) gold is generated relative to the source sentence
 - ☐ The gold is independent of the system output
- Impact
 - **Evaluation:** reference-based evaluation underestimates system performance
 - ☐ **Training** is also affected as it is performed relative to a single reference

We propose the notion of **Closest Gold**, and study the implications of evaluating relative to it.

Standard Reference-Based Evaluation with Reference Gold (RG)

	Source	The settings are very reallistic and the actors had a great performance .
	Reference Gold (RG)	The settings are very $\underline{\text{realistic}}$ and the actors $\underline{\text{\it gave}}$ a great performance .
	Hypothesis 1	The settings are very <u>realistic</u> and the actors <u>had great</u> performance.

Gold edits: (1) reallistic -> realistic; (2) had -> gave

System edits: (1) reallistic -> realistic;

(2) had a great -> had great Recall: 1/2=0.5

Precision: 1/2=0.5

Correct edits: (1) reallistic -> realistic

Evaluation with Closest Golds

- □ Closest Golds (CGs) are generated relative to system hypotheses
 - □ Annotators generate correct text that is closest to the system output
 - We generate CGs for top hypothesis and hypotheses at lower ranks
- □ CGs are used to evaluate system outputs on 4 GEC datasets
 □ 2 English and 2 Russian datasets
- Major differences in performance when using CGs instead of RGs
- We claim that evaluation relative to CGs gives true system performance

Reference Gold (RG) vs. Closest Gold (CG) in Evaluation

Source	The settings are very reallistic and the actors had a great performance.	
Hypothesis 1	The settings are very <u>realistic</u> and the actors <u>had great</u> performance .	
Reference Gold (RG)	The settings are very $\underline{realistic}$ and the actors $\underline{\textit{gave}}$ a great performance .	
Closest Gold (CG) to Hypothesis 1	The settings are very <u>realistic</u> and the actors <u>had great</u> <u>performances</u> .	

Reference Gold:
Gold edits: (1) reallistic -> realistic;
(2) had -> gave

System edits: (1) reallistic -> realistic;

lits: (1) reallistic -> realistic; (2) had a great -> had great

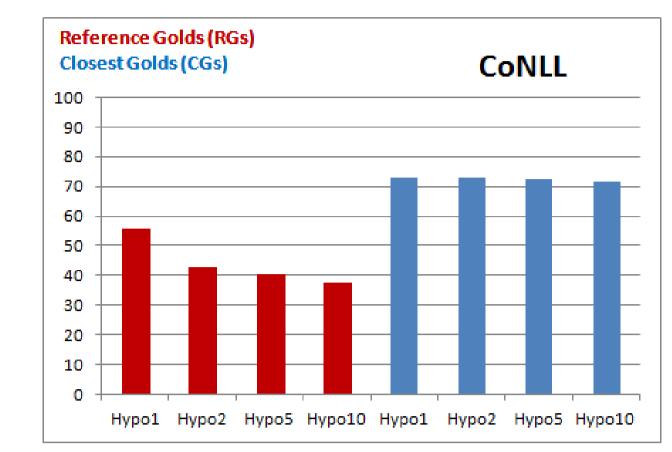
Correct edits: (1) reallistic -> realistic

Precision: 1/2=0.5

Recall: 1/2=0.5

Closest Gold:
Gold edits: (1) reallistic -> realistic;
(2) had a great -> had a great
(3) performance -> performances

System edits: (1) reallistic -> realistic;
(2) had a great -> had great


Correct edits: (1) reallistic -> realistic
(2) had a great -> had great

Precision: 2/2=1.0 Recall: 2/3=0.66

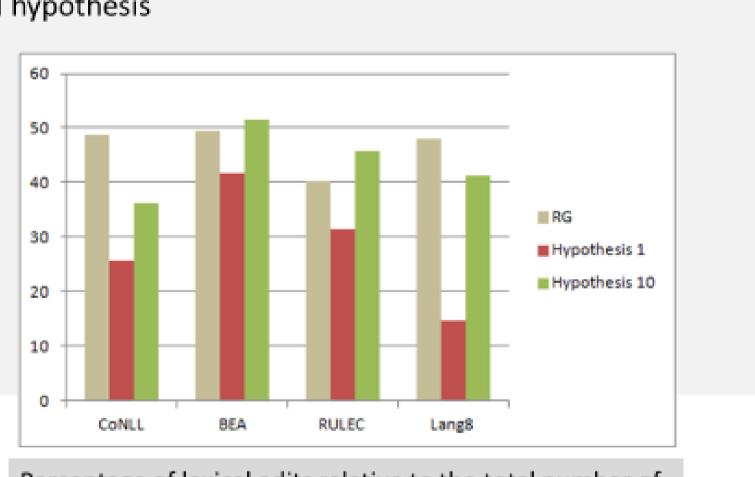
Dan Roth University of Pennsylvania

Key Results

- ☐ System performance when evaluated relative to Reference Golds (RGs) is severely underestimated
- Lower rank hypotheses are often as good as the top hypothesis (relative to their CGs)
 - And are more "interesting"

- Evaluation against RGs shows a large gap between top hypothesis and lower-ranked hypotheses.
- Evaluation against CGs reveals very little degradation between top hypothesis and the rest

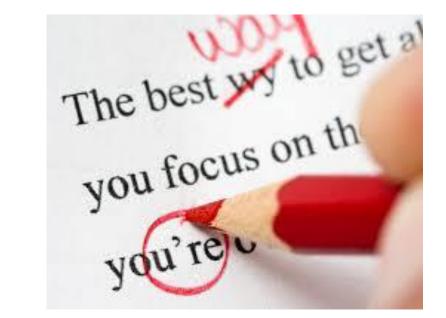
Lower-Ranked Hypotheses Propose More Changes


Hypothesis	RULEC (Ru)	Lang8 (Ru)	BEA (En)	CoNLL (En)
H_1	90	98	125	156
H_2	144	186	180	203
H_5	174	214	200	239
H_{10}	194	225	220	266
RG	202	232	202	289

Number of **edits proposed by the system** (by hypothesis rank). Last row shows number of gold edits in the reference gold.

- Under-correction phenomenon:
 - The top-ranked hypothesis makes a fraction of edits compared to RGs.
- Lower-ranked hypotheses propose a similar number of changes to RGs

Lower-Ranked Hypotheses Propose More Lexical Changes


- Top-ranked hypothesis severely under-corrects compared to humans, especially on lexical errors
- Lower-ranked hypotheses propose more lexical changes than topranked hypothesis

Percentage of lexical edits relative to the total number of changes.

Conclusion

- □ Evaluation with *closest golds* has taught us two lessons
 - ☐ GEC systems are doing better than standard evaluations show
 - Lower-ranked are interesting and are not better than the top hypothesis
- We propose several recommendations based on these findings (please check out the paper)
 - Evaluation
 - Training and tuning

