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Machine Learning Pipelines
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Transferable Representation
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Learn representation from
large unannotated data

Q: Packet Switching contrast with what other principal
A: circuit switching

SQuAD2.0 (Rajpurkar & Jia et al. '18)

http://arxiv.org/abs/1606.05250


A History of Word Representation
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How to Represent Words?
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Credit:  https://www.flickr.com/photos/182229932@N07/48688109908



Idea 1: Representing Words as Discrete Symbols

◼ Represent word as a “one-hot” vector, e.g., 

ℎ𝑎𝑝𝑝𝑦 =  [ 0    0   0 1          0   ….   0 ]

𝑔𝑙𝑎𝑑 = [ 0     0  1           0 0  … 0 ]

◼ How large is this vector?
 Vector dimension = number of words in vocabulary PTB data: ~50k, Google 1T data: 13M

◼ Issue: no notion of similarity.    

ℎ𝑎𝑝𝑝𝑦 and 𝑔𝑙𝑎𝑑 are orthogonal.
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egg   student    glad happy       buy  … milk    

egg   student    glad happy       buy  … milk    



Idea 2: Similarity = Clustering

◼ Brown Cluster https://en.wikipedia.org/wiki/Brown_clustering

◼ Dictionary: e.g., WordNet 

9

(Miller 1995)

https://en.wikipedia.org/wiki/Brown_clustering


Idea 3: Vector Representations

◼ Discrete ⇒ continuous: A dense vector for each word

◼ Words with similar meaning are closer in the embedding space 

◼ Word meanings are vector of “basic concepts”

 The “basic concepts” might not be explicit

Difference between word vectors captures their relations
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𝑣𝑘𝑖𝑛𝑔 = [ 0.8 0.9 0.1 0 … ]

𝑣𝑞𝑢𝑒𝑒𝑛 = [ 0.8 0.1 0.8 0 … ]

𝑣𝑎𝑝𝑝𝑙𝑦 = [ 0.1 0.2 0.1 0.8 … ]

[Mikolov+ 13, Pennington+ 14]



How to Learn word Vectors

◼ Distributional hypothesis:

“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
linguistic items with similar distributions have similar meanings.
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context words
context words

https://en.wikipedia.org/wiki/Distributionalism


How to Learn word Vectors

◼ Learn word representations based on co-occurrences

◼ E.g., Word2vec [Mikolov+ 2013]
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Slide credit: Stanford cs224n



Continuous representations for entities
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Michelle Obama

Democratic Party

George W Bush

Laura Bush

Republic Party



Contextualized Word Representations 

◼ Most words have multiple meanings

◼ Can we encode word also based on the surrounding contexts?
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Word Embedding Contextulaized Word Embedding



Embeddings from Language Models (ELMo)

15

Deep contextualized word representations (Peters+2018)

Learning transferable representations using language model objective. 



Performance Boost with ELMo
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Bidirectional Encoder Representations from Transformers (BERT)
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Masked Language Model

◼ How to jointly capture the context information from both directions?
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Slides from Jacob Devlin



Masked Language Model

◼ How to jointly capture the context information from both directions?

◼ Masked Language Model: Mask out k% of the input words

19Slides from Jacob Devlin



Fine-Tuning Procedure
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