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Commonsense is crucial for NLU @@ ‘amazon.

Example: John stepped in a puddle and had to go home to change.

Step in a puddle

Causes

Shoes get wet

Causes

Feel
uncomfortable

| Motivates
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Commonsense Knowledge & O X vazon

m Modern Definition of Commonsense Knowledge (Liu & Singh, 2004)

O “While to the average person the term ‘commonsense’ is regarded as synonymous with
‘good judgement’”

O “the Al community it is used in a technical sense to refer to the millions of basic facts and
understandings possessed by most people.”

O “Commonsense is about preference and not always true”
m If you forget someone’s birthday, they may be unhappy with you.
m But if your friends understand that you are busy, he will not by angry.

Unlike factual knowledge, they are not inevitably true.

Commonsense is about preference.

Hugo Liu and Push Singh, ConceptNet - a practical commonsense reasoning tool-kit, BTTJ, 2004 4



What kinds of preference? X e

m Semantic meaning in our language can be described as “a finite set of mental
orimitives and a finite set of . (Jackendoff, 1990)

m The primitive units of semantic meanings include

O Thing (or entity)
m cat

[0 State
m The cat is cute.

m The cat is smiling.
0 Event

m The catis running.

o @

We want to understand

humans’ preferences about
things, states, and events.

- W

States describe things.

Events describe the changing of states.

Ray Jackendoff Semantic Structures. Cambridge, Massachusetts: MIT Press. 1990 5
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How to represent the preference? & Cu X nazon

m The lower bound of a semantic theory (Katz and Fodor, 1963)

O Linguistic description — grammar = semantics

O Understanding language needs both “the speaker‘s knowledge of his language and his
|know|edge about worId’I (Katz and Fodor, 1963)

punct
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_ \ve/ o

Junlor

nmod
case
det

ack to the zoo ’>

Should we take the

ad

od
au dobj
b) dEm J
It is so dangerous!!!—

Ilon K

Case the selection we made can reflect

i \3 When the grammar is controlled,
det
A‘E our understanding about the world.

ack to the Z00 ?

L e

Should We take the

au dObj
‘

Katz, J. J., & Fodor, J. A. (1963). The structure of a semantic theory. Language, 39(2), 170-210.
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Selectional Preference & O X vazon

m Selectional Preference (Resnik, 1993)

0 A relaxation of selectional restrictions (Katz and Fodor, 1963) and is often used as syntactic
features (Chomsky, 1965).

O Applied to IsA hierarchy in WordNet and verb-object relations.

O With this formulation, we can easily use the frequency/plausibility scores of different
combinations to reflect humans’ preference.

0 Examples:
m (“Cat” -IsA- “Animal”) > (“Cat” -IsA- “Plant”)
m (“eat” -dobj- “food”) > (“eat” -dobj- “rock”)

Katz, J. J., & Fodor, J. A. (1963). The structure of a semantic theory. Language, 39(2), 170-210.
Noam Chomsky. 1965. Aspects of the Theory of Syntax. MIT Press, Cambridge, MA.

Philip Resnik. 1993. Selection and information: A class-based approach to lexical relationships. Ph.D. thesis, University of Pennsylvania. 7
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Higher-order Selectional Preference (u X smwazon

m First-order

O dobj: (“eat”—>dobj->“food”) > (“eat”->dobj->“house”)

0 Nsubj: (“sing”->nsubj->“singer”) > (“sing”->nsubj->“house”)

...
m Second-order (Zhang et al., 2019)

O Nsubj-amod / dobj-amod

O (“eat”->nsubj->“[SUB]”->amod->“hungry”) > (“eat”->dobj>“[OBJ]”->amod->“hungry”)
m Higher-order

O (“l eat dinner”->Causes->“l am full”) > (“I eat dinner”->Causes->“l am hungry”)

Commonsense can be represented by the higher-order selectional preference over eventualities.

Hongming Zhang, Hantian Ding, and Yangqiu Song. SP-10K: A Large-Scale Evaluation Set for Selectional Preference Acquisition. ACL 2019. 8
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Transferability from event knowledge to Commonsense @M amazon

customer he

Nsubj nsubj /
Result

eats——> is

ﬁobj acorrh
food full

N

customer he customer he
j nsubj j
Result _
IS
aconk
full
(‘customer’-CapableOf-‘eat food’) (‘food’-ReceivesAction-‘eat’) (‘eat’-Causes-‘be full’)

Hongming Zhang, Daniel Khashabi, Yanggiu Song, and Dan Roth. TransOMCS: From Linguistic Graphs to Commonsense Knowledge. 1JCAI 2020. 9
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Transferability from event knowledge to Commonsense @M amazon

“love” Causes

llh 7 |
uman” CapableOf
[ | depart away] [ | eat food ] P f I
PrecedeW i
Result (11) 1. stand ! 1. be friendly
[ | make a call ] 2. think ! 2. behappy
3. die | 3.  pain
Precedence (3 [ | am hungry ] 4. learn : 4.  marriage
5. make mistake : 5. be quaint o
Contrast (3) Conjunction (11) 6. lie : 6. be unhappy
| ired 7. typically have (7 : 7. be allergic =
am tire Result (3) 8.  create society | 8. bedesperate
9. have cell | 9. beapart
Conjunction (1) . . .
| rest on a bench ] 10. create life ! 10. besilly
Event-centric KG Human-defined commonsense

10
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Event-centric KBs & O X mazon

—> FrameNet (Baker et al., 1998) 27,691 1,709 7
——> ACE (Aguilar et al., 2014) 3,290 0 0
C—> PropBank (Palmer et al., 2005) 112,917 0 0
—> NomBank (Meyers et al., 2004) 114,576 0 0
——> TimeBank (Pustejovsky et al., 2003) 7,571 8,242 1
——> ConceptNet (Liu and Singh, 2004) 74,989 116,097 4
—> Event2Mind (Smith et al., 2018) 24,716 57,097 3
——> ProPora (Dalvi et al., 2018) 2,406 16,269 1
—> ATOMIC (Sap et al., 2019) 309,515 877,108 9
—)> ATOMIC 2020* (Hwang et al., 2020) - 165,164 4

Pro: High quality
Con: Expensive; Small Scale; Limited relation types

*For ATOMIC 2020, we only count the unique edges and ignore the edges it inherits from other KBs. 12
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Knowlywood (Tandon et al., 2015) @@ USCVirer

m KG Format
0 Node: Verb + Object
[0 Edge: Temporal Relation

m Resource
[0 560 movie scripts

m Extraction Methodology

Scripts ' Semantic Parsing / Graph Inference |/ Taxonomy GO
- Movies ' | Construction o
- TV Series StatisticalPriors| Activity

- Sitcoms » » ‘ Knowledge

PSL Inference ‘ Hierarchy

Base
[M J/ \ / \_ ) .

Novels

Niket Tandon, Gerard de Melo, Abir De, and Gerhard Weikum. 2015. Knowlywood: Mining Activity Knowledge From Hollywood Narratives. CIKM 2015. 14



Knowlywood

y 4 USC Viterbi
W amazon

Open#l up entrance#l

m Example 1
; - Parent activity s
Previous activity Next activity
{Openii1 , Openiil
I
Participating  guard#1, man#1, « n_u
: - Al pEe - . Knock door”->“open up
Location house#1, porch#1, entrance”->“enter office”
office##1
Time day#4, night#1
1l
® Quantity
Source #Input #Scenes  #Unique | Parent Participant Prev Next Loc. Time | Avg.
Scripts Activities

Movie scripts 560 148,296 244,789 | 0.87 0.86 0.78 085 079 079 | 0.84
TV series 290 886,724 565,394 | 0.89 0.85 0.81 0.84 0.82 0.84 | 0.86
Sitcoms 179 286,266 200,550 | 0.88 0.85 0.81 0.87 0.81 0.83 | 0.87
Novels 103 383,795 137,365 | 0.84 0.84 0.78 0.88 085 0.72 | 0.84
Crowdsrc. 25 3,701 9,575 | 0.82 0.91 091 0.87 074 040 | 0.86
Knowlywood | 1,157 1,708,782 | 964,758 | 0.87 0.86 0.84 0.85 0.78 0.84 | 0.85+0.01
ConceptNet 5 | - - 4,757 | 0.15 0.81 092 091 033 N/A | 0.46+0.02

15



ASER (Zhang et al., 2020) @@, USC e

m KG Format
O A Hybrid graph
0 Node: Eventualities in the format of dependency graphs
[0 Edge: All discourse relations

m Resource
[0 11B token textual corpora (i.e., Yelp, NYT, Wikipedia, Reddit, Subtitles, E-books)

m Extraction Preprocessed / Eventuality Extractiop |
Data / '@nces

. [ Seed

preprocessirg i Relation

I_Extraction
Trainin Labeling
} i ’
I

Eventuality I New
Raw Data Database I Relations
|
] |

Hongming Zhang, Xin Liu, Haojie Pan, Yanggiu Song, and Cane Wing-Ki Leung. ASER: A Large-scale Eventuality Knowledge Graph. WWW 2020. 16

Training

—

y

I

I

. I
Relation

Classifier I

I

I

I

Relation
Database

Adding
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ASER Example & O X mazon

A hybrid graph of

e Each eventuality is a hyper-edge of words
* Heterogeneous edges among eventualities

| depart away | eat food

PrecedeW

| make a call )

Precedence | go I am hungry

(~3000) | > [l eat rock (0)]
Contrast (3 Conjunction (
lamtired f~ . < =~ \\__
Reason (6)

Conjunction

| sleep | rest on a bench

194 million eventualities, 64 million edges

17
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ASER Quantity and Quality (Eventuality) @@4 amazon

1000 100.00%
95.00%
100
90.00%
10
I 85.00%
. i Il - -
[] - 80.00%
(9,4 A’O A,’b O,O e,’b e,’b Q/,O A,O \\,\\ 0 0O O (94 0O ’
g g A, ) \\:Q 0 A/ g ,,sz ,\\zQ O'Q ,b‘o AIQ
S S & S 5 < S Ry R &
7/ % %
0.1 & KL 75.00%

Bl #Eventuality (In millions)  mE#Unique (In millions)  —#Accuracy

18



ASER Quantity and Quality (Edge)

&

USCViterbi
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Comparison with Other event KGs @@ a@;ton

1,000,000,000

100,000,000
10,000,000 1,000X larger 1! 100X larger ”'
1,000,000 ! o
100,000
10,000
1,000
100
10
1
B 3 ! > \\\
ARl \ Y AR \& O\ N\ N N\ N\
& & & & & & \>°><° v
S > > x> Ty X ) R Q
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Q X2 ? R N, X N\ < >
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\g\
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PS: In ConceptNet 5.0, more edges are added, but only the core part, which is inherited from ConceptNet 1.0 (Liu & Singh, 2004), is related to commonsense knowledge.
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Knowledge Discovery from Pre-trained LMs @M amazon

®m Language Model
O Examples: GPT-1/2/3
m COMET (Bosselut et al., 2019):

0 Commonsense Transformers for Automatic Knowledge Graph Construction

. aYa ™ ™
Multi-headed Attention Transformer Block Commonsense Transformer (COMeT)
gt 1‘11: [MASK] [MASK] have boat <END>
t ( Layer Normalization ) t t t t 4

(" LnearProjecton )

é: Vocab || Vocab Vocab Vm;ab Vo::ah
* (Fesdorward Networ) -
- SaliE sl ance

m‘;" ( Layer Normalization ) - - v t - 1
| — () () ()
L

[Multi-headed Attentionj

L S  S— € Po € P:  ©is| Pisl

L {hg;’...,hf_ﬁ hﬁ'/ [PersonX sails ..<xNeed> .. sail boat .

{

(a) (b) Event 1 (c) Event 2

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin Choi. COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. ACL 2019. 22
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Event Temporal Commonsense s AL amazon

m TacolLM (Zhou et al., 2020)

[0 a general time-aware language model that distincts temporal properties in fine grained contexts.

-1 moved my chair -1 moved my piano - | moved to a different city

0.4

0.3

2 2 2 2 S 2 2 S &
O Q& & S ¥ N L K S
B2 Q <& L @

Ben Zhou, Qiang Ning, Daniel Khashabi,, and Dan Roth. Temporal Common Sense Acquisition with Minimal Supervision. ACL 2020. 23
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Event Temporal Commonsense & O X vazon

4 ™
Goal: build a general
[Step 1: Information Extraction ] time-aware LM with
minimal supervision

[0 Use high-precision patterns to acquire temporal information - /

m Unsupervised automatic extraction

[0 Overcomes reporting biases with a large amount of natural text

[Step 2: Joint Language Model Pre-training ]

O Multiple temporal dimensions
m Duration ~ 1/ Frequency

“I brush my teeth Duration of “brushing
every morning” teeth” < morning

m Further generalization to combat reporting biases

AV
[Output: TacoLM- a time-aware general BERT ]

24



Event Temporal Commonsense

[ | played basketball for 2 hours. ] ortamal
SRL
Parse
Arg-1 ]
| played basketball for 2 hours.
{ Arg-Tmp
Pattern
Matching
[for 2 hours: matches Duration pattern ]
Event ] Value
_ Formatted
| played basketball, Duration, Hours Output
[ Dimension etance

Information Extraction

y 4 USC Viterbi
\44 amazon
ptayed basketba
[HRS]
gy TY ey

m Baseline Model: Pre-trained BERT-base
m  Main objective: mask some tokens and recover them
m How we mask:

[0 With some probability, mask temporal value
while keeping others

[ 1[M] played basketball [SEP] [M] [DUR] [MASK] |

[0 Otherwise, mask a certain portion of E1...En
while keeping temporal value unchanged

[ 1[M] [MASK] [MASK] [SEP] [M] [DUR] [HRS] |

O Max (P(Event|Dim,Val) + P(Val| Event,Dim));
Preserving original LM capability

Joint training with language model
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Event Graph Schema Induction (Li et al., 2020) @@ amaren”

m History repeats itself: Instance graphs (a) and (b) refer to very different event instances, but they both illustrate
a same scenario.

[ Select salient and coherent paths based on Path. Language Model, and merge them into graph schemas.

: Event Instance Graphs L Path Language Model i
: PER . Transport ~GPE WEA Attack Transport WEA Attack
(a) B
: troops ai P origin artifact instrument rtifact mstrument_ i
" el — —_— rﬁ'c&- . . ! ) : :
H N ’:}‘"- " . T i S er | i
a{“‘t‘?" ‘@@é. o TmnsPuagent GPEaﬁliatiﬂnPEH aﬂacke#ﬂank Transpanrﬁam PER aﬁacke’?‘“ank :
- ""\ﬂ L » 4+ - :
Transport | ~ —— .. 7 - ! !
Il g Ty WEA | Attack f 4 onsport. | FAC GPE Attack :
: -~ GPE xmfﬂr tank “{mam‘: M | destination part- place :
: destination origin Russia. @+—grmrr R 1 | whole o !
: - ' Transport FAC GPE PER Attack :
: part-whole - - destination part- _ - located_in target :
: FAC s target P ~whole
: Sevastopol GPE d it {‘7
: Ukraine {mTTTTTTmTemmsmsmssssssssscssssssssssssssssssssSilessscssssossssesessssssossssessnssssnossnay
| (b) PER Lo Graph Schema Inductmn 5
: protesters L PER !
: b _— at o o e :
: & - — Vg, B o v -
Transpon | & ~ [ o 1] & g ow oy, e
Carry &g e arlif i . P~ artifact ™ >0 +———_ T E
; / E "'--a—'??____ instrume UL +  Transport ,~—;; LOC 2. iNstr, —— ~_  Attack :
i destinafi y = . i T we WEA "ty ac |
. esination ¥ ) = A : ! %, -rj'glr” . [ =] Enf S, '
' part- ®© | GPE WEA 1 1 destination 0 2o, 12 |
4 whole Ukraine stone Do 004 b ;; 3%?-}, i
: Mali?‘iﬁ | pwoo __Pplace __ - Co %o ‘5’4‘? ~%'| GPE place 0 EI_F'___,/
| Square | part- [\ g L FAC . —part- x_'* T et 0.0 02_ — 7 i
: \ whole /. . - Co \ ( P Ger— target 89— o~ :
: part- N, g eomeddn o target N N amsta  aacket S i
5 whole  gpg PER u Nparte oflen o P :
: Kyiv police Do T DHG A !

Manling Li, Qi Zeng, Kyunghyun Cho, Heng Ji, Jonathon May, Nathanael Chambers, Clare Voss. Connecting the Dots: Event Graph Schema Induction with Path Language Modeling. ACL 2020. 27



Path Language Model S X nazon

m Path Language Model is trained on two tasks

O Autoregressive Language Model Loss: capturing the frequency and coherence of a single path

O Neighbor Path Classification Loss: capturing co-occurrence of two paths
Neighbor | 1 = neighbor
Path 0 = not neighbor
Classifier

attacker GPE agent Transport[SEP] Attack instrument WEA artifact GPE age ranspn
Auto-
regressive

o
Path - g T o N o W TT

) ] [ ]
Language
Model

Word  Ey Attack attacker GPE agent ! Transport [SEP] Attack instrument WEA artifact GPE agent™! Transport [SEP]

]
]

Position Ep 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Segment Es 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Element E; 1 2 1 2 1 0 1 2 1 2 1 2 1 0
Path A: Path B:

. ) 28
Attack - attacker - GPE - agent 1. Transport Attack - instrument - WEA - artifact - GPE - agent -1, Transport



Recover Instance Graph

USCViterbi
amazon

&

m A salient schema can serve as a skeleton to recover instance graphs

[0 We use each graph schema to match back t

o each ground-truth instance graph and evaluate

their intersection in terms of Precision and RecaII

PER
y aﬁacke
£
o arifact
artifact
Transport . % Attack
destlnatlon% \ =2
FAC
\%
al
part-whole ff’/fano
g Instance Graph
PER
troops
Macke,
Transport
Attack
deploy WEA attack
destination " origin Russia instrument
part-whole
FAC b target
Sevastopol GPE
Ukraine

.................................................................................................

ZSE; qug |g a S|Q

Precision =

1 Z.SES I‘ ’S
s M g Intersection between Schema and Instance Graph
PER
(a) troops
2
o
Transport
deploy
: : destination Russia nstrument
L part-whole
P FAC ) target
' Sevastopol GPE
'\ Ukraine
€
| Sees Nsh
sesd qug |g <A
Recall = :

29



h -d d f . . M7 USC Viterbi
Schema-Guided Information Extraction (L amazon
Input Sentence Candidate IE Graph
0 U§e the state-of-the-art IE system OnelE . CNN Pentagon correspondent Transport tlraoEol?)s
(Lin et al, 2020) to decode converts each | Barbara Starr reports coalition enteirlg//_, %
. : ! - | Sack
input document into an IE graph ; troops entering [Transport] artifac
+ Baghdad were met with fierce Mb = 5
m Each path in the graph schema is encoded ! fighting [Attack], and there Blion g 9e° f%trﬁﬁ; i
as a single global feature for scoring  worocasualiesonbolhsides ©  Baghdad =
[ = Attack
candidate IE graphs | Transport .. F ocated. in EPE blace ac
m OnelE promotes candidate IE graphs
containing paths matching schema graphs | Transport . . ~GPE . din target Attack
Paths from Schema Repository
Dataset Entity Event_'_l'rl_gger Event_Trlgger Event Argqment Event A_r_gu_ment Relation
Identification Classification Identification Classification
Baseline 90.3 75.8 12.7 57.8 55.5 44.7
+PathLM 90.2 76.0 73.4 59.0 56.6 60.9

30



- USC Viterbi
Outline @@l ama/;ton

m Understanding Commonsense from the Angle of Events

m Instance-level Event Knowledge Acquisition
O Human Annotation
O Automatic Event Knowledge Extraction
O Language Modeling

m Schema-level Event Knowledge Acquisition

m Conclusion

31



Key takeaways @ G X S

m There is a transferability from event knowledge to commonsense knowledge

m Compared with commonsense, acquiring event knowledge is cheaper and more
scalable.

m All existing acquisition systems have advantages and limitations.

Quality Relation Explainability | Robustness | Downstream
Coverage Task

Human Annotation High Small Middle High High Difficult

Automatic Event Middle Large High High Middle Difficult
Knowledge Extraction

Language Model Middle Large High Low Low Easy

Thanks ©
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