

Recent Advances in Transferable Representation Learning

The Basics of Embeddings

Muhao Chen, Kai-Wei Chang, Dan Roth

AAAI 2020 Tutorial

Traditional ML framework

Traditional ML framework

Traditional ML Framework Feature ML Model Inference Alg. Evaluation Input **Extractor** Representation Learning **Deep Learning Framework** DNN Evaluation Input Representation Inference

A: circuit switching

A History of Word Representation

How to Represent Words?

Credit: https://www.flickr.com/photos/182229932@N07/48688109908

Represent word as a "one-hot" vector, e.g.,

How large is this vector?

□ Vector dimension = number of words in vocabulary PTB data: ~50k, Google 1T data: 13M

Issue: no notion of similarity.

```
\overrightarrow{happy} and \overrightarrow{glad} are orthogonal.
```

Idea 2: Similarity = Clustering

- Brown Cluster <u>https://en.wikipedia.org/wiki/Brown_clustering</u>
- Dictionary: e.g., WordNet_(Miller 1995)

- Discrete ⇒ continuous: A dense vector for each word
- Words with similar meaning are closer in the embedding space
- Word meanings are vector of "basic concepts"

 \Box The "basic concepts" might not be explicit

$v_{king} = [0.8]$	0.9	0.1	0]
$v_{queen} = [0.8]$	0.1	0.8	0]
$v_{apply} = [0.1]$	0.2	0.1	0.8]

□ Difference between word vectors captures their relations [Mikolov+ 13, Pennington+ 14]

context words

Distributional hypothesis:

"You shall know a word by the company it keeps" (J. R. Firth 1957: 11) *linguistic items with similar distributions have similar meanings.*

he curtains open and the stars shining in on the barely ars and the cold , close stars " . And neither of the w rough the night with the stars shining so brightly, it made in the light of the stars . It all boils down , wr surely under the bright stars, thrilled by ice-white sun, the seasons of the stars ? Home, alone, Jay pla m is dazzling snow , the stars have risen full and cold un and the temple of the stars , driving out of the hug in the dark and now the stars rise , full and amber a bird on the shape of the stars over the trees in front But I could n't see the stars or the moon , only the they love the sun , the stars and the stars . None of r the light of the shiny stars . The plash of flowing w man 's first look at the stars ; various exhibits , aer rief information on both stars and constellations, inc

context words

How to Learn word Vectors

- Learn word representations based on co-occurrences
- E.g., Word2vec [Mikolov+ 2013]

 $P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_o^T v_c)}$

Slide credit: Stanford cs224n

Continuous representations for entities

Embeddings can be learned from Freebase, Dbpedia, YAGO, NELL, etc.

Contextualized Word Representations

- Most words have multiple meanings
- Can we encode word also based on the surrounding contexts?

Word Embedding

Contextulaized Word Embedding

Embeddings from Language Models (ELMo)

Deep contextualized word representations (Peters+2018)

Train Separate Left-to-Right and Right-to-Left LMs

Apply as "Pre-trained Embeddings"

Learning transferable representations using language model objective.

Performance Boost with ELMo

Bidirectional Encoder Representations from Transformers (BERT)

Masked Language Model

How to jointly capture the context information from both directions?

Bidirectional context Words can "see themselves"

Slides from Jacob Devlin

Masked Language Model

How to jointly capture the context information from both directions?

Masked Language Model: Mask out k% of the input words

Fine-Tuning Procedure

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER