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= An event is represented as a trigger + several arguments.
= Example from ACE-2005:

Event type: TRANSFER-OWNERSHIP

has purchased from Russia last month.
Trigger Seller-Arg Time-Arg

= Event Extraction (EE) = Trigger Identification (TI) + Trigger Classification (TC)
+ Argument ldentification (Al) + Argument Classification (AC)


https://catalog.ldc.upenn.edu/LDC2006T06
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Context @ (07

= Predominant approaches: supervised, both expensive & inflexible.

= Recent efforts explored zero-shot event extraction, usually requiring some event
types to be seen (Huang et al., 2018) / only dealing with triggers or arguments alone
(Peng et al., 2016; Liu et al., 2020).

= Their performance is still far from supervised methods, but little is known about why.

= Qur work:

O Proposes a zero-shot event extraction system that tackles both triggers and
arguments without any event training data, via transfer learning from Question

Answering (QA) / Textual Entailment (TE).

O Provides insights into the remaining challenges behind the performance gap.


http://aclweb.org/anthology/P18-1201
http://aclweb.org/anthology/D16-1038
https://www.aclweb.org/anthology/2020.emnlp-main.128

Approach: Trigger Extraction
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“text piece”s

sentence—> SRL —— =| premise ——> TE model —>

(predicate + core SRL arguments)

“China purchased two nuclear

“China has purchased _ o
submarines from Russia

two nuclear submarines
from Russia last month.”

“This text is about {event type}” | = | hypothesis

“This text is about a transfer of ownership”
(hypothesis for TRANSFER-OWNERSHIP)

1An alternative uses Yes/No QA instead of TE, which is similar and thus not illustrated.

enta’”ment >=? | threshold
confidence
0.995 > 0.99

4

“purchased” is the trigger of a
TRANSFER-OWNERSHIP event

4
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Approach: Argument Extraction (@7

For each extracted trigger (span + event type),
e.g. “purchased” + TRANSFER-OWNERSHIP

answer span
s u . » « " Head —» head span
corresponding “text piece — | context Extractive ., two nuclearsubmarines v Identification P
(predicate + all SRL arguments) QA model “submarines”
“rpi confidence| >=? | threshold is the Artifact-Arg
China purchased two nuclear :
submarines from Russia last month” 0.95 > 0.90
Nno answer

predefined question for

= | question
each argument type? a

“What is bought?”
(question for Artifact-Arg)

2The questions are written based on the definition of each event type. 5



Experimental Setup
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= Dataset: ACE-2005 (LDC2006T06), ERE (LDC2015E29)

= Settings:
O scratch: the system performs all subtasks without any gold annotation
O gold TI: gold trigger spans are given
O gold TI+TC: gold trigger spans and types are given

= Pretrained models3:
O Architecture: BERT/RoBERTa/BART - base/large

O Pretraining data:

Trigger Extraction MNLI (Williams et al., 2018) TE
BoolQ (Clark et al., 2019) Yes/No QA
QAMR (Michael et al., 2018) Extractive QA

Argument Extraction SQuAD2.0 (Rajpurkar et al., 2018) Extractive QA

Table 1: Datasets used to pretrain the TE/QA models.

30ptimal configuration highlighted in green. g4



Results: ACE-2005
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Setting System TI | TI+TC | Al | AI+AC
scratch Linetal. 20 | 782 | 747 | 592 | 568
(supervised)
<cratch Huang et al. 18 | 55.6 49.1 27.8 15.8
hot Zhang et al. 20 58.3 53.5 16.3 6.3
(zero-shot) | (G 455 | 417 | 270 | 16.8
Huang et al. 18 - 33.5 - 14.7
(gol;l TIh 6 Zhang et al. 20 - 82.9 - -
46r0-S10 Ours . 837 | 389 | 242
gold TI+TC Liu et al. 20 - - - 25.8
(zero-shot) Ours - - 44.3 27.4

Table 2: The F1 score on ACE-2005. SOTA results among zero-shot methods are in boldface.
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Results: ERE &

Setting System TI | TI+TC | Al | AI+AC

scratch. Linetal. 20 | 684 | 570 | 50.1 | 465

(supervised)

scratch 39.8 31.8 23.0 15.0

gold TI Ours - 58.4 30.8 18.8

gold TI+TC - - 47.9 27.5

(zero-shot)

Table 3: The F1 score on the ERE. The optimal model is chosen on ACE dev and directly

evaluated on ERE.
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Analysis @M

= Remaining challenges: Manually annotated in 100 wrong predictions

= Error attribution:
O Model-Error: the intrinsic fragility of pretrained TE/QA models

O Usage-Error: our usage of the models
O Task-Error: the task itself

= Ablation study:
To isolate their individual impact, we alter certain conditions that have caused the

target error4, and see how many errors are corrected after when predicting again.

4See Section 5 of our paper for details. 9
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Figure 1: Error types in trigger and argument extraction in 100 wrong predictions. The count sum
exceeds 100 since a prediction can contain multiple types of error.
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Figure 1: Error types in trigger and argument extraction in 100 wrong predictions. The count sum
exceeds 100 since a prediction can contain multiple types of error.
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Analysis: Example @WA

= Distracting Context (18%): Usage-Error

= e.g. “The woman’s parents ... found the decomposing body.”
Gold type: Not a trigger Predicted type: DIE

= [nsufficient Context (19%): Usage-Error

= e.g. “(Turkey sent 1,000 troops ... and said) it would send more”
Gold type: TRANSPORT Predicted type: TRANSFER-MONEY

= Ablation study: 18% Distracting Context errors and 59% Insufficient Context errors
are corrected when predicting again.

12
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Figure 1: Error types in trigger and argument extraction in 100 wrong predictions. The count sum
exceeds 100 since a prediction can contain multiple types of error.
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Analysis: Example @WA

“Competitive” Entity (24%): Model-Error

= e.g. “A unit meets in confidential sessions to review terrorist activities in Europe.”

Question for Place-Arg: “Where is the meeting?”
Gold answer: No Answer Predicted answer: “Europe”

Non-competitive NA Questions (19%): Model-Error

= e.g. “lraqi forces responded with artillery fire.”

Question for Time-Arg: “When is the fire?”
Gold answer: No Answer Predicted answer: “artillery”

Ablation study: Adding training data on NA questions (SQuUAD2.0) even hurts the
performance>.

SWe propose and test three hypotheses behind this. See Section 5.2.2 of our paper for details. 14
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Conclusions @M

= We propose the first complete zero-shot event extraction system via transfer learning
from TE and QA.

= While QA/TE models perform exceptionally well on standard benchmarks (SQuUAD,
QAMR, MNLI), they do not generalize as expected when being used on event
extraction datasets.

= We analyze the limited success and several main challenges of this promising
approach, and point out future research directions.

15



Thank you for listening!



