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Machine Learning Pipelines &S
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Machine Learning Pipelines
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Transferable Representation

Deep Learning Framework

DNN
L Input |- | Representation || Inference |

i

| Transferable Representation |

Evaluation ‘

. Learn representation from
'large unannotated data

SQUADZ2.0 (Rajpurkar & Jia et al. '18)

Packet switching contrasts with another principal networking paradigm, circuit
a n yo u p ea Se O e e re ? switching, a method which pre-allocates dedicated network bandwidth
:> specifically for each communication session, each having a constant bit rate and

latency between nodes. In cases of billable services, such as cellular

communication services, circuit switching is characterized by a fee per unit of

L J
connection time, even when no data is transferred, while packet switching may
be characterized by a fee per unit of information transmitted, such as characters,
packets, or messages.

History Word being predicted
Q: Packet Switching contrast with what other principal

A: circuit switching
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http://arxiv.org/abs/1606.05250
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How to Represent Words?
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ldea 1: Representing Words as Discrete Symbols

m Represent word as a “one-hot” vector, e.g.,

happy = [0 0 0 1 0 ... O]
egg student glad happy  buy .. milk
glad= [0 0 1 0 0O .. O]
egg student glad happy  buy ... milk

m How large is this vector?
O Vector dimension = number of words in vocabulary PTB data: ~50k, Google 1T data: 13M
m [ssue: no notion of similarity.

happy and glad are orthogonal.



ldea 2: Similarity = Clustering

m Brown Cluster https://en.wikipedia.org/wiki/Brown clustering

m Dictionary: e.g., WordNet(Mi“er 1995)
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https://en.wikipedia.org/wiki/Brown_clustering

ldea 3: Vector Representations

m Discrete = continuous: A dense vector for each word

m Words with similar meaning are closer in the embedding space
m Word meanings are vector of “basic concepts”

[0 The “basic concepts” might not be explicit

Vking = 0.8 0.9 0.1 0
Voueen =10.8 0.1 0.8 0
Vappty = [0.1 0.2 0.1 0.8

[ Difference between word vectors captures their relations
. . drank
[Mikolov+ 13, Pennington+ 14]

Swam

drinking : @

swimming
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How to Learn word Vectors

&

m Distributional hypothesis:
“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
linguistic items with similar distributions have similar meanings.

e
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https://en.wikipedia.org/wiki/Distributionalism

How to Learn word Vectors @7
m Learn word representations based on co-occurrences exp(ulv,)
m E.g., Word2vec [Mikolov+ 2013] P(OlC) - ZWEV exp (ug;vc)
P(uturning |vbanking) P(uas Ivbanking)
P (uinto I vbanking) P (ucrises |vbanking
problems  turning into crises  as

\ ] \ |
L )
Y I Y

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Slide credit: Stanford cs224n
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Continuous representations for entities @@;

Embeddings can be learned from Freebase, Dbpedia, YAGO, NELL, etc.
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Contextualized Word Representations ﬁ.;;;

m Most words have multiple meanings
m Can we encode word also based on the surrounding contexts?

He taught himself to play the violin . Do you enjoy the play ?

Embedding
visualization _
]
| : J J
from from
context! context?

Word Embedding Contextulaized Word Embedding
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Embeddings from Language Models (ELMo) Nw

Deep contextualized word representations (Peters+2018)

Train Separate Left-to-Right and Apply as “Pre-trained
Right-to-Left LMs Embeddings”
Gl = loEinLE S8 open 2 Existing Model Architecture
i i ! T I I
LSTM [—| LSTM |—{ LSTM LSTM [«—| LSTM |« LSTM i 1 f
T T I T T T
<s> open a open a bank
T T f
open a bank

Learning transferable representations using language model objective. ﬁ
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Performance Boost with ELMo @@

SNLI NER SQuUAD Coref SRL SST-5

85.8
+25%

L\ Previous SOTA Bl Baseline
B Performance boost with ELMo




Bidirectional Encoder Representations from Transformers (BERT) ﬁ_;r
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Masked Language Model

m How to jointly capture the context information from both directions?

Unidirectional context Bidirectional context
Build representation incrementally Words can “see themselves”
open a bank open a bank
r L 1 R
Layer 2 > Layer 2 » Layer 2 Layer 2 | Layer2 | . Layer 2
Layer2 || Layer2 (—=| Layer2 Layer2 | | Layer2 | | Layer2
T I T T ! T
<s> open a <s> open a

Slides from Jacob Devlin
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Masked Language Model N

m How to jointly capture the context information from both directions?

Unidirectional context Bidirectional context
Build representation incrementally Words can “see themselves”
open a bank open a bank
f ! f f ! f
Layer2 [—| Layer2 |—=| Layer2 Layer 2 : Layer 2 : Layer 2

I i T ! T T

Layer2 [—| Layer2 [— Layer2 Layer2 | | Layer2 | | Layer2

T ! T ! ! T

<s> open a <s> open a

m Masked Language Model: Mask out k% of the input words

store gallon

T T

the man went to the [MASK] to buy a [MASK] of milk

Slides from Jacob Devlin
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Fine-Tuning Procedure
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(c) Question Answering Tasks:
SQuAD v1.1

BERT
E.
Single Sentence
(b) Single Sentence Classification Tasks:
SST-2, ColLA
B-PER
3o
BERT
|! : &
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Single Sentence

(d) Single Sentence Tagging Tasks: 20
CoNLL-2003 NER



