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Commonsense is crucial for NLU ATOR T

o TR

Example: John stepped in a puddle and had to go home to change.

Step in a puddle

Causes

Shoes get wet

Causes

Feel
uncomfortable

Motivates
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Commonsense Knowledge

= Modern Definition of Commonsense Knowledge (Liu & Singh, 2004)

o “While to the average person the term ‘commonsense’ is regarded as synonymous
with ‘good judgement™

o “the Al community it is used in a technical sense to refer to the millions of basic facts
and understandings possessed by most people.”

o “Commonsense is about preference and not always true”

« If you forget someone’s birthday, they may be unhappy with you.
« But if your friends understand that you are busy, he will not by angry.

Unlike factual knowledge, they are not inevitably true.

Commonsense is about preference.

Hugo Liu and Push Singh, ConceptNet - a practical commonsense reasoning tool-kit, BTTJ, 2004 4



What kinds of preference? ATOLT

= Semantic meaning in our language can be described as “a finite set of
mental primitives and a finite set of " (Jackendoff,
1990)

= The primitive units of semantic meanings include
o Thing (or entity)

s Cat

o State

« The catis cute.
»« The catis smiling.

o Event
« The cat is running.

We want to understand humans’
preferences about things, states,
and events.

s

States describe things.

Events describe the changing of states.

Ray Jackendoff Semantic Structures. Cambridge, Massachusetts: MIT Press. 1990 S



How to represent the preference?

oy e
z o N )

= The lower bound of a semantic theory (Katz and Fodor, 1963)
o Linguistic description — grammar = semantics

Wge needs both “the speaker's knowledge of his language and
world” (Katz and Fodor, 1963)
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punct

nmod
case
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aux dObj
It is so dangerous!!!  —

Should we take the

Should we take the

Katz, J. J., & Fodor, J. A. (1963). The structure of a semantic theory. Language, 39(2), 170-210.
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When the grammar is controlled,
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Selectional Preference A

= Selectional Preference (Resnik, 1993)

o A relaxation of selectional restrictions (Katz and Fodor, 1963) and is often used as
syntactic features (Chomsky, 1965).

o Applied to IsA hierarchy in WordNet and verb-object relations.

o With this formulation, we can easily use the frequency/plausibility scores of different
combinations to reflect humans’ preference.

o Examples:
» (“Cat” -IsA- “Animal”) > (“Cat” -IsA- “Plant”)
« (“eat” -dobj- “food”) > (“eat” -dobj- “rock”)

Katz, J. J., & Fodor, J. A. (1963). The structure of a semantic theory. Language, 39(2), 170-210.
Noam Chomsky. 1965. Aspects of the Theory of Syntax. MIT Press, Cambridge, MA.

Philip Resnik. 1993. Selection and information: A class-based approach to lexical relationships. Ph.D. thesis, University of Pennsylvania. 7



Higher-order Selectional Preference

= First-order

o dobj: (“eat’—>dobj->“food”) > (“eat”->dobj->"house”)

o Nsubj: (“sing”->nsubj->“singer”) > (“sing”->nsubj->*house”)

o ...
s Second-order (Zhang et al., 2019)

o Nsubj-amod / dobj-amod

o (“eat’->nsubj->[ I’->amod->"hungry”) > (“eat”->dobj>"| ]’->amod->"hungry”)
= Higher-order

o (“l eat dinner’->Causes->“l am full”) > (“I eat dinner’->Causes->“| am hungry”)

Commonsense can be represented by the higher-order selectional preference over eventualities.

Hongming Zhang, Hantian Ding, and Yangqiu Song. SP-10K: A Large-Scale Evaluation Set for Selectional Preference Acquisition. ACL 2019. 8



Transferability from event knowledge to
Commaonsense
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customer he

ywsubj nsubj /
Result
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food full
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full

(ICU stome r'-Capab/eOf-’eat fOOd') (‘food’-ReceivesAction-‘eat’) (‘eat’-Causes-‘be full’)

Hongming Zhang, Daniel Khashabi, Yanggiu Song, and Dan Roth. TransOMCS: From Linguistic Graphs to Commonsense Knowledge. IJCAl 2020. 9



Transferability from event knowledge to
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Commaonsense
“‘human” CapableOf . “love” Causes
[ | depart away] [ | eat food ] I
PrecedeW i
1. stand . 1. be friendly
[ | make a call ] Result (11) 2. think i 2. be happy
3. die : 3. pain
Precedence (3 [ | am hungry ] 4. learn ' 4. marriage
5. make mistake : 5. be quaint
Contrast (3) Conjunction (11) 6. lie _ ! 6. be unhappy
. 7. typically have 7 : 7. Dbeallergic F
| am tired Result (3) 8. create society | 8. be desperate
9. have cell | 9. Dbe apart
Conjunction (1 i [ i
junction (1) | rest on 3 bench] 10. create life ' 10. besily
Event-centric KG Human-defined commonsense

10
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Event-centric KBs

R S

——,y FrameNet (Baker etal., 1998) 27,691 1,709 7
——> ACE (Aguilar et al., 2014) 3,290 0 0
——> PropBank (Palmer et al., 2005) 112,917 0 0
—> NomBank (Meyers et al., 2004) 114,576 0 0
—> TimeBank (Pustejovsky et al., 2003) 7,571 8,242 1
— ConceptNet (Liu and Singh, 2004) 74,989 116,097 4
—> Event2Mind (Smith et al., 2018) 24,716 57,097 3
—> ProPora (Dalvi et al., 2018) 2,406 16,269 1
> ATOMIC (Sap et al., 2019) 309,515 877,108 9
—> ATOMIC 2020* (Hwang et al., 2020) - 165,164 4

Pro: High quality
Con: Expensive; Small Scale; Limited relation types

*For ATOMIC 2020, we only count the unique edges and ignore the edges it inherits from other KBs. 12
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Knowlywood (Tandon et al.

2015)
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x KG Format
o Node: Verb + Object
o Edge: Temporal Relation

s Resource
o 560 movie scripts

= Extraction Methodology

Scripts / Semantic Parsing\
-  Movies

- TV Series

- Sitcoms

Novels

ILP for WSDj

@raph Inference\

|

PSL Inference ‘ |

I Statistical Priors

A

/

‘Taxonomy

Construction

Hierarchy

__ Knowlywood

"N

Niket Tandon, Gerard de Melo, Abir De, and Gerhard Weikum. 2015. Knowlywood: Mining Activity Knowledge From Hollywood Narratives. CIKM 2015.

i

Activity
Knowledge
Base
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Knowlywood

Open#l up entrance#l

s Example 1 N
; o Parent activity w
Previous activity Next activity
r {Openti1 , Open#l
dooril doorway#1}
2 > sent Yomaned i # entrance’->"enter office”
Location house#1, porch#1,
office#1
Time day#4, night#1
1l “
= Quantity
Source #Input #Scenes  #Unique | Parent Participant Prev Next Loc. Time | Avg.
Scripts Activities
Movie scripts 560 148,296 244,789 | 0.87 0.86 0.78 085 079 079 | 0.84
TV series 290 886,724 565,394 | 0.89 0.85 0.81 0.84 082 0.84 | 0.86
Sitcoms 179 286,266 200,550 | 0.88 0.85 0.81 0.87 081 0.83 | 0.87
Novels 103 383,795 137,365 | 0.84 0.84 0.78 088 085 0.72 | 0.84
Crowdsrec. 25 3,701 9,575 | 0.82 0.91 091 087 074 040 | 0.86
Knowlywood | 1,157 1,708,782 | 964,758 | 0.87 0.86 0.84 085 078 0.84 |0.85i0.01
ConceptNet5| - - 4,757 | 0.15 0.81 092 091 033 N/A |0.46i0.02

15
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ASER (Zhang et al., 2020)

x KG Format
o A Hybrid graph
o Node: Eventualities in the format of dependency graphs
o Edge: All discourse relations

s Resource

o 11B token textual corpora (i.e., Yelp, NYT, Wikipedia, Reddit, Subtitles, E-books)

- o - = - 1
. Ext I aCtl O N Preprocessed / Eventuality Extractio . ramng ]
Dat " Instances
w/ — i
F 3 A 4 I
r Relation

_ . Seed Classifier l
preprocessing Relation |
Extraction| ]

] Training Labeling
I

New
Raw Data I Relations
|

Hongming Zhang, Xin Liu, Haojie Pan, Yanggiu Song, and Cane Wing-Ki Leung. ASER: A Large-scale Eventuality Knowledge Graph. WWW 2020. 16
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ASER Example
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| depart away

Precedence
\
7
l | make a call

1_mrnctio

| eat food

A hybrid graph of
Each eventuality is a hyper-edge of words

Heterogeneous edges among eventualities

| am hungry

Precedence I go
(3)
Contrast
(3)

Reason

| am tired

(11)

(~3000) | >[I eat rock (0)]

Conjunctio

| rest on a bench

194 million eventualities, 64 million edges

17



ASER Quantity and Quality (Eventuality)
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ASER Quantity and Quality (Edge)
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Comparison with Other event KGs
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PS: In ConceptNet 5.0, more edges are added, but only the core part, which is inherited from ConceptNet 1.0 (Liu & Singh, 2004), is related to commonsense
knowledge.
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Knowledge Discovery from Pre-trained LMs

= Language Model
o Examples: GPT-1/2/3

= COMET (Bosselut et al., 2019):
o Commonsense Transformers for Automatic Knowledge Graph Construction

. Ve avYa ™
Multi-headed Attention Transformer Block Commonsense Transformer (COMeT)
gt Th‘t! [MASK] [MASK] have boat <END>
t ( Layer Normalization ) t t t t 4

(" LnearProjecton )

é: Vocab || Vocab Vocab Vot:ab Wt:ah
* (Fasdorvrs ) e () - () ()
Pt bl

(" Layer Normalization )
Head b "__Jv ‘_‘,ar __,,x' I# T
| e— - () () @D
i Multi-headed Attenti j o o e o

[ ui-hoaded Attention o 6 @ é __éa

L S | S— € Po € P:  ©is| Pisl

L {hg;’...,hf_ﬁ hﬁ'/ [PersonX sails ..<xNeed> .. sail boat .

{

(a) (b) Event 1 (c) Event 2

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin Choi. COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. ACL 2019. 22



Event Temporal Commonsense

= TacoLM (Zhou et al., 2020)
O a general time-aware language model that distincts temporal properties in fine grained

= | moved my chair = | moved my piano - | moved to a different city

0.4

0.3

Ben Zhou, Qiang Ning, Daniel Khashabi,, and Dan Roth. Temporal Common Sense Acquisition with Minimal Supervision. ACL 2020. 23



Event Temporal Commonsense A

4 )
Step 1: Information Goal: build a general time-
'_ aware LM with minimal
ction supervision
o Use high-precision patterns to acquire temporal information /
= Unsupervised automatic extraction

o Overcomes reporting biases with a large amount of natural text

[ Step 2: Joint Language Model Pre- ]

—1 o Multiple temporal dimensions
= Duration ~ 1/ Frequency

“I brush my teeth Duration of “brushing
every morning” teeth” < morning

= Further generalization to combat reporting biases
4
Output: TacoLM- a time-aware general ]
RT

24



Event Temporal Commonsense

[ | played basketball for 2 hours. ] Original

sentence
SRL
Parse

| played basketball for 2 hours.
{ Arg-Tmp

Pattern
ﬂ Matchin
g
[for 2 hours: matches Duration pattern]

v

Event | Value
/ _ Formatted
| played basketball, Duration, Hours | output

Instance

e, :
[ Dimension

Information Extraction

|1 [M] played basketball [SEP] [M] [DUR] [HRS] |

m Baseline Model: Pre-trained BERT-base

m Main objective: mask some tokens and recover
them

m How we mask:
0 With some probability, mask temporal
[ 11M] played basketball [SEP] [M] [DUR] [MASK] |

0 Otherwise, mask a certain portion of
[ | [M] [MASK] [MASK] [SEP] [M] [DUR] [HRS] ]

dricriarigcu

0o Max (P(Event|Dim,Val) +
P(Val|Event,Dim)); Preserving original LM

capatlityining with language model e
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Event Graph Schema Induction (LI et al., OB
'/%:S\ oo ‘Z;\‘;
2020\ -
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= Hlstory repeats itself: Instance graphs (a) and (b) refer to very different event instances, but they both
illustrate a same scenario.
= Select salient and coherent paths based.on. Path Language Model, and merge them into graph
Schemas Event Instance Graphs 5 | Path Language Model 5
PER | Transport  GPE Attack T rt Attack |
{a, trDDps ai i : P origin__ artifact wE?ﬂstrument ¢ ranspu rtifact instrument_ ac i
' i — _— vr-ﬁ'ck . ' ) ) :
H r}.— L ) — ar ' !
3/ 1’“‘% ”f;'—q-,é T o THHSPuagent FPE‘aﬁliatiﬂnPEn attacke#ﬂank Transpanrmam PER attacke#“ank :
N ! - N .
Transport / — agent — = :
o gent 20, ~{  Attack ' | '
- _ - T rt FAC GPE Attack :
: T GPE " ’%f-“.-‘ ?:Ekh ~~H£ittac|': | mns%gstmatmn part- place ac :
: destination Grigin Russia | o . whole “ea
: i . Transport FAC GPE PER Attack :
: _ part-whole - - destination part- located_in . target 5
: FAC C target Do whule !
! Sevastopol GPE it {?
(b) PER N Graph Schema Inductmn |
: protesters o PER !
: >Q " — i L o B 4 i
&fﬁs’b/*' o ﬂ?q’i‘@ I : %@c’\z - _rrac"{rﬂr :
Transcg?rr; | _:_ < o At}t_atck : | -&? 2 - E" .:: %4‘:7{ - f{;;
. / B —act instrume oL il | Transport ./ — 5_|:|-'; Loc @. M ‘__;__- >~ i
i destination — o A \ a"'Effn P WEA ﬂsrrUm ":Tii'x_xfnmck i
: / pat S| GPE WEA ] . | destination . ;f-f' = 0.02 ™ |
/ i tone — Do Ssgi~. 22 i
FAC whole Ukraine 5 Cod .04 5?; ,e,"é e ~ 7 ;
i _ : —_— place __— ) Co &-I".-fo =2 GPE p.l..'aCE 0.02 4 '
: Maidan | part- I T / o FAC S — f i
: Square '-.k\ whole ;"I x\\ ) e : \_‘ part- ' 1'"*:._--"""‘- target 0.02__ r ] -
; y, ‘~..____|DBE[EC|_IH target - . wwhole |, l; "'9.'?”@ er EE G :
: part- ™ — e, P N7 o My 8 . atackel — -
: whole GPE PER : E . P4 W1 1':" e g 0z "oy ORG \é—lg'a' i
wa puhce . --'-__ . e i
Manling Li, Qi Zeng, Kyunghyun Cho, Heng lJi, Jonathon May, Nathanael Chambers, Clare Voss. Connecting the Dots: Event Graph Schema Induction with Path Language Modellng ACL 2020. 27
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Path Language Model

m Path Language Model is trained on two tasks
O Autoregressive Language Model Loss: capturing the frequency and coherence of a single path

O Neighbor Path Classification Loss: capturing co-occurrence of two paths

Neighbor | 1 = neighbor
Path 0 = not neighbor
Classifier

attacker GPE agent Transport[SEP] Attack instrument WEA artifact GPE age ranspn
Auto-
regressive

T 1
Path . [ [ ] ) () ) [ i (

—
Language
Model

Word  Ey Attack attacker GPE agent ! Transport [SEP] Attack instrument WEA artifact GPE agent™! Transport [SEP]

]

Position Ep 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Segment Es 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Element E; 1 2 1 2 1 0 1 2 1 2 1 2 1 0
Path A: Path B:

) 28
Attack - atftacker - GPE - agent 1. Transport Attack - instrument - WEA - artifact - GPE - agent -1. Transport



Schema-Guided Information Extraction

i e e e e e e e e e e ]

. Input Sentence Candidate IE Graph
m Use the state-of-the-art IE system | CNN Pentagon correspondent : Transport t':o%?)s
OnelE (Lin et a|’ 2020) to decode + Barbara Starr reports coalition  entering ra,.g .
( ) ) . ' troops entering [Transport] /W T 5
converts each input document into an | Baghdad were met with fierce desn\. / E
IE graph | fighting [Attack], and there Nation, \aC@ Attack
_ _ : were casualties on both sides B;?I?wEdad fighting
m Each path in the graph schema is e e e e me e e ee e e s o lsn R ;
encoded as a single global feature for ~ ; Transport . . PER | ciedin ®PE  Llace Attack !
scoring candidate |IE graphs |
. T o PE . PER Attack
= OnelE promotes candidate IE graphs | "™"P%estination “FF located in PE?  target
containing paths matching schema i _ .
; Paths from Schema Repository :
graphs e 2
Dataset Entity Event_'_l'ri_gger Event _'I_'rigger Event Argqment Event A_r_gu_ment Relation
Identification Classification Identification Classification
Baseline 90.3 75.8 72.7 57.8 55.5 44.7
+PathLM 90.2 76.0 73.4 59.0 56.6 60.9

29



2014 Thal coup d’état: OQHaKo NPoTecTH U Gnokana ANATCA yxe

NouTH 3 MECALA, 3 BOSHHLIE TAK M HE NepeLuny K JencTEBMAM

2013 Egyptian coup d'état. .. General Abdel Fattah el-Sisi announced
that he there would be calling newpresidentiaiand Shura
Councilefections.

Ukrainian crisis: At 09:25 profesterspushed the Berkut back to the
Oclober Palace after security forces lried o set fire to Kiev Conservatory,

which was being used as a field hospital for woundedprotesters. l.lh'.lnlln crisis 2 Chechen-Russian Conflict
Oonildﬁvent
Political Conflict. ‘Eaie-» 1 country
ControlEvent. MakelUndoEwent
PrevertAction BreakUndo.
Internationalintervention Ceasefire
20% 3mon 1y
ey 1d
m_ |
@ = V 10% N
country  topic country 5 3 protester 4 country
SocialEvent. ConflictEvent. ConflictEvent. ControlEvent. SodcialEvent. Soeiivont SocialEvent.

CommunicationEvent. PoliticalConfiict PhysicalConfiict. PreventAction. Start/End_SocialiRelatons. TransactionEvent. Legisiation/Contracts. TransactonEvent.

PublicSpeaking SocialGathering Attack ArrestJailDetain PersonnelChange EmergencyResponse AcceptAgreement TransferControl

A = ; A"
ﬁﬁ Y0 HY 18y & 51?7% ‘%

topic drectivecountry 3 weapon 3 ocountrydirective ¥ country drective titie country titie country wounded ocountry lawinfo country protester city
“ protester Protestes 3
2 6. 5% . ¥ Noopame ) i SocialEvent. MovementEvent. SocialEvent. ControlEvent.
topic country speaker audience SocialEvent SociAE went CommunicateEvent Movement CommunicateEvent PrevemtAction
StartEnd_SocalRelations.  Start/End_SocalRelations. MeetingAndDiscussion Send Denouncement Sanction
EndPosition StaﬂPooltlon A
1d Twy
@ 1d-1w 3
——eeeeep Temporal & a‘%é oggf & \%’
Causality f 5 “
Subevent 4 E) 1 7 ® s = 1 30

z x 2 IS =" -4 country oounvy militaryOrg mm MWWMMW



Temporal Complex Event Schema (Li et al, 2021) . & JO %

e Graph Structure

Aware:

e Encode entity
coreference and
entity relation

e Capture the
Interdependency of
events and entities
(seguences can not)

e Scenario guided:
e Train one model
based on instance
graphs of the same

recepient

ORG

institute

Learnin

located_i FAC

scenario A
. S
e Probabilistic: ptace etonate
e Support downstream instrument

tasks, such as event #
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Generative Event Graph Model

’ Existing Graph : (1) Event Generation

PER B PER

e Schemas are the hidden ) |
knowledge to control ~ awée Lojﬁhcﬁm o
iInstance graph generatio 5

Detainee

e PER
Target

Attack

1 Step l ailor - pjae
Event Node Generation 3 |

o Step 2. I e I Pi7T 7T TTemporal Ordering T }i.7 77777 Temporal Ordering - = - - - >
Message Passing

(3) Coreferential Argument Generation . (4) Entity Relation Edge Generation (5) Event Temporal Ordering Prediction

° Step 3. PER I_I_I_l_-l_:_r::t;ijatgtypes)é PER PER
. - [[[]] existing nodes
Argument Node Generation D pace - pen
° Step 4 ‘ Victim ‘
. . . Detdinee
Relation Edge Generation PER
e Step 5. Atk \

Temporal Edge Generation




Extrinsic Evaluation
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« Schema-guided Event Prediction: The task aims to predict ending events of each

graph.
- Considering that there can be multiple ending events in one instance graph, we
rar A existing events " Event Prediction _@luation
: Broadcast ' i
me events to be predicted FireExplosion
: Die I
Esl-icuhn;;na TrialHearing .
' Transportation
Sentence
Broadcast
: Die
Contact Graph  |njure
. Temporal
. Schema Attack
: Broadcast
ImpedelnterfereWith Arvost
Dataset Models MRR HITS@1 Dataset Models MRR HITS@1
Human Schema 0.173 0.205 Human Schema 0.072 0.222
General IED

Event Graph Model 0.401 0.520 Event Graph Model 0.223 0.691
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Key takeaways FTO% -

= There is a transferability from event knowledge to commonsense knowledge

= Compared with commonsense, acquiring event knowledge is cheaper and
more scalable.

= All existing acquisition systems have advantages and limitations.

Quality Scale Relation Explainability Robustness Downstream
Coverage Task

Human Annotation High Small Middle High High Difficult
Automatic Event Knowledge Middle Large High High Middle Difficult
Extraction

Language Model Middle Large High Low Low Easy

Thanks
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