

Zero-shot Event Extraction via Transfer Learning: Challenges and Insights

Qing Lyu, Hongming Zhang, Elior Sulem, Dan Roth Department of Computer & Information Science University of Pennsylvania

- An *event* is represented as a *trigger* + several *arguments*.
- Example from <u>ACE-2005</u>:

Event type: TRANSFER-OWNERSHIP

China has purchased two nuclear submarinesfrom Russia last month.Buyer-ArgTriggerArtifact-ArgSeller-Arg Time-Arg

Event Extraction (EE) = Trigger Identification (TI) + Trigger Classification (TC)
 + Argument Identification (AI) + Argument Classification (AC)

- Predominant approaches: **supervised**, both expensive & inflexible.
- Recent efforts explored zero-shot event extraction, usually requiring some event types to be seen (<u>Huang et al., 2018</u>) / only dealing with triggers or arguments alone (<u>Peng et al., 2016</u>; <u>Liu et al., 2020</u>).
- Their performance is still far from supervised methods, but little is known about **why**.
- Our work:
 - Proposes a zero-shot event extraction system that tackles **both** triggers and arguments without any **event training data**, via transfer learning from Question Answering (**QA**) / Textual Entailment (**TE**).
 - □ Provides insights into the remaining challenges behind the performance gap.

Approach: Argument Extraction

For each extracted trigger (span + event type),

e.g. "purchased" + TRANSFER-OWNERSHIP

Dataset: ACE-2005 (LDC2006T06), ERE (LDC2015E29)

Settings:

- □ *scratch*: the system performs all subtasks without any gold annotation
- □ *gold TI*: gold trigger spans are given
- □ *gold TI+TC:* gold trigger spans and types are given

Pretrained models³:

- Architecture: BERT/RoBERTa/BART base/large
- Pretraining data:

Target EE Subtask	Pretraining Dataset	Pretraining Task	
Trigger Extreption	MNLI (Williams et al., 2018)	TE	
ingger Extraction	BoolQ (Clark et al., 2019)	Yes/No QA	
Average and Extra ation	QAMR (Michael et al., 2018)	Extractive QA	
Argument Extraction	SQuAD2.0 (Rajpurkar et al., 2018)	Extractive QA	

Table 1: Datasets used to pretrain the TE/QA models.

Setting	System	TI	TI+TC	AI	AI+AC
scratch (supervised)	Lin et al. 20	78.2	74.7	59.2	56.8
scratch <mark>(zero-shot)</mark>	Huang et al. 18	55.6	49.1	27.8	15.8
	Zhang et al. 20	58.3	53.5	16.3	6.3
	Ours	45.5	41.7	27.0	16.8
gold TI <mark>(zero-shot)</mark>	Huang et al. 18	-	33.5	-	14.7
	Zhang et al. 20	-	82.9	-	-
	Ours	-	83.7	38.9	24.2
gold TI+TC	Liu et al. 20	-	-	-	25.8
(zero-shot)	Ours	-	-	44.3	27.4

Table 2: The F1 score on ACE-2005. SOTA results among zero-shot methods are in boldface.

Setting	System	TI	TI+TC	AI	AI+AC
scratch (supervised)	Lin et al. 20	68.4	57.0	50.1	46.5
scratch gold TI gold TI+TC (zero-shot)	Ours	39.8 - -	31.8 58.4 -	23.0 30.8 47.9	15.0 18.8 27.5

Table 3: The F1 score on the ERE. The optimal model is chosen on ACE dev and directly evaluated on ERE.

• **Remaining challenges**: Manually annotated in 100 wrong predictions

• Error attribution:

- □ *Model-Error*: the intrinsic fragility of pretrained TE/QA models
- Usage-Error: our usage of the models
- Task-Error: the task itself

• Ablation study:

To isolate their individual impact, we alter *certain conditions* that have caused the target error⁴, and see *how many errors are corrected after when predicting again*.

Analysis

Figure 1: Error types in trigger and argument extraction in 100 wrong predictions. The count sum exceeds 100 since a prediction can contain multiple types of error.

Analysis

Figure 1: Error types in trigger and argument extraction in 100 wrong predictions. The count sum exceeds 100 since a prediction can contain multiple types of error.

- Distracting Context (18%): Usage-Error
 - e.g. "The woman's parents ... found the <u>decomposing</u> body."
 Gold type: Not a trigger Predicted type: DIE
- Insufficient Context (19%): Usage-Error
 - e.g. "(Turkey sent 1,000 troops ... and said) it would <u>send</u> more"
 Gold type: TRANSPORT Predicted type: TRANSFER-MONEY

 Ablation study: 18% Distracting Context errors and 59% Insufficient Context errors are corrected when predicting again. Analysis

Figure 1: Error types in trigger and argument extraction in 100 wrong predictions. The count sum exceeds 100 since a prediction can contain multiple types of error.

- "Competitive" Entity (24%): Model-Error
 - e.g. "A unit meets in confidential sessions to review terrorist activities in Europe."

Question for *Place-Arg*: "Where is the meeting?" Gold answer: No Answer Predicted answer: "Europe"

- Non-competitive NA Questions (19%): Model-Error
 - e.g. "Iraqi forces responded with artillery <u>fire</u>."

Question for *Time-Arg*: "When is the fire?" Gold answer: No Answer Predicted answer: "artillery"

 Ablation study: Adding training data on NA questions (SQuAD2.0) even hurts the performance⁵.

- We propose the first complete zero-shot event extraction system via transfer learning from TE and QA.
- While QA/TE models perform exceptionally well on standard benchmarks (SQuAD, QAMR, MNLI), they do not generalize as expected when being used on event extraction datasets.
- We analyze the limited success and several main challenges of this promising approach, and point out future research directions.

Thank you for listening!