Event and Commonsense
Event-centric Natural Language Processing (Part IV)

Hongming Zhang
UPenn

Aug 2021
ACL Tutorials
Event-centric Natural Language Understanding
Commonsense is crucial for NLU

Example: John stepped in a puddle and had to go home to change.
Outline

- Understanding Commonsense from the Angle of Events

- Instance-level Event Knowledge Acquisition
 - Human Annotation
 - Automatic Event Knowledge Extraction
 - Language Modeling

- Schema-level Event Knowledge Acquisition

- Conclusion
Modern Definition of Commonsense Knowledge (Liu & Singh, 2004)

- “While to the average person the term ‘commonsense’ is regarded as synonymous with ‘good judgement’”

- “the AI community it is used in a technical sense to refer to the millions of basic facts and understandings possessed by most people.”

- “Commonsense is about preference and not always true”
 - If you forget someone’s birthday, they may be unhappy with you.
 - But if your friends understand that you are busy, he will not by angry.

Unlike factual knowledge, they are not inevitably true.

Commonsense is about preference.
What kinds of preference?

- Semantic meaning in our language can be described as “a finite set of mental primitives and a finite set of mental combination.” (Jackendoff, 1990)

- The primitive units of semantic meanings include
 - Thing (or entity)
 - cat
 - State
 - The cat is cute.
 - The cat is smiling.
 - Event
 - The cat is running.

We want to understand humans’ preferences about things, states, and events.

States describe things.

Events describe the changing of states.

How to represent the preference?

- The lower bound of a semantic theory (Katz and Fodor, 1963)
 - Linguistic description – grammar = semantics
 - Understanding language needs both “the speaker's knowledge of his language and his knowledge about world” (Katz and Fodor, 1963)

When the grammar is controlled, the selection we made can reflect our understanding about the world.

It is so dangerous!!!
Selectional Preference

Selectional Preference (Resnik, 1993)

- A relaxation of selectional restrictions (Katz and Fodor, 1963) and is often used as syntactic features (Chomsky, 1965).
- Applied to IsA hierarchy in WordNet and verb-object relations.
- With this formulation, we can easily use the frequency/plausibility scores of different combinations to reflect humans’ preference.

Examples:

- (“Cat” -IsA- “Animal”) > (“Cat” -IsA- “Plant”)
- (“eat” -dobj- “food”) > (“eat” -dobj- “rock”)

Higher-order Selectional Preference

- **First-order**
 - dobj: ("eat"->dobj->"food") > ("eat"->dobj->"house")
 - Nsubj: ("sing"->nsubj->"singer") > ("sing"->nsubj->"house")
 - ...

- **Second-order (Zhang et al., 2019)**
 - Nsubj-amod / dobj-amod
 - ("eat"->nsubj->"[SUB]"->amod->"hungry") > ("eat"->dobj->"[OBJ]"->amod->"hungry")

- **Higher-order**
 - ("I eat dinner"->Causes->"I am full") > ("I eat dinner"->Causes->"I am hungry")

Commonsense can be represented by the higher-order selectional preference over eventualities.

Hongming Zhang, Hantian Ding, and Yangqiu Song. SP-10K: A Large-Scale Evaluation Set for Selectional Preference Acquisition. ACL 2019.
Transferability from event knowledge to Commonsense

Result ('customer' - CapableOf - 'eat food')

Result ('food' - ReceivesAction - 'eat')

Result ('eat' - Causes - 'be full')

Hongming Zhang, Daniel Khashabi, Yangqiu Song, and Dan Roth. TransOMCS: From Linguistic Graphs to Commonsense Knowledge. IJCAI 2020.
Transferability from event knowledge to Commonsense

Event-centric KG

Human-defined commonsense

“human” CapableOf
1. stand
2. think
3. die
4. learn
5. make mistake
6. lie
7. typically have
8. create society
9. have cell
10. create life

“love” Causes
1. be friendly
2. be happy
3. pain
4. marriage
5. be quaint 😊
6. be unhappy 😞
7. be allergic 😶
8. be desperate 😞
9. be apart
10. be silly
Outline

- Understanding Commonsense from the Angle of Events

- Instance-level Event Knowledge Acquisition
 - Human Annotation
 - Automatic Event Knowledge Extraction
 - Language Modeling

- Schema-level Event Knowledge Acquisition

- Conclusion
Event-centric KBs

<table>
<thead>
<tr>
<th>KB</th>
<th># Events</th>
<th># Event relation</th>
<th># Relation Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrameNet (Baker et al., 1998)</td>
<td>27,691</td>
<td>1,709</td>
<td>7</td>
</tr>
<tr>
<td>ACE (Aguilar et al., 2014)</td>
<td>3,290</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PropBank (Palmer et al., 2005)</td>
<td>112,917</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NomBank (Meyers et al., 2004)</td>
<td>114,576</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TimeBank (Pustejovsky et al., 2003)</td>
<td>7,571</td>
<td>8,242</td>
<td>1</td>
</tr>
<tr>
<td>ConceptNet (Liu and Singh, 2004)</td>
<td>74,989</td>
<td>116,097</td>
<td>4</td>
</tr>
<tr>
<td>Event2Mind (Smith et al., 2018)</td>
<td>24,716</td>
<td>57,097</td>
<td>3</td>
</tr>
<tr>
<td>ProPora (Dalvi et al., 2018)</td>
<td>2,406</td>
<td>16,269</td>
<td>1</td>
</tr>
<tr>
<td>ATOMIC (Sap et al., 2019)</td>
<td>309,515</td>
<td>877,108</td>
<td>9</td>
</tr>
<tr>
<td>ATOMIC 2020* (Hwang et al., 2020)</td>
<td>-</td>
<td>165,164</td>
<td>4</td>
</tr>
</tbody>
</table>

Pro: High quality
Con: Expensive; Small Scale; Limited relation types

*For ATOMIC 2020, we only count the unique edges and ignore the edges it inherits from other KBs.
Outline

■ Understanding Commonsense from the Angle of Events

■ Instance-level Event Knowledge Acquisition
 □ Human Annotation
 □ Automatic Event Knowledge Extraction
 □ Language Modeling

■ Schema-level Event Knowledge Acquisition

■ Conclusion
Knowlywood (Tandon et al., 2015)

- KG Format
 - Node: Verb + Object
 - Edge: Temporal Relation
- Resource
 - 560 movie scripts
- Extraction Methodology
Knowlywood

Example

```
Knock#2 door#1
Previous activity

Open#1 up entrance#1
Parent activity

{Open#1 door#1, Open#1 doorway#1}

Participating Agent
guard#1, man#1, woman#1

Location
house#1, porch#1, office#1

Time
day#4, night#1

Visuals

Enter#1 office#1
Next activity
```

"Knock door" -> "open up entrance" -> "enter office"

Quantity

<table>
<thead>
<tr>
<th>Source</th>
<th>#Input Scripts</th>
<th>#Scenes</th>
<th>#Unique Activities</th>
<th>Parent</th>
<th>Participant</th>
<th>Prev</th>
<th>Next</th>
<th>Loc.</th>
<th>Time</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movie scripts</td>
<td>560</td>
<td>148,296</td>
<td>244,789</td>
<td>0.87</td>
<td>0.86</td>
<td>0.78</td>
<td>0.85</td>
<td>0.79</td>
<td>0.79</td>
<td>0.84</td>
</tr>
<tr>
<td>TV series</td>
<td>290</td>
<td>886,724</td>
<td>565,394</td>
<td>0.89</td>
<td>0.85</td>
<td>0.81</td>
<td>0.84</td>
<td>0.82</td>
<td>0.84</td>
<td>0.86</td>
</tr>
<tr>
<td>Sitcoms</td>
<td>179</td>
<td>286,266</td>
<td>200,550</td>
<td>0.88</td>
<td>0.85</td>
<td>0.81</td>
<td>0.87</td>
<td>0.81</td>
<td>0.83</td>
<td>0.87</td>
</tr>
<tr>
<td>Novels</td>
<td>103</td>
<td>383,795</td>
<td>137,365</td>
<td>0.84</td>
<td>0.84</td>
<td>0.78</td>
<td>0.88</td>
<td>0.85</td>
<td>0.72</td>
<td>0.84</td>
</tr>
<tr>
<td>Crowdsrc.</td>
<td>25</td>
<td>3,701</td>
<td>9,575</td>
<td>0.82</td>
<td>0.91</td>
<td>0.91</td>
<td>0.87</td>
<td>0.74</td>
<td>0.40</td>
<td>0.86</td>
</tr>
<tr>
<td>Knowlywood</td>
<td>1,157</td>
<td>1,708,782</td>
<td>964,758</td>
<td>0.87</td>
<td>0.86</td>
<td>0.84</td>
<td>0.85</td>
<td>0.78</td>
<td>0.84</td>
<td>0.85±0.01</td>
</tr>
<tr>
<td>ConceptNet 5</td>
<td>-</td>
<td>-</td>
<td>4,757</td>
<td>0.15</td>
<td>0.81</td>
<td>0.92</td>
<td>0.91</td>
<td>N/A</td>
<td>0.33</td>
<td>0.46±0.02</td>
</tr>
</tbody>
</table>
ASER (Zhang et al., 2020)

- **KG Format**
 - A Hybrid graph
 - Node: Eventualities in the format of dependency graphs
 - Edge: All discourse relations

- **Resource**
 - 11B token textual corpora (i.e., Yelp, NYT, Wikipedia, Reddit, Subtitles, E-books)

- **Extraction**
ASER Example

A hybrid graph of
- Each eventuality is a hyper-edge of words
- Heterogeneous edges among eventualities

194 million eventualities, 64 million edges
Comparison with Other event KGs

- FrameNet (Baker et al., 1998)
- ACE (Aguilar et al., 2014)
- PropBank (Palmer et al., 2005)
- TimeBank (Pustejovsky et al., 2004)
- ConceptNet (Liu & Singh, 2004)
- Event2Mind (Smith et al., 2018)
- Propora (Dalvi et al., 2018)
- ATOMIC (Sap et al., 2018)
- Knowlywood (Tandon et al.,…)
- ASER (core)
- ASER (full)

PS: In ConceptNet 5.0, more edges are added, but only the core part, which is inherited from ConceptNet 1.0 (Liu & Singh, 2004), is related to commonsense knowledge.
Outline

- Understanding Commonsense from the Angle of Events

- Instance-level Event Knowledge Acquisition
 - Human Annotation
 - Automatic Event Knowledge Extraction
 - Language Modeling

- Schema-level Event Knowledge Acquisition

- Conclusion
Knowledge Discovery from Pre-trained LMs

- Language Model
 - Examples: GPT-1/2/3
- COMET (Bosselut et al., 2019):
 - Commonsense Transformers for Automatic Knowledge Graph Construction

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin Choi. COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. ACL 2019.
- **TacoLM (Zhou et al., 2020)**
 - a general time-aware language model that distincts temporal properties in fine grained

![Graph](image-url)

Ben Zhou, Qiang Ning, Daniel Khashabi, and Dan Roth. Temporal Common Sense Acquisition with Minimal Supervision. ACL 2020.
Event Temporal Commonsense

Step 1: Information Extraction
- Use high-precision patterns to acquire temporal information
 - Unsupervised automatic extraction
- Overcomes reporting biases with a large amount of natural text

Step 2: Joint Language Model Pre-training
- Multiple temporal dimensions
 - Duration $\sim 1 / \text{Frequency}$
- Further generalization to combat reporting biases

Goal: build a general time-aware LM with minimal supervision

Output:
- **TacoLM** - a time-aware general BERT
I played basketball for 2 hours.

SRL Parse

Arg-0
Arg-1
Verb

Arg-Tmp

Pattern Matching

for 2 hours: matches Duration pattern

Event
Value

I played basketball, Duration, Hours

Information Extraction

Original sentence

I [M] played basketball [SEP] [M] [DUR] [HRS]

- Baseline Model: Pre-trained BERT-base
- Main objective: mask some tokens and recover them
- How we mask:
 - With some probability, mask temporal
 - Otherwise, mask a certain portion of
 - Max (P(Event|Dim,Val) + P(Val|Event,Dim)); Preserving original LM capability

Joint training with language model
Outline

- Understanding Commonsense from the Angle of Events

- Instance-level Event Knowledge Acquisition
 - Human Annotation
 - Automatic Event Knowledge Extraction
 - Language Modeling

- Schema-level Event Knowledge Acquisition

- Conclusion
History repeats itself: Instance graphs (a) and (b) refer to very different event instances, but they both illustrate a same scenario.

Select salient and coherent paths based on Path Language Model, and merge them into graph schemas.
Path Language Model is trained on two tasks:

- Autoregressive Language Model Loss: capturing the frequency and coherence of a single path
- Neighbor Path Classification Loss: capturing co-occurrence of two paths
Schema-Guided Information Extraction

- Use the state-of-the-art IE system OneIE (Lin et al, 2020) to decode converts each input document into an IE graph
- Each path in the graph schema is encoded as a single global feature for scoring candidate IE graphs
- OneIE promotes candidate IE graphs containing paths matching schema graphs

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Entity</th>
<th>Event Trigger Identification</th>
<th>Event Trigger Classification</th>
<th>Event Argument Identification</th>
<th>Event Argument Classification</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>90.3</td>
<td>75.8</td>
<td>72.7</td>
<td>57.8</td>
<td>55.5</td>
<td>44.7</td>
</tr>
<tr>
<td>+PathLM</td>
<td>90.2</td>
<td>76.0</td>
<td>73.4</td>
<td>59.0</td>
<td>56.6</td>
<td>60.9</td>
</tr>
</tbody>
</table>

Input Sentence: CNN Pentagon correspondent Barbara Starr reports coalition troops entering [Transport] Baghdad were met with fierce fighting [Attack], and there were casualties on both sides.
Event Schema Induction for Event Prediction
Temporal Complex Event Schema (Li et al, 2021)

- **Graph Structure Aware:**
 - Encode entity coreference and entity relation
 - Capture the interdependency of events and entities (sequences can not)

- **Scenario guided:**
 - Train one model based on instance graphs of the same scenario

- **Probabilistic:**
 - Support downstream tasks, such as event prediction
Generative Event Graph Model

- Schemas are the hidden knowledge to control instance graph generation

- Step 1. Event Node Generation
- Step 2. Message Passing
- Step 3. Argument Node Generation
- Step 4. Relation Edge Generation
- Step 5. Temporal Edge Generation
Extrinsic Evaluation

- **Schema-guided Event Prediction**: The task aims to predict ending events of each graph.
 - Considering that there can be multiple ending events in one instance graph, we rank event type prediction scores and adopt MRR and HITS@1 as evaluation metrics.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Models</th>
<th>MRR</th>
<th>HITS@1</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Human Schema</td>
<td>0.173</td>
<td>0.205</td>
</tr>
<tr>
<td></td>
<td>Event Graph Model</td>
<td>0.401</td>
<td>0.520</td>
</tr>
<tr>
<td>IED</td>
<td>Human Schema</td>
<td>0.072</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td>Event Graph Model</td>
<td>0.223</td>
<td>0.691</td>
</tr>
</tbody>
</table>
Outline

- Understanding Commonsense from the Angle of Events
- Instance-level Event Knowledge Acquisition
 - Human Annotation
 - Automatic Event Knowledge Extraction
 - Language Modeling
- Schema-level Event Knowledge Acquisition
- Conclusion
Key takeaways

- There is a transferability from event knowledge to commonsense knowledge.
- Compared with commonsense, acquiring event knowledge is cheaper and more scalable.
- All existing acquisition systems have advantages and limitations.

<table>
<thead>
<tr>
<th></th>
<th>Quality</th>
<th>Scale</th>
<th>Relation Coverage</th>
<th>Explainability</th>
<th>Robustness</th>
<th>Downstream Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Annotation</td>
<td>High</td>
<td>Small</td>
<td>Middle</td>
<td>High</td>
<td>High</td>
<td>Difficult</td>
</tr>
<tr>
<td>Automatic Event Knowledge Extraction</td>
<td>Middle</td>
<td>Large</td>
<td>High</td>
<td>High</td>
<td>Middle</td>
<td>Difficult</td>
</tr>
<tr>
<td>Language Model</td>
<td>Middle</td>
<td>Large</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Easy</td>
</tr>
</tbody>
</table>

Thanks
Key References

- ConceptNet: Hugo Liu and Push Singh, ConceptNet - a practical commonsense reasoning tool-kit, BTTJ, 2004

- ASER: Hongming Zhang, Xin Liu, Haojie Pan, Yangqiu Song, and Cane Wing-Ki Leung. ASER: A Large-scale Eventuality Knowledge Graph. WWW 2020.

- TacoLM: Ben Zhou, Qiang Ning, Daniel Khashabi, Dan Roth. Temporal Common Sense Acquisition with Transformers. ACL 2020.