
An Introduction to

Machine Learning

and

Natural Language Processing

Tools

Vivek Srikumar, Mark Sammons
(Some slides from Nick Rizzolo)

The Famous People Classifier

f() = Politician

f() = Athlete

f() = Corporate Mogul

Outline

 An Overview of NLP Resources

 Our NLP Application: The Fame classifier

 The Curator

 Edison

 Learning Based Java

 Putting everything together

An overview of NLP resources

What can NLP do for me?

NLP resources (An incomplete list)

 Cognitive Computation Group resources
 Tokenization/Sentence Splitting
 Part Of Speech
 Chunking
 Named Entity Recognition
 Coreference
 Semantic Role Labeling

 Others
 Stanford parser and dependencies
 Charniak Parser

Page 5

Tokenization and Sentence Segmentation

 Given a document, find the sentence and token boundaries

The police chased Mr. Smith of Pink Forest,

Fla. all the way to Bethesda, where he lived.

Smith had escaped after a shoot-out at his

workplace, Machinery Inc.

 Why?
 Word counts may be important features

 Words may themselves be the object you want to classify

 “lived.” and “lived” should give the same information

 different analyses need to align if you want to leverage multiple
annotators from different sources/tasks

Page 6

Part of Speech (POS)

 Allows simple abstraction for pattern detection

 Disambiguate a target, e.g.
“make (a cake)” vs. “make (of car)”

 Specify more abstract patterns,
e.g. Noun Phrase: (DT JJ* NN)

 Specify context in abstract way
 e.g. “DT boy VBX” for “actions boys do”
 This expression will catch “a boy cried”, “some boy ran”, …

Page 7

POS DT NN VBD PP DT JJ NN

Word The boy stood on the burning deck

POS DT NN VBD PP DT JJ NN

Word A boy rode on a red bicycle

Chunking

 Identifies phrase-level constituents in sentences

[NP Boris] [ADVP regretfully] [VP told] [NP his wife]

[SBAR that] [NP their child] [VP could not attend] [NP
night school] [PP without] [NP permission] .

 Useful for filtering: identify e.g. only noun phrases, or only
verb phrases
 Groups modifiers with heads
 Useful for e.g. Mention Detection

 Used as source of features, e.g. distance (abstracts away
determiners, adjectives, for example), sequence,…
 More efficient to compute than full syntactic parse
 Applications in e.g. Information Extraction – getting (simple)

information about concepts of interest from text documents

Page 8

Named Entity Recognition

 Identifies and classifies strings of characters representing
proper nouns

[PER Neil A. Armstrong] , the 38-year-old civilian

commander, radioed to earth and the mission control

room here: “[LOC Houston] , [ORG Tranquility]

Base here; the Eagle has landed."

 Useful for filtering documents
 “I need to find news articles about organizations in which Bill Gates

might be involved…”

 Disambiguate tokens: “Chicago” (team) vs. “Chicago” (city)

 Source of abstract features
 E.g. “Verbs that appear with entities that are Organizations”
 E.g. “Documents that have a high proportion of Organizations”

Page 9

Coreference

 Identify all phrases that refer to each entity of interest – i.e.,
group mentions of concepts

[Neil A. Armstrong] , [the 38-year-old civilian

commander], radioed to [earth]. [He] said the

famous words, “[the Eagle] has landed”."

 The Named Entity recognizer only gets us part-way…
 …if we ask, “what actions did Neil Armstrong perform?”, we

will miss many instances (e.g. “He said…”)
 Coreference resolver abstracts over different ways of

referring to the same person
 Useful in feature extraction, information extraction

Page 10

Parsers

 Identify the grammatical structure of a sentence

Full parse

John hit the ball

object

subject
modifier

Dependency parse

Parsers reveal the grammatical
relationships between words and
phrases

Semantic Role Labeler

 SRL reveals relations and
arguments in the
sentence (where relations
are expressed as verbs)

 Cannot abstract over
variability of expressing
the relations – e.g. kill vs.
murder vs. slay…

Page 12

The fame classifier

Enough NLP. Let’s make our $$$ with the

The Famous People Classifier

f() = Politician

f() = Athlete

f() = Corporate Mogul

The NLP version of the fame classifier

All sentences in the news, which the
string Barack Obama occurs

All sentences in the news, which the
string Roger Federer occurs

All sentences in the news, which the
string Bill Gates occurs

Represented
by

Our goal

 Find famous athletes, corporate moguls and politicians

Athlete

• Michael
Schumacher

• Michael Jordan
• …

Politician

• Bill Clinton
• George W. Bush
• …

Corporate Mogul

• Warren Buffet
• Larry Ellison
• …

Let’s brainstorm

 What NLP resources could we use for this task?
Remember, we start off with just raw text from a news website

One solution

 Let us label entities using features defined on mentions

 Identify mentions using the named entity recognizer
 Define features based on the words, parts of speech and

dependency trees
 Train a classifier

All sentences in the news, which the
string Barack Obama occurs

Where to get it: Machine Learning

Feature
Functions

Learning Algorithm

Data

→ “politics”

→ “sports”

→ “business”

A second look at the solution

 Identify mentions using the named entity recognizer
 Define features based on the words, parts of speech and

dependency trees
 Train a classifier

University of Illinois

Sentence and Word Splitter
Part-of-speech Tagger

Named Entity Recognizer

Stanford University

Dependency Parser
(and the NLP pipeline)

These tools can be downloaded from the websites.
Are we done? If not, what’s missing?

We need to put the pieces together

The infrastructure

The Curator

• A common interface for different NLP annotators
• Caches their results

Edison

• Library for NLP representation in Java
• Helps with extracting complex features

Learning Based Java

• A Java library for machine learning
• Provides a simple language to define classifiers and

perform inference with them

The infrastructure

 Each infrastructure module has specific interfaces that the
user is expected to use

 The Curator specifies the interface for accessing annotations
from the NLP tools

 Edison fixes the representation for the NLP annotation

 Learning Based Java requires training data to be presented to
it using an interface called Parser

Curator

A place where NLP annotations live

Big NLP

 NLP tools are quite sophisticated
 The more complex, the bigger the memory requirement

 NER: 1G; Coref: 1G; SRL: 4G ….

 If you use tools from different sources, they may be…
 In different languages
 Using different data structures

 If you run a lot of experiments on a single corpus, it would
be nice to cache the results
 …and for your colleagues, nice if they can access that cache.

 Curator is our solution to these problems.

Page 25

Curator

Page 26

NER

SRL

POS,
Chunker

Cache

Curator

What does the Curator give you?

 Supports distributed NLP resources
 Central point of contact
 Single set of interfaces
 Code generation in many programming languages (using Thrift)

 Programmatic interface
 Defines set of common data structures used for interaction

 Caches processed data
 Enables highly configurable NLP pipeline

Overhead:
 Annotation is all at the level of character offsets:

Normalization/mapping to token level required
 Need to wrap tools to provide requisite data structures

Page 27

Getting Started With the Curator

http://cogcomp.cs.illinois.edu/curator
 Installation:

 Download the curator package and uncompress the archive
 Run bootstrap.sh

 The default installation comes with the following annotators
(Illinois, unless mentioned):
 Sentence splitter and tokenizer
 POS tagger
 Shallow Parser
 Named Entity Recognizer
 Coreference resolution system
 Stanford parser

http://cogcomp.cs.illinois.edu/curator

Basic Concept

 Different NLP annotations can be defined in terms of a few
simple data structures:
1. Record: A big container to store all annotations of a text
2. Span: A span of text (defined in terms of characters) along with a

label (A single token, or a single POS tag)
3. Labeling: A collection of Spans (POS tags for the text)
4. Trees and Forests (Parse trees)
5. Clustering: A collection of Labelings (Co-reference)

Go here for more information:
http://cogcomp.cs.illinois.edu/trac/wiki/CuratorDataStructures

http://cogcomp.cs.illinois.edu/trac/wiki/CuratorDataStructures
http://cogcomp.cs.illinois.edu/trac/wiki/CuratorDataStructures

Example of a Labeling

The tree fell.

Edison

Representing NLP objects and extracting features

Edison

 An NLP data representation and feature extraction library

 Helps manage and use different annotations of text

 Doesn’t the Curator do everything we need?
 Curator is a service that abstracts away different annotators
 Edison is a Curator client
 And more…

Representation of NLP annotations

 All NLP annotations are called Views

 A View is just a labeled directed graph
 Nodes are labeled collections of tokens, called Constituents

 Labeled edges between nodes are called Relations

 All Views related to some text are contained in a
TextAnnotation

Example of Views: Part of speech

A tree fell

 Part of speech view is a degenerate graph

 No edges because there are no relations
 This kind of View is represented by a subclass called TokenLabelView

 Note that constituents are token based, not character based

A
DT

tree
NN

fell
VBD

constituents

Example of Views: Shallow Parse

A tree fell

 Shallow parse view is also a degenerate graph

 No edges because there are no relations
 This kind of View is represented by a subclass called SpanLabelView

A tree
Noun Phrase

fell
Verb Phrase

constituents

Example of Views: DependencyTree

A tree fell

 A subclass of View called TreeView

A tree fell

mod subj

Constituents

Relations

More about Views

 View represents a generic graph of Constituents and
Relations

 Its subclasses denote specializations suited to specific
structures
 TokenLabelView
 SpanLabelView
 TreeView
 PredicateArgumentView
 CoreferenceView

 Each view allows us to query its constituents
 Useful for defining features!

Features

 Complex features using this library
 Examples

 POS tag for a token
 All POS tags within a span
 All tokens within a span that have a specific POS tag
 All chunks contained within a parse constituent
 All chunks contained in the largest NP that covers a token
 All co-referring mentions to chunks contained in the largest NP

that covers this token
 All incoming dependency edges to a constituent

 Enables quick feature engineering

Getting started with Edison

http://cogcomp.cs.uiuc.edu/software/edison

 How to use Edison:
1. Download the latest version of Edison and its dependencies from

the website
2. Add all the jars to your project
3. ????
4. Profit

 A Maven repository is also available. See the edison page
for more details

http://cogcomp.cs.uiuc.edu/software/edison
http://cogcomp.cs.uiuc.edu/software/edison
http://cogcomp.cs.uiuc.edu/software/edison

Demo 1

 Basic Edison example, where we will

1. Create a TextAnnotation object from raw text
2. Add a few views from the curator
3. Print them on the terminal

http://cogcomp.cs.uiuc.edu/software/edison/FirstCuratorExample.ht
ml

http://cogcomp.cs.uiuc.edu/software/edison/FirstCuratorExample.html
http://cogcomp.cs.uiuc.edu/software/edison/FirstCuratorExample.html

Demo 2

 Second Edison example, where we will

1. Create a TextAnnotation object from raw text
2. Add a few views from the curator
3. Print all the constituents in the named entity view

Let’s recall our goal

 Let us label entities using features defined on mentions

 Identify mentions using the named entity recognizer
 Define features based on the words, parts of speech and

dependency trees
 Train a classifier

All sentences in the news, which the
string Barack Obama occurs

Demo 3

 Reading the Fame classifier data and adding views

 Feature functions
 What would be good features for the fame classification task?

The US President Barack Obama said that he ….

President Barack Obama recently visited France.

Features for Barack Obama
• US: 1
• President: 2
• said: 1
• visited: 1
• France: 1

Learning Based Java

Writing classifiers

What is Learning Based Java?

 A modeling language for learning and inference

 Supports
 Programming using learned models
 High level specification of features and constraints between classifiers
 Inference with constraints

 The learning operator
 Classifiers are functions defined in terms of data
 Learning happens at compile time

What does LBJ do for you?

 Abstracts away the feature representation, learning and
inference

 Allows you to write learning based programs

 Application developers can reason about the application at
hand

Our application

Feature
Functions

Learning Algorithm

Data

→ “politics”

→ “sports”

→ “business”

Curator and Edison

Learning Based Java

Demo 4

 The fame classifier itself
1. The features
2. The classifier
3. Compiling to train the classifier

The Fame classifier

Putting the pieces together

Recall our solution

 Let us label entities using features defined on mentions

 Identify mentions using the named entity recognizer
 Define features based on the words, parts of speech and

dependency trees
 Train a classifier

All sentences in the news, which the
string Barack Obama occurs

The infrastructure

 Curator
 Provides access to the POS tagger, NER and the Stanford

Dependency parser
 Caches all annotations

 Edison
 NLP representation in our program
 Feature extraction

 Learning Based Java
 The machine learning

Final demo

 Let’s see this in action

Links

 Cogcomp Software:
http://cogcomp.cs.illinois.edu/page/software

 Support:

illinois-ml-nlp-users@cs.uiuc.edu

 Download the slides and the code from
http://cogcomp.cs.illinois.edu/page/tutorial.201008

http://cogcomp.cs.illinois.edu/page/software
mailto:illinois-ml-nlp-users@cs.uiuc.edu
mailto:illinois-ml-nlp-users@cs.uiuc.edu
mailto:illinois-ml-nlp-users@cs.uiuc.edu
mailto:illinois-ml-nlp-users@cs.uiuc.edu
mailto:illinois-ml-nlp-users@cs.uiuc.edu
mailto:illinois-ml-nlp-users@cs.uiuc.edu
mailto:illinois-ml-nlp-users@cs.uiuc.edu
http://cogcomp.cs.illinois.edu/page/tutorial.201008

Running the test code on a Unix Machine

Step 1: Train the classifier

$./compileLBJ entityFame.lbj

Step 2: Compile the other java files with

$ ant

Step 3: Test the classifier:

$./test.sh data/test

