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Transformer language models (TLMs) revolutionized NLP
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Transformer language models (TLMs) revolutionized NLP
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Table 3: Percentage accuracy of four baseline models and raw human performance on BLiMP using a forced-
choice task. A random guessing baseline would achieve an accuracy of 50%.

From Warstadt et al. 2020. BLiMP: The Benchmark of Linguistic Minimal Pairs for English. In TACL 2020



Bridging Language Acquisition Research with NLP

o EIEER
e Language Acquisition Research L L3
o How do children acquire the grammar of their native language? Ull_:gglﬁeaz:ifgb&
o What is the contribution of language exposure and conceptual knowledge? o .
EENEa

e NLP
o How to build systems for learning and using natural language data? ///
o How much supervision is necessary? M

UPenn Cognitive
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Bridging Language Acquisition Research with NLP

e The challenge:

o TLMs are trained on billions of words

o Existing corpora and benchmarks are unsuited for questions in acquisition research

e Specific Questions:

o Do TLMs scale-down to psychologically plausible corpus sizes ?

o How much grammar can TLMs learn given only input to children aged 1-6 years ?



Bridging Language Acquisition Research with NLP

e \We made available NLP tools to researchers outside NLP

o alightweight TLM trained on a small corpus of child-directed input
m BabyBERTa based on RoBERTa (Liu et al., 20219)
o atest suite for evaluating grammatical knowledge of masked language models

[ | Zorro inspired by BLIMP (Warstadt et al., 2020)
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https://github.com/phueb/BabyBERTa https://github.com/phueb/Zorro

https://huggingface.co/phueb/BabyBERTa



Language Data: From 3 Domains

e Child-directed transcribed speech
o AO-CHILDES

o children aged 1-6 years

e Adolescent-directed written News articles

language input changes

o targeted to K5-10 students
e Adult-directed written Wikipedia articles
o  Wikipedia-1, Wikipedia-2, Wikipedia-3




Language Data: From 3 Domains

Corpus Sentences Avg sentence length Questions (proportion)
Sub-tokens  Words

AO-CHILDES 723,524 7.33 6.38 0.42

AO-Newsela 442,571 22.37 15.97 0.01

Wikipedia-1 525,917 31.71  24.77 0.00

Wikipedia-2 525,903 31.71  24.78 0.00

Wikipedia-3 525,352 31.74  24.80 0.00

Table 6: Descriptive statistics for each of our corpora. The reported number of sentences was computed after
excluding sentences that contain more than 128 sub-word tokens. The precise number of sentences is irrelevant,
because we control for data quantity by stopping training at a pre-defined number of steps. The proportion of
questions was determined based on counting question marks.



BabyBERTa BabyBerta

https://github.com/phueb/BabyBERTa

e Design Considerations:

o base-model is state-of-the art TLM (RoBERTa trained with MLM objective)
o accessible to researchers without access to high-performance computing resources
o optimized for grammatical knowledge acquisition

m Nno unmasking

e Hyper-parameters

o identified by tuning MLM performance on a held-out portion of AO-CHILDES
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Test Suite for Grammatical Knowledge Zgr’ro

https://github.com/phueb/Zorro

e based on BLiIMP (Benchmark of Linguistic Minimal Pairs) werstedtetal. 2019)

e content words are counterbalanced across domains

o each content word has approx. equal probability of occuring in each of our corpora

O eliminates evaluation bias



Test Suite for Grammatical Knowledge

Phenomenon

Paradigm

Examples

Det-subject agreement

across_1_adjective
between_neighbors

Well-formed

Not well-formed

look at this happy piece .
this color must be commercial .

look at this happy pieces .
this colors must be commercial .

Subject-verb agreement

across_prepositional_phrase
across_relative_clause
in_question_with_aux
in_simple_question

the brother by the lion is red .
the pages that i like were dirty .
where does the bird go ?

what color was the piece ?

the brothers by the lion is red .
the page that i like were dirty .
where does the birds go ?
what color was the pieces ?

Anaphor agreement

pronoun_gender

she will give herself the wire .

she will give himself the wire .

Argument structure

dropped_argument
swapped_argument

my brother moves fast .
they built the mouse that farm .

my brother moves to .
the mouse built that farm they .

transitive will robert eat ? will robert force ?
Binding principle_a sarah thinks about herself making a tree . sarah thinks about herself makes a tree .
Case subjective_pronoun they gave the person the tour . the person gave they the tour .
Ellipsis n_bar allen got one roman brain and chris got two . allen got one brain and chris got two roman .

Filler-gap

question_object
wh_question_subject

laura got the suit that the bird cut .

chris reached the bear that is washing trains .

laura got what the suit cut the bird .
chris reached who the bear is washing trains .

Irregular

verb

sarah spoke without thinking last night .

sarah spoken without thinking last night .

Island effects

adjunct_island
coord_struct_constraint

what did robert eat while facing the kiss ?
what did sarah and the person work for ?

what did robert eat the kiss while facing ?
what did sarah work for and the person ?

Local attractor

in_question_with_aux

can the husband change ?

can the husband changes ?

NPI licensing matrix_question would william ever keep the movie ? william would ever keep the movie ?
only_npi_licensor only his rabbit will ever be in her magic . even his rabbit will ever be in her magic .
Quantifiers existential_there there was a leg that anne made . there was most leg that anne made .

superlative

no bird could catch more than six plants .

no bird could catch at least six plants .

Table 5: Examples of well-formed and not well-formed sentences for each paradigm in our grammar test suite.

Each paradigm consists of 4,000 sentences (2,000 minimal pairs).
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https://github.com/phueb/Zorro
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Test Suite for Grammatical Knowledge Zgr’ro

https://github.com/phueb/Zorro

Phenomenon Paradigm | Examples
| Well-formed Not well-formed
Det-subject agreement across_1_adjective look at this happy piece . look at this happy pieces .

between_neighbors this color must be commercial . this colors must be commercial .
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Test Suite for Grammatical Knowledge Zgr’ro

https://github.com/phueb/Zorro

e Evaluation Procedure

o forced choice task
m each sentence in a pair is scored using “holistic scoring” zaczynska et al. (2020)
m random guessing baseline would achieve an accuracy of 50%

e a word-frequency baseline results in an accuracy of 50%



BabyBERTa achieves near RoBERTa performance

RoBERTa-base | 308 |
Liu et al., 2019 . I - I

BabyBERTa | 5M |
AO-CHILDES | no unmasking
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BabyBERTa achieves near RoBERTa performance
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BabyBERTa achieves near RoBERTa performance
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BabyBERTa achieves near RoBERTa performance

Model (Data Size) Average Accuracy
(across Paradigms)

RoBERTa-base — Liu et al., 2019 81.1
(30B)
RoBERTa-base - Warstadt et al., 64.5
2020 (10M)
RoBERTa-base on CHILDES (5M) 59.2
BabyBERTa with unmasking (5M) 56.4

BabyBERTa (5M) 80.5




BabyBERTa achieves near RoBERTa performance

RoBERTa-base BabyBERTa
Parameters 125M 8M
Words in data 30B 5M
Hardware (GPU) 1024x V100 1x GTX1080
Training Time 24 hours 2 hours
Vocabulary Size 50265 8192
Average Accuracy 81.0 80.5
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across relative clause
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in simple question
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agreem. subject verb
across prep. phrase

agreem. det. noun
between neighbors

BabyBERTa performance by phenomenon and corpus
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Age-ordered training helps grammar learning
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Age-ordered training helps grammar learning
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Conclusions

e \We provide new tools for using TLMs in language acquisition research.

e TLMs can achieve good performance on grammaticality tests when given an
input of comparable quantity and quality to an average English-speaking

six-years old.

o Performance is comparable to that of RoBERTa-base trained on 30B words.

o  Child-directed language is a good starting point for training.



Discussion

e Alternative evaluation: “MLM scoring” (salazar et al., 2020)
o Does not affect BabyBERTa (without unmasking)
o  Models with unmasking achieve higher performance when evaluating with this measure

o Our “holistic” evaluation better approximates the conditions under which humans produce
acceptability judgments.

e AO-CHILDES is transcribed speech as opposed to written language.

o  Future Work: Experimenting with transcriptions of Adult Spoken Language.

e Unmasking may be important for downstream tasks.

O  Future Work: Experimenting on downstream tasks
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