

Transferable Representation Learning for Multi-relational Data Recent Advances in Transferable Representation Learning (Part III)

Muhao Chen, Kai-Wei Chang, Dan Roth

Feb 2020

AAAI Tutorials

Recent Advances in Transferable Representation Learning

Outline

- Background and Motivation
- Relational embedding learning methods
 □ First-order and high-order methods
 □ Non-Euclidean methods
- Knowledge association methods

Supervised and semi-supervised methodsAuxiliary supervision methods

Cross-domain and interdisciplinary tasks

□ KBP tasks

Computational bio-med tasks

Understanding Relations Is Prominent In Practice

QA and Semantic Search:

				Nideos	: More	Sottings	Tools
< All	inages	E News		F VIGEOS	: More	Settings	10013
About 3	4,600,000 res	ults (1.04 see	conds)				
787	'R						
/0/	D					an annual an ann	-
						12H	in and
					- 19		18 0

Understanding Relations Is Prominent In Practice

E-Commerce

Computational Biology Research

Co-purchase relations of products Social relations of users

Interactions of molecules and biomolecules.

Understanding Relations Is Prominent In Practice

QA

- Discourse relation detection
- Dialogue state tracking
- Event prediction
- Narrative cloze
- Entity/event typing and linking

• Semantic search

- Relational rule mining
- Ontology population
- Ontology matching and knowledge integration

Interaction prediction of biomolecules

homology fasta at a state and a state and a state and a state at a

Medical

dhangs protein per data see una dia and the set of the

- Mutation effect estimation
- Non-coding RNA alignment
- Drug discovery
- Polypharmacy side effect detection

Multi-relational Data

A multi-relational dataset is formally defined as an edge-typed graph **G**

- *E*: the vocabulary of nodes (representing entities, objects or concepts)
- R: the vocabulary of relations
- *T*=(*h*, *r*, *t*)∈*G* s.t. *h*, *t* ∈ *E* and *r* ∈ *R*: a triple representing the fact of a relation *r* between two entities *h* and *t*

Why Representation Learning?

Downsides of symbolic knowledge representations

- The data are usually **sparse**
- Not easily supporting machine inference

- A plausible representation should
- Be quantifiable
- Support the inference of **missing knowledge**

Latent representations/embeddings are more inferable

Similarity of entities

- Mistaken ≈ Wrong
- Feline ≈ Cat

. . .

– Los Angeles ≈ Hollywood

Relational inference as vector algebra (e.g. a translation)

- France Paris≈ capital
- USD US ≈ currency
- Bach German ≈ nationality

Different data can possess complementary knowledge

Why Transferable Representation Learning

Different data can possess complementary knowledge

Interchangeable knowledge in many scenarios

- □ Multiple language-specific KGs
- □ Multiple knowledge bases
- □ Instance KGs and concept ontologies
- □ Protein-protein interaction (PPI) data, gene ontologies and cell clusters
- □ Drug-drug interaction data, disease ontologies and PPI data
- □ Social networks and product graphs

□ ...

- 1. How to capture the association of knowledge with representation learning?
- 2. How to leverage knowledge transfer to populate missing knowledge?

A General Methodology to Benefit A Wide Range of Tasks

Knowledge Base

Knowledge alignment Mono/Cross-lingual KG completion Ontology population Zero-shot entity matching

Transferable representation learning servers scolar line and the scolar scolar l

Protein-protein interaction prediction Protein binding affinity estimation Single cell RNA-sequence imputation Gene Ontology term assignment

Polypharmacy side effect detection Disease and phenotype matching Clinical event prediction

Semantic search Entity typing Paraphrase identification Sub-article relation extraction

Knowledge Base

- Limited supervision for knowledge association
- Auxiliary supervision from alternative information (attributes, descriptions, schemata, etc.)
- Heterogeneous forms of knowledge association (1-to-1, multi-granular, fuzzy alignment, etc.)
- Inconsistent structures and different scales of data

Multilingual KGs: An Exemplary Scenario

Separately managed language-specific KGs

DBpedia has 125 languages ; ConceptNet has 10 core languages

A Pilot Study: Simple Translational Model + Supervised Association Learning (MTransE*)

*[Chen+ IJCAI-17]

- Training data: multiple languagespecific KGs + seed entity alignment
- Enabling: cross-lingual semantic transfer + monolingual relational inferences

Table 8: Examples of cross-lingual entity matching.

Target	Candidates (in ascending order of rank by Euclidean distance)
French	Barack Obama, George Bush, Jimmy Carter, George Kalkoa
German	Barack Obama, Bill Clinton, George h. w. Bush, Hamid Karzai
French	Paris, Amsterdam, à Paris, Manchester, De Smet
German	Paris, Languedoc, Constantine, Saint-maurice, Nancy
French	San Francisco, Los Angeles, Santa Monica, Californie
German	Kalifornien, Los Angeles, Palm Springs, Santa Monica
	Target French German French German German

Table 9: Examples of cross-lingual relation matching.

Relation	Target	Candidates (in ascending order of rank by Euclidean distance)
capital	French	capitale, territoire, pays accrèditant, lieu de veneration
	German	hauptstadt, hauptort, gründungsort, city
nationality	French	nationalié, pays de naissance, domicile, résidence
	German	nationalität, nation, letzter start, sterbeort
language	French	langue, réalisations, lieu deces, nationalitè
	German	sprache, originalsprache, lang, land

Bold-faced ones are correct answers, *italic* ones are close answers. Answers do not include those that have pre-existed in training. This pilot study got ~30% Hits@1 on DBP15k. But we will introduce lots of improvement to it shortly.

Table 10: Examples of cross-lingual triple completion.

Query	Target	Candidates (in ascending order of rank)
(Adam Lambert,	French	musique indèpendante, musique alternative,
genre, ?t)	German	popmusik, dance-pop, no wave, <i>soul</i>
(Ronaldinho,	French	milieu offensif, attaquant, quarterback, latèral gauche
position, ?t)	German	stürmer, linker flügel, angriffsspieler, rechter flgel
(Italy 2r Rome)	French	capitale, plus grande ville, chef-lieu, garnison
(italy, 17, Kome)	German	hauptstadt, hauptort, verwaltungssitz, stadion
(Barack Ohama ?r	French	ministre-prèsident, prèdècesseur, premier ministre,
(Barack Oballia, 17, George Bush)		prèsident du conseil
George Busil)	German	vorgänger, vorgängerin, besetzung, lied

Bold-faced ones are correct answers, *italic* ones are close answers. Answers do not include those that have pre-existed in training.

General Methodology and Further Improvement

Jointly or iteratively conduct two learning processes: embedding learning and knowledge association learning

Three directions to improvement

- 1. Better embedding learning techniques for inconsistent structures
- 2. Knowledge association learning under minimal supervision
- 3. Auxiliary supervision from entity profile information

Outline

- Background and Motivation
- Relational embedding learning methods
 - □ First-order and high-order methods
 - Non-Euclidean methods
- Knowledge Association Methods

Supervised and semi-supervised methodsAuxiliary supervision methods

Cross-domain and interdisciplinary tasks

□ KBP tasks

Computational bio-med tasks

The Embedding Learning Process

- Distributing each domain-specific multi-relational dataset in a separate embedding space.

First-order Methods

• A function $f_r(h, t)$ locally measures the plausibility of each triple T=(h, r, t)

Plausibility Scoring Functions

■ Translational technique [Bordes+, NIPS-13] $f_r(h,t) = -\|\mathbf{h} + \mathbf{r} - \mathbf{t}\|_2$

□ France + *Capital* ≈ Paris

 $f_r(h,t)$

■ Element-wise product [Yang+, ICLR-15] $f_r(h, t) = (\mathbf{h} \circ \mathbf{t}) \cdot \mathbf{r}$

 $\hfill\square$ \circ denotes element-wise product

• Circular correlation [Nickel+, AAAI-16] $f_r(h,t) = (\mathbf{h} \star \mathbf{t}) \cdot \mathbf{r}$ $[\mathbf{h} \star \mathbf{t}]_d = \sum_{i=0}^k \mathbf{h}_i \mathbf{t}_{(\mathbf{d}+i) \mod k}$

 $c = a \star b$

 $c_0 = a_0b_0 + a_1b_1 + a_2b_2$ $c_1 = a_0b_2 + a_1b_0 + a_2b_1$ $c_2 = a_0b_1 + a_1b_2 + a_2b_0$

First-order Methods

Expecting a negative sample to be scored less than a positive sample by at least γ .

Learning objective

□ Marginal ranking loss

$$L_K = \sum_{T \in G \land T' \notin G} \max(0, \gamma + f_r(h', t') - f_r(h, t))$$

- $f_r(h, t)$: plausibility function, the higher indicates a more plausible triple
- γ : a positive margin
- T'=(h',r,t'): a negative sample created by corrupting either h or t in a positive case T=(h,r,t)
- \Box Limit-based loss ($\gamma_1 > \gamma_2$)

$$L_{K} = \sum_{T \in G} \max(0, f_{r}(h, t) - \gamma_{1}) + \sum_{T' \notin G} \max(0, \gamma_{2} - f_{r}(h', t'))$$

□ Log softmax loss

$$L_K = \sum_{T \in G} \log \frac{\exp(f_r(h, t))}{\sum_{T' \notin G} \exp(f_r(h', t'))}$$

Pros and Cons of First-order Methods

Pros

- □ Low parameter complexity
- □ Facilitates inference of relations
- □ Robust against data sparsity

Cons

□ Less precise modeling of node proximity (may hinder knowledge association)

□ Less robust against structural heterogeneity

- Transferable representation learning models with first-order methods
 - For KG alignment/entity resolution: MTransE [Chen+, IJCAI-17], JAPE [Sun+, ISWC-17], LIN [Otani+ COLING-18], BootEA [Sun+, IJCAI-18], KDCoE [Chen+, IJCAI-18], AttrE [Trsedya, AAAI-19], MultiKE [Zhang+, IJCAI-19], OTEA [Pei+, IJCAI-19], SEA [Pei+, WWW-19]
 - □ For entity typing: JOIE [Hao+, KDD-19]

High-order Methods

- Modeling nodes (objects) based on contexts of the graph
- Two types of context modeling techniques
 Relation path based techniques
 Neighborhood aggregation techniques (GNNs)

Relation Path Based Techniques

- A relation path is an entity-relation chain, where entities and relations appear alternately
 - $\hfill\square$ United Kingdom \rightarrow country \rightarrow Tim Berners-Lee \rightarrow employer \rightarrow W3C
- PTransE [Lin+, EMNLP-15], Bi-Diag [Guu+, EMNLP-15]
 - □ Given *l*-length relation paths $p = (e_0, r_1, e_1, ..., r_l, e_l)$
 - Minimize $\|\mathbf{e}_0 \mathbf{p} + \mathbf{e}_1\|_2$
 - □ Multiple representations of p
 - Addition (PTransE): $\mathbf{p} = \sum_{i=1}^{l} \mathbf{r}_i$
 - Multiplication (Bi-Diag): $\mathbf{p} = \prod_{i=1}^{l} \mathbf{r}_i$
 - RNN-aggregation (PTransE)
- Path selection
 - □ Random walk (Bi-Diag)
 - □ All 3-hop paths (PTransE)

Relation Path Based Techniques

- Recurrent skipping network (RSN, Guo+, ICML-19)
 - RNNs perform well on sequential data, but overlooks the basic structure units of triples in a relation path
 - □ Tri-gram residual mechanism: **shortcut** a **subject entity** to let it **directly** participate in predicting its **object entity**

Neighborhood Aggregation Techniques

- Characterizing an entity based on its neighborhood
- Graph convolutional networks (GCN)
 - □ Aggregate neighbor information and pass into a neural network.
 - $\hfill\square$ Can be viewed as a center-surround convolution kernel in a CNN

Neighborhood Aggregation Techniques

Learning objective: knowledge association (to be explained in the next section)

Neighborhood Aggregation Techniques

- How do we consider relations in GCN?
 - □ R-GCN [Schlichtkrull+, ESWC-18; Wu+, IJCAI-19]: relation-specific convolution kernels

$$\mathbf{h}_{e}^{l} = \phi(\sum_{e' \in N(e)} \mathbf{M}_{r}^{l} \sqrt{|N(e)||N(e')|} + \mathbf{M}^{l} \frac{\mathbf{h}_{e}^{l-1}}{\sqrt{|N(e)||N(e')|}})$$

Relation-specific kernel for each neighboring entity

- Other variants of GNN
 - □ Graph attention network (GAT, Zhu+, IJCAI-19)
 - □ Multi-channel GNN [Cao+, ACL-19]
 - □ Gated Multi-hop GNN [Sun+, AAAI-20]

Pros

□ Better capturing entity proximity (benefitting knowledge association)

□ Robust against structural heterogeneity

Cons

Much higher parameter complexity
 Max not directly support information of response of the support information of the support inform

□ May not directly support inference of relations

□ Less robust against data sparsity

Transferable representation learning methods with high-order methods
 Relation path based: IPTransE [Zhu+, IJCAI-17], RSN [Guo+, ICML-19]
 GNN-based: GCN-Align [Wang+, EMNLP-18], MuGCN [Cao+, ACL-19], NAEA [Zhu+, IJCAI-19], KECG [Li+, EMNLP-19], HMAN [Yang+, EMNLP-19], MMR [Shi+, EMNLP-19], HGCN [Wu+, EMNLP-19]

Non-Euclidean Methods

Complex space relational embeddings

□ ComplEx [Trouillon+, ICML-16] (*Re*(.) denotes the real part)

 $f_r(h, t) = Re((\mathbf{h} \circ \mathbf{t}) \cdot \mathbf{r}))$ s.t. $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{C}^k$

Suitable for capturing symmetric and antisymmetric relations

□ RotatE [Sun+, ICLR-19]

$$f_r(h,t) = -\|\mathbf{h} \circ \mathbf{r} - \mathbf{t}\|$$
 s.t. \mathbf{h} , \mathbf{r} , $\mathbf{t} \in \mathbb{C}^k$

Suitable for more **relation patterns**: symmetry/anti-symmetry, inversion, and composition

(c) RotatE: an example of modeling symmetric relations \mathbf{r} with $r_i = -1$

The hyperbolic space: the amount of space has an exponential growth w.r.t. the radius [Nickel+ NIPS-17, Ganea+ NeurIPS-18, Liu+ NeurIPS-19]

$$d_{\mathbb{D}}(\mathbf{u}, \mathbf{v}) = \operatorname{arccosh}(1 + 2 \frac{\|\mathbf{u} - \mathbf{v}\|^2}{(1 - \|\mathbf{u}\|^2)(1 - \|\mathbf{v}\|^2)}).$$

Many data form hierarchies

□ Ontologies, taxonomies syntax trees, org charts, claim provenance in social media, etc.

Hyperbolic representation learning models:
 Graph embeddings [Nickel+ NIPS-17, Graph NN [Liu+ NeurIPS-19]

Outline

- Background and Motivation
- Embedding learning methods
 □ First-order and high-order methods
 - $\hfill\square$ Non-Euclidean methods
- Knowledge Association Methods

Supervised and semi-supervised methodsAuxiliary supervision methods

Cross-domain and interdisciplinary tasks

□ KBP tasks

Computational bio-med tasks

The Knowledge Association Process

 Capturing the correspondence of objects between the embedding representations of two multi-relational datasets (say G₁ and G₂)

- What geometric representations should be used to capture the knowledge association?
 - □ Connecting same or different sizes of embeddings
 - □ Types of associations (1-to-1, multi-granular, fuzzy)
- What learning strategies should be used under scenarios with limited supervision?
 - □ Semi-supervised learning?
 - □ Auxiliary supervision?

Geometric Forms of Embedding Association

Distance-based association (a.k.a. axis calibration)

 Suitable for associations between data with similar structures and sizes (e.g. 1-to-1 entity alignment between well-populated multilingual KGs).

Geometric Forms of Embedding Association

Transformation-based association

 Suitable for data of considerably different structures and sizes (allows embedding spaces of different dimensions)

41

Geometric Forms of Embedding Association

Matrix factorization based association

□ For knowledge alignment with uncertainty (e.g. RNA sequencing transcripts between domains of *cells* and *genes*)

Techniques

 $\hfill\square$ Matrix factorization (Given S as the alignment data matrix

- Minimize $\|S \mathbf{E}_1 \mathbf{E}_2^T\|$
- \mathbf{E}_1 and \mathbf{E}_2 are both of dim k
- □ Matrix tri-factorization
 - Minimize $\|S \mathbf{E}_1 \mathbf{U} \mathbf{E}_2^{\mathrm{T}}\|$
 - \mathbf{E}_1 and \mathbf{E}_2 are of dim k_1 and k_2
 - **U** is a $k_1 \times k_2$ matrix

Allows two embedding spaces to be of different dims

- Bootstrapping (BootEA [Sun+, IJCAI-18])
 - Iteratively suggesting new alignment labels for unaligned entities in training
 - Distance-based association
 - A new label (e, e') is added to training if
 - The embedding distance of **e**, **e**' are within a threshold
 - They are mutually nearest neighbor of each other

Co-training (KDCoE [Chen+ IJCAI-18])

 Alternately proposing new labels based on different sets of features (graph structures and entity descriptions)

Co-training (KDCoE [Chen+ IJCAI-18])

Siamese document encoder with Self-attention + Pre-trained bilingual word embeddings

To decide whether two multilingual descriptions are describing the same entity.

• **Optimal transport** (OTEA [Pei+, IJCAI-19]): matching the distribution of embeddings

Learning with Auxiliary Information

- Attribute-based embedding association
- JAPE [Sun+, ISWC-17]:
 - Using a weighted Skip-gram language model [Mikolov+, NIPS-13] that predicts entities based on attributes

Entities with correlated attributes will have similar embedding vectors.

Learning with Auxiliary Supervision

- Attribute-based embedding association
- AttrE [Trisedya+, AAAI-19]
 - □ Using a Char-LSTM to encode attributes of each entity
 - □ The translational embedding model is jointly trained with the attribute Char-LSTM

Learning with Auxiliary Supervision

- Multi-view learning: using different views of entities to bridge between two domains
 - □ MultiKE [Zhang+, IJCAI-19], HMAN [Yang+, EMNLP-19]
 - Combining all modalities
 - Structures: translational (MultiKE) and GCN (HMAN) encoders
 - Attributes: CNN (MultiKE) and FFNN (HMAN)
 - Literals/descriptions: BiLSTM (MultiKE), BERT (MultiKE)
 - □ Embedding combination
 - Concatenation (HMAN)
 - Weighted avg or FFNN (MultiKE)
- What about multi-media?

HMAN [Yang+, EMNLP-19]

Cross-domain and Interdisciplinary Tasks

KBP tasks

- □ Knowledge alignment
- □ Knowledge synchronization
- □ Entity typing
- □ Ontology population
- Computational Bio-med tasks
 - $\hfill\square$ Protein-protein interaction prediction
 - □ Single-cell RNA sequence imputation
 - □ Polypharmacy side effect detection

Scenario 1: Knowledge alignment / Entity resolution

- Task: to identify the match of entities in different KGs
- Cross-lingual entity alignment
 - □ DBP15k dataset
 - 15k aligned entities between each two KGs
 - \Box <30% training set
- Monolingual entity alignment
 - □ DWY100K dataset
 - 100k aligned entities between each two KGs
 - \Box <30% training set

Datasets		DBP15K					
		Entities	Rel.	Attr.	Rel.triples	Attr.triples	
ZUEN	Chinese	66,469	2,830	8,113	153,929	379,684	
ZH-EN	English	98,125	2,317	7,173	237,674	567,755	
	Japanese	65,744	2,043	5,882	164,373	354,619	
JA-EN	English	95,680	2,096	6,066	233,319	497,230	
ED EN	French	66,858	1,379	4,547	192,191	528,665	
FR-EN	English	105,889	2,209	6,422	278,590	576,543	

https://github.com/nju-websoft/JAPE

Data	Datasets		# Rel.	# Attr.	# Rel tr.	# Attr tr.
DBP-WD	DBpedia	100,000	330	351	463,294	381,166
	Wikidata	100,000	220	729	448,774	789,815
DBP-YG	DBpedia	100,000	302	334	428,952	451,646
	YAGO3	100,000	31	23	502,563	118,376

https://github.com/nju-websoft/MultiKE

A paper list for entity alignment/resolution: <u>https://github.com/THU-KEG/Entity_Alignment_Papers</u>

Entity Alignment with Incidental Supervision From Free Text*

Three stepsText Corpus of L1Text Corpus of L21. (Noisy) grounding: connecting KGs and text corpora

- 2. Embedding learning: Translational GCN + a neural language model
- 3. Alignment learning: self-learning + optimal transport

Cross-lingual Entity Alignment Results

*Candidate space is 63k~98k entities in each language

Representation Learning Method vs. SotA Ontology Matching System (LogMap v2.4)

Multi-KE vs. LogMap2.4 on Aligning Subsets of DBPedia to Yago and Wikidata

*MultiKE [Sun+ IJCAI'19] is a monolingual ontology matching system in which multiview embeddings of structures, literals, descriptions and attributes are combined.

Knowledge transfer to a sparser KG (e.g. French)

 Obtain the answer of queries (h, r, ?t) in the embedding space of a wellpopulated version (e.g. English) of KG

Cross-lingual knowledge transfer improves sparse KG completion.

Scenario 2: Instance Knowledge and Ontological Concepts

Ontology view: meta-relations of commonsense concepts **Instance view**: relations of entities instantiated from concepts

 Given an entity without a known type, what is the most likely type (concept) that it associates with?
 JOIE [Hao+, KDD-19]

Type inference (906 labels) on 40% of >111k entities in YAGO.

Example of long-tail entity typing

	Entity	Model	Top 3 Concept Prediction
	Lauranaa	DistMult	football team, club, team
	Laurence	MTransE	writer, person , artist
	rishburne	JOIE	person , artist, philosopher
-	Warangal	DistMult	country, village, city
	City	MTransE	administrative region, city , settlement
	City	JOIE	city , town, country
	Powel Victor	DistMult	person, writer, administrative region
	ion Order	MTransE	election, award, order
	-lan Older	JOIE	award, order , election

Entity typing accuracy on long-tail entities

Datasets	YAGO26K-906			
Metrics	MRR	Acc.	Hit@3	
DistMult	0.156	10.89	25.33	
MTransE	0.526	46.45	67.25	
JOIE-TransE-CG	0.708	59.97	79.80	
JOIE-TransE-CT	0.737	62.05	82.60	
JOIE-HATransE-CT	0.802	69.66	87.75	

Transfer Instance-level Knowledge for Ontology Population

Populating unseen ontological relation facts by transferring instance-view relations.

Examples of ontology population				
Query	Top 3 Populated Triples with distances			
(scientist,?r, university)	scientist, <i>graduated from</i> , university (0.499) scientist, <i>isLeaderOf</i> , university (1.082) scientist, <i>isKnownFor</i> , university (1.098)			
(boxer, ?r, club)	boxer, <i>playsFor</i> , club (1.467) boxer, <i>isAffiliatedTo</i> , club (1.474) boxer, <i>worksAt</i> , club (1.479)			
(scientist, ?r, scientist)	scientist, <i>doctoralAdvisor</i> , scientist (0.204) scientist, <i>doctoralStudent</i> , scientist (0.221) scientist, <i>relative</i> , scientist (0.228)			

Scenario 3.a: Single-cell Gene Expressions

Relations = {binding, activation, reaction, catalyst, expression, inhibition, ptmod}

Scenario 3.a: Single-cell Gene Expressions

Adjusted Random Index (ARI) of Cell Clustering Under 10-90% Drop-out Rates

*Based on Mouse cortex and hippocampus data [Ziesel+, Science 2015]

Transferring gene-interaction knowledge improves cell clustering, especially when the gene-cell association data are very sparse.

Transferring knowledge from the gene ontology improves protein-protein interaction type prediction.

Scenario 4: Polypharmacy side effect detection

Decagon [Zitnik+, ISMB-18]

 Aggregating protein-protein interaction knowledge for predicting the interaction of drugs.

More Application Scenarios

