

Event and Commonsense

Event-centric Natural Language Processing (Part IV)

Hongming Zhang **UPenn**

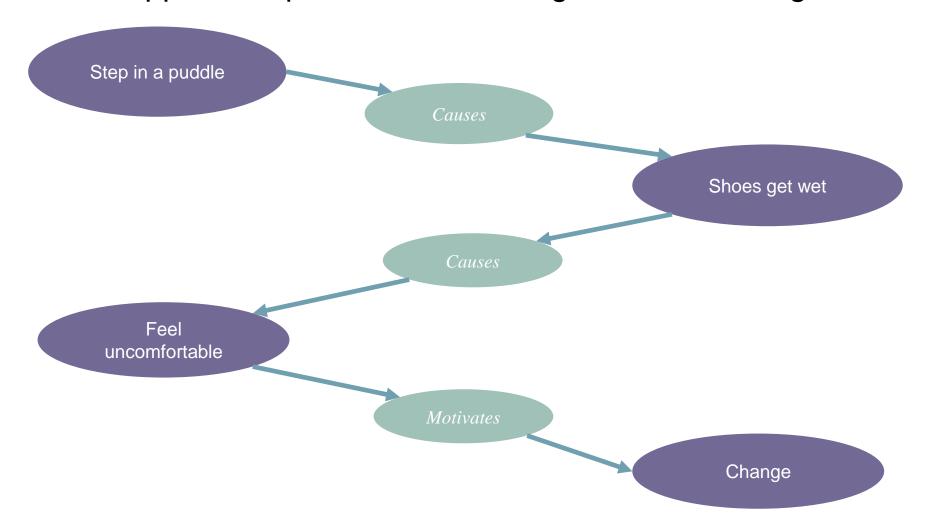
Aug 2021

ACL Tutorials

Event-centric Natural Language Understanding

Commonsense is crucial for NLU

Example: John stepped in a puddle and had to go home to change.



Outline

- Understanding Commonsense from the Angle of Events
- Instance-level Event Knowledge Acquisition
 - Human Annotation
 - Automatic Event Knowledge Extraction
 - Language Modeling
- Schema-level Event Knowledge Acquisition
- Conclusion

Commonsense Knowledge

- Modern Definition of Commonsense Knowledge (Liu & Singh, 2004)
 - "While to the average person the term 'commonsense' is regarded as synonymous with 'good judgement'"
 - "the AI community it is used in a technical sense to refer to the millions of basic facts and understandings possessed by most people."
 - "Commonsense is about preference and not always true"
 - If you forget someone's birthday, they may be unhappy with you.
 - But if your friends understand that you are busy, he will not by angry.

Unlike factual knowledge, they are not inevitably true.

Commonsense is about preference.

What kinds of preference?

- Semantic meaning in our language can be described as "a finite set of mental primitives and a finite set of mental combination." (Jackendoff, 1990)
- The primitive units of semantic meanings include
 - □ Thing (or entity)
 - cat
 - □ State
 - The cat is cute.
 - The cat is smiling.
 - Event
 - The cat is running.

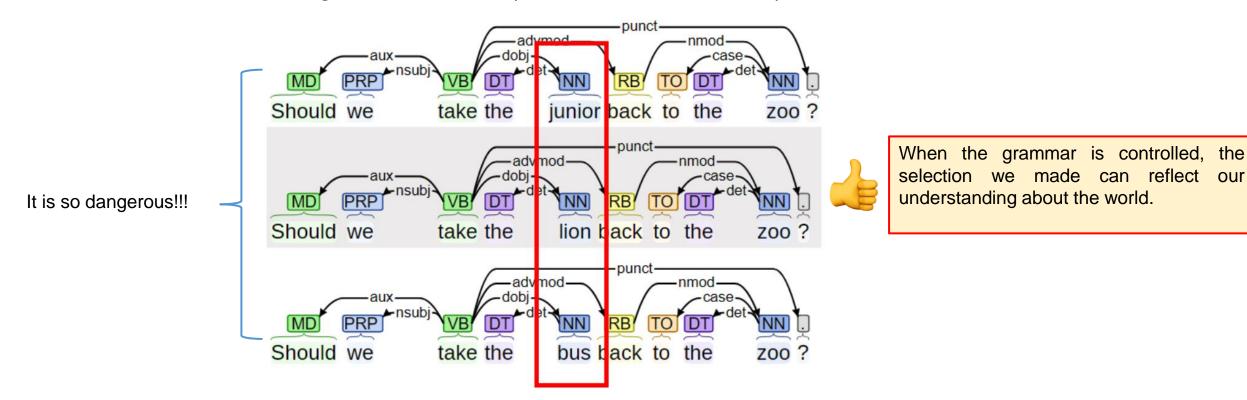
We want to understand humans' preferences about things, states, and events.

States describe things.

Events describe the changing of states.

How to represent the preference?

- The lower bound of a semantic theory (Katz and Fodor, 1963)
 - □ Linguistic description grammar = semantics
 - Understanding language needs both "the speaker's knowledge of his language and his knowledge about world" (Katz and Fodor, 1963)



Selectional Preference

Selectional Preference (Resnik, 1993)

- A relaxation of selectional restrictions (Katz and Fodor, 1963) and is often used as syntactic features (Chomsky, 1965).
- Applied to IsA hierarchy in WordNet and verb-object relations.
- □ With this formulation, we can easily use the frequency/plausibility scores of different combinations to reflect humans' preference.

Examples:

- ("Cat" -IsA- "Animal") > ("Cat" -IsA- "Plant")
- ("eat" -dobj- "food") > ("eat" -dobj- "rock")

Higher-order Selectional Preference

First-order

- □ dobj: ("eat"->dobj->"food") > ("eat"->dobj->"house")
- □ Nsubj: ("sing"->nsubj->"singer") > ("sing"->nsubj->"house")
- □ ...

Second-order (Zhang et al., 2019)

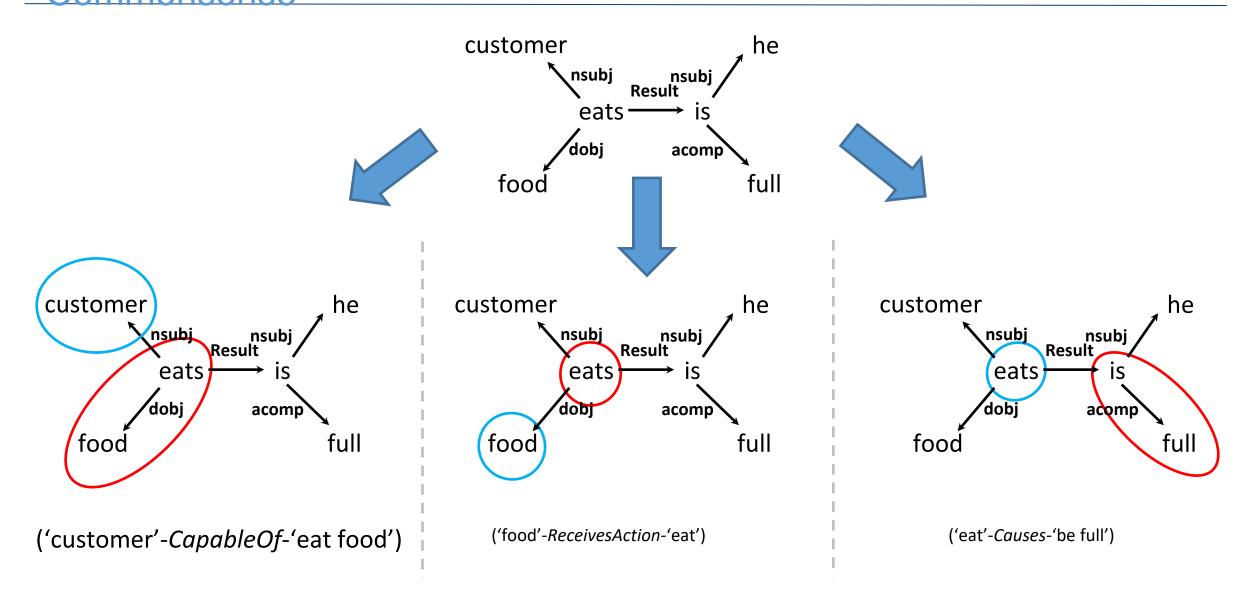
- Nsubj-amod / dobj-amod
- ("eat"->nsubj->"[SUB]"->amod->"hungry") > ("eat"->dobj>"[OBJ]"->amod->"hungry")

Higher-order

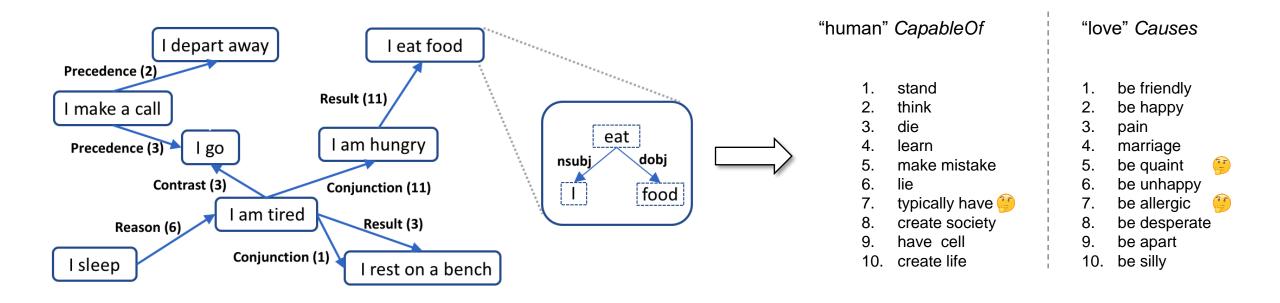
□ ("I eat dinner"->Causes->"I am full") > ("I eat dinner"->Causes->"I am hungry")

Commonsense can be represented by the higher-order selectional preference over eventualities.

Transferability from event knowledge to Commonsense



Transferability from event knowledge to Commonsense



Event-centric KG

Human-defined commonsense

Outline

- Understanding Commonsense from the Angle of Events
- Instance-level Event Knowledge Acquisition
 - Human Annotation
 - Automatic Event Knowledge Extraction
 - Language Modeling
- Schema-level Event Knowledge Acquisition
- Conclusion

Event-centric KBs

		# Events	# Event relation	# Relation Types
$\qquad \qquad \Longrightarrow \qquad$	FrameNet (Baker et al., 1998)	27,691	1,709	7
	ACE (Aguilar et al., 2014)	3,290	0	0
$\qquad \Longrightarrow \qquad$	PropBank (Palmer et al., 2005)	112,917	0	0
	NomBank (Meyers et al., 2004)	114,576	0	0
$\qquad \Longrightarrow \qquad$	TimeBank (Pustejovsky et al., 2003)	7,571	8,242	1
$\qquad \qquad \Longrightarrow$	ConceptNet (Liu and Singh, 2004)	74,989	116,097	4
\Longrightarrow	Event2Mind (Smith et al., 2018)	24,716	57,097	3
	ProPora (Dalvi et al., 2018)	2,406	16,269	1
$\qquad \Longrightarrow \qquad$	ATOMIC (Sap et al., 2019)	309,515	877,108	9
\Longrightarrow	ATOMIC 2020* (Hwang et al., 2020)	-	165,164	4

Pro: High quality

Con: Expensive; Small Scale; Limited relation types

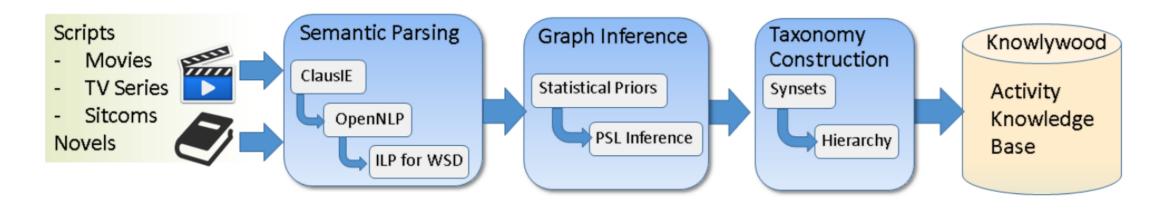
^{*}For ATOMIC 2020, we only count the unique edges and ignore the edges it inherits from other KBs.

Outline

- Understanding Commonsense from the Angle of Events
- Instance-level Event Knowledge Acquisition
 - Human Annotation
 - Automatic Event Knowledge Extraction
 - Language Modeling
- Schema-level Event Knowledge Acquisition
- Conclusion

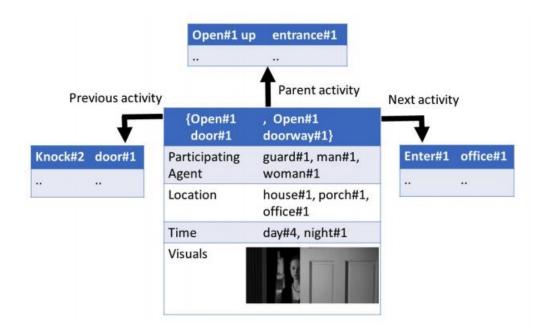
Knowlywood (Tandon et al., 2015)

- KG Format
 - □ Node: Verb + Object
 - Edge: Temporal Relation
- Resource
 - □ 560 movie scripts
- Extraction Methodology



Knowlywood

Example



"Knock door"->"open up entrance"->"enter office"

Quantity

Source	#Input Scripts	#Scenes	#Unique Activities	Parent	Participant	Prev	Next	Loc.	Time	Avg.
Movie scripts	560	148,296	244,789	0.87	0.86	0.78	0.85	0.79	0.79	0.84
TV series	290	886,724	565,394	0.89	0.85	0.81	0.84	0.82	0.84	0.86
Sitcoms	179	286,266	200,550	0.88	0.85	0.81	0.87	0.81	0.83	0.87
Novels	103	383,795	137,365	0.84	0.84	0.78	0.88	0.85	0.72	0.84
Crowdsrc.	25	3,701	9,575	0.82	0.91	0.91	0.87	0.74	0.40	0.86
Knowlywood	1,157	1,708,782	964,758	0.87	0.86	0.84	0.85	0.78	0.84	0.85±0.01
ConceptNet 5	-	-	4,757	0.15	0.81	0.92	0.91	0.33	N/A	0.46±0.02

ASER (Zhang et al., 2020)

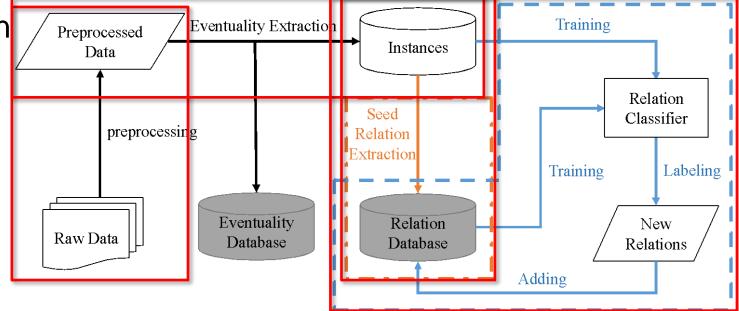
KG Format

- A Hybrid graph
- Node: Eventualities in the format of dependency graphs
- □ Edge: All discourse relations

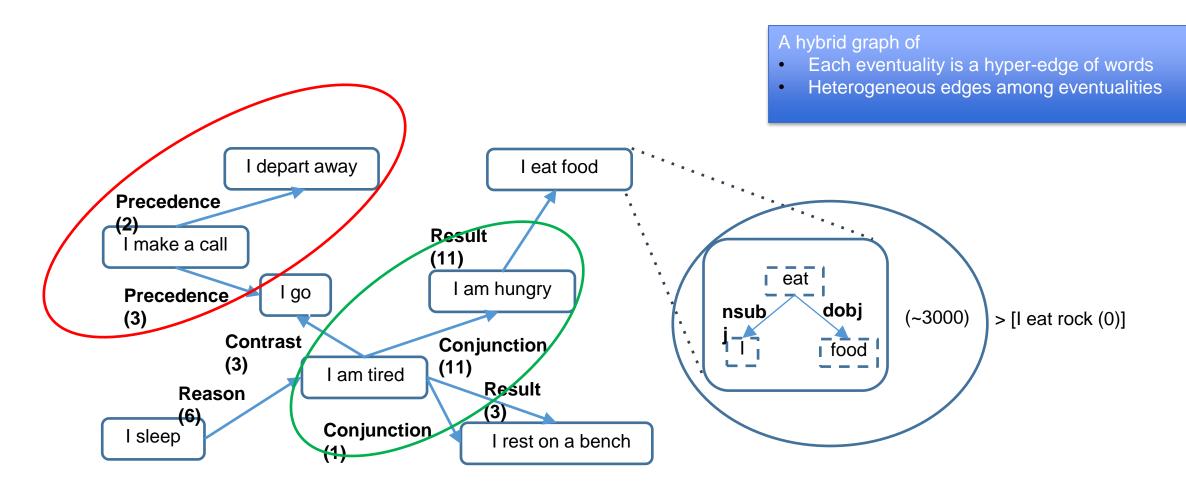
Resource

□ 11B token textual corpora (i.e., Yelp, NYT, Wikipedia, Reddit, Subtitles, E-books)

Extraction

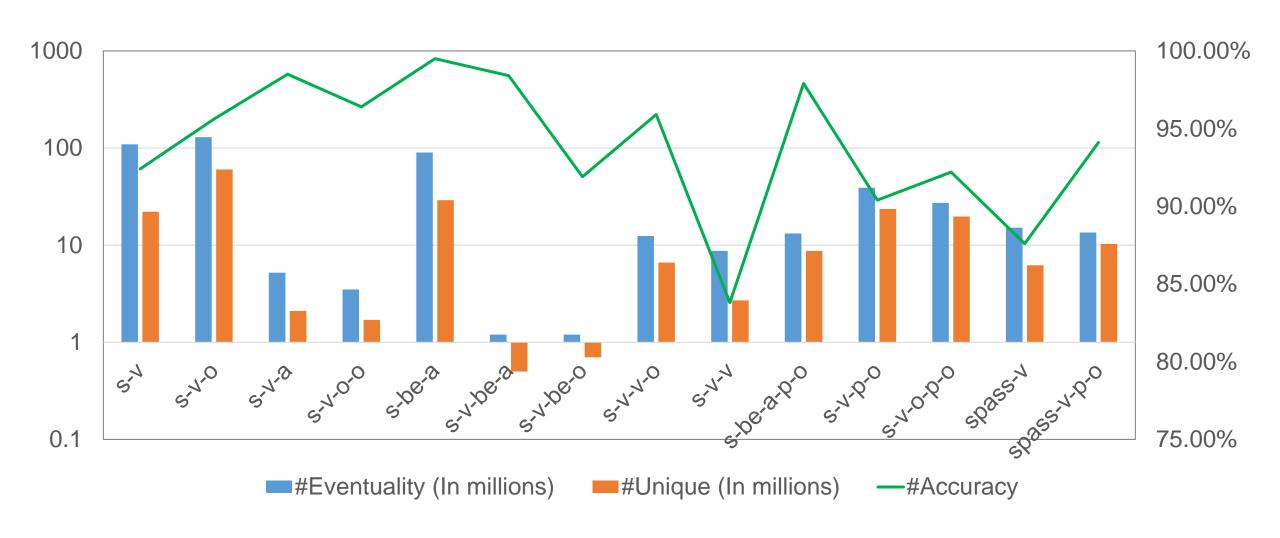


ASER Example

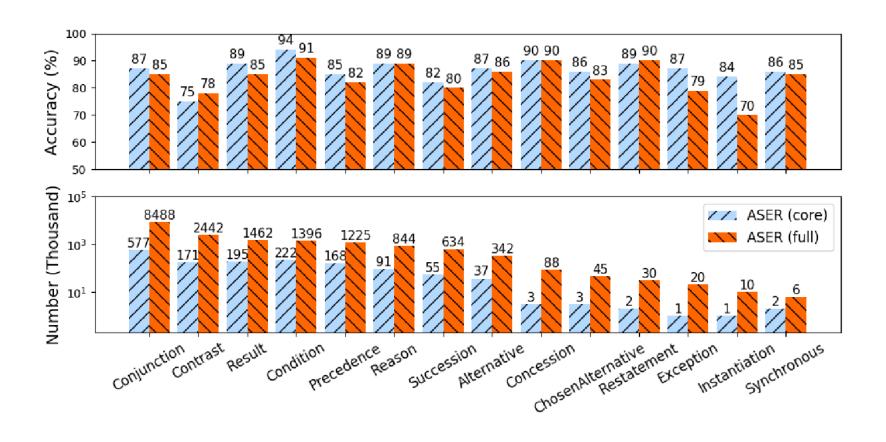


194 million eventualities, 64 million edges

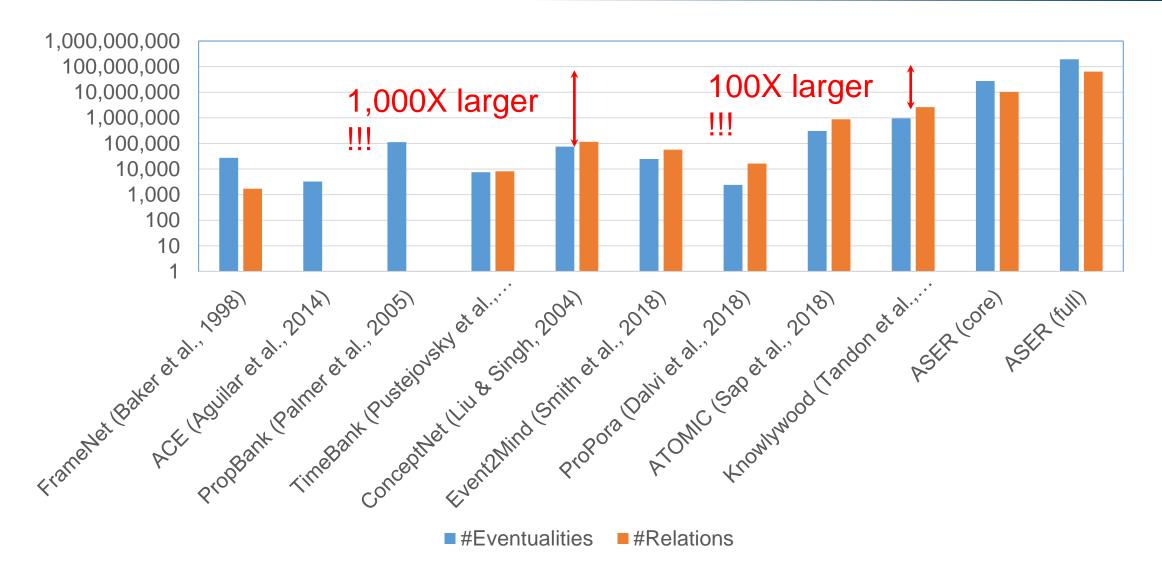
ASER Quantity and Quality (Eventuality)



ASER Quantity and Quality (Edge)



Comparison with Other event KGs

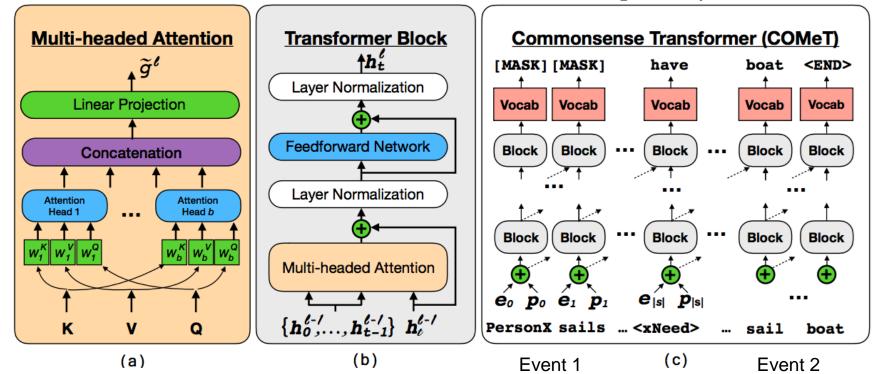


Outline

- Understanding Commonsense from the Angle of Events
- Instance-level Event Knowledge Acquisition
 - Human Annotation
 - Automatic Event Knowledge Extraction
 - Language Modeling
- Schema-level Event Knowledge Acquisition
- Conclusion

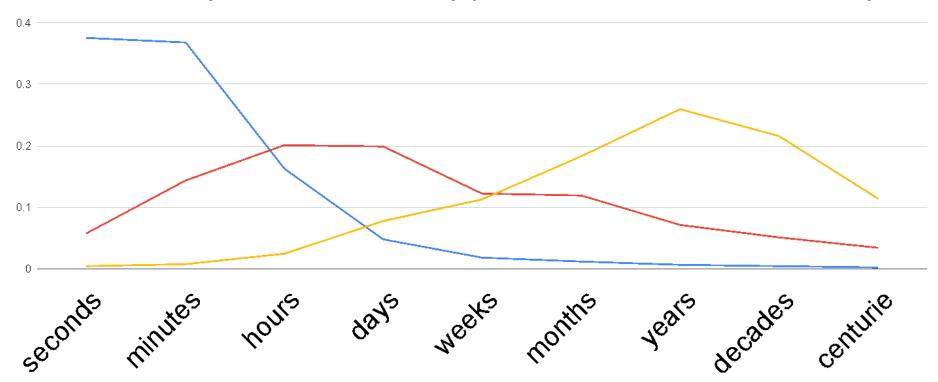
Knowledge Discovery from Pre-trained LMs

- Language Model
 - □ Examples: GPT-1/2/3
- COMET (Bosselut et al., 2019):
 - Commonsense Transformers for Automatic Knowledge Graph Construction



Event Temporal Commonsense

- TacoLM (Zhou et al., 2020)
 - a general time-aware language model that distincts temporal properties in fine grained
 - I moved my chair I moved my piano I moved to a different city



Event Temporal Commonsense

Step 1: Information

Extraction

- Use high-precision patterns to acquire temporal information
 - Unsupervised automatic extraction
- Overcomes reporting biases with a large amount of natural text

Step 2: Joint Language Model Pretraining

- Multiple temporal dimensions
 - Duration ~ 1 / Frequency

"I brush my teeth every morning"

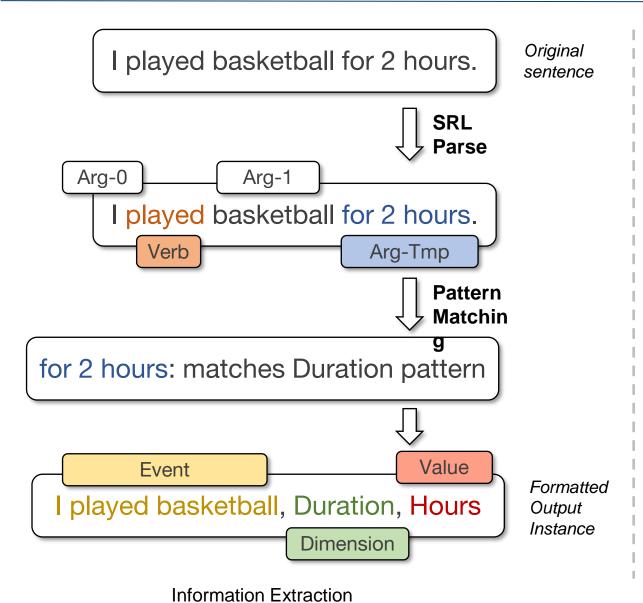
Duration of "brushing teeth" < morning

Further generalization to combat reporting biases

Output: TacoLM- a time-aware general BFRT

Goal: build a general timeaware LM with minimal supervision

Event Temporal Commonsense



I [M] played basketball [SEP] [M] [DUR] [HRS]

- Baseline Model: Pre-trained BERT-base
- Main objective: mask some tokens and recover them
- How we mask:
 - □ With some probability, mask temporal

I [M] played basketball [SEP] [M] [DUR] [MASK]

Otherwise, mask a certain portion of

I [M] [MASK] [MASK] [SEP] [M] [DUR] [HRS]

□ Max (P(Event|Dim,Val) +
 P(Val|Event,Dim)); Preserving original LM
 capabilityining with language model

Outline

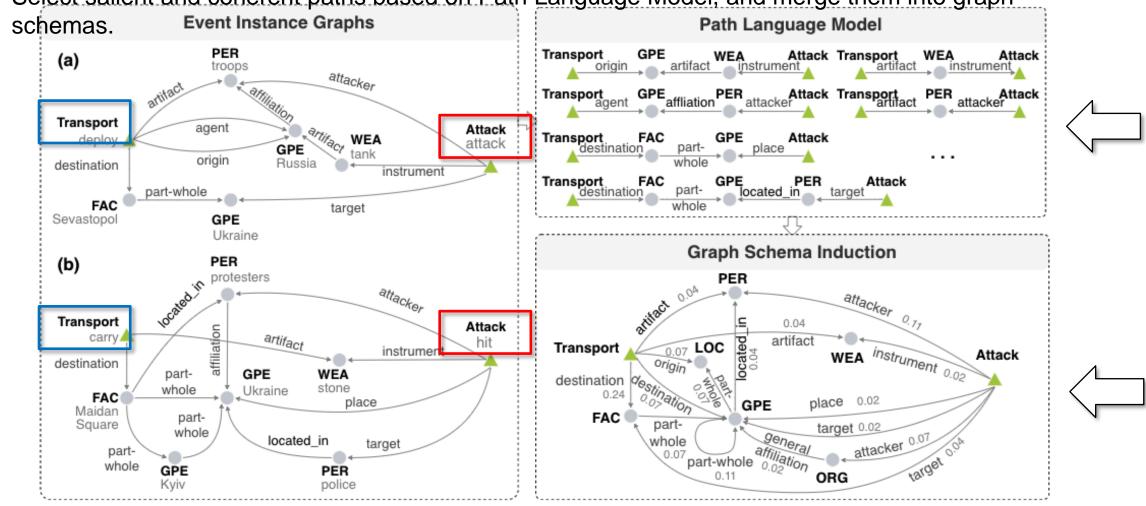
- Understanding Commonsense from the Angle of Events
- Instance-level Event Knowledge Acquisition
 - Human Annotation
 - Automatic Event Knowledge Extraction
 - Language Modeling
- Schema-level Event Knowledge Acquisition
- Conclusion

Event Graph Schema Induction (Li et al.,

2020)

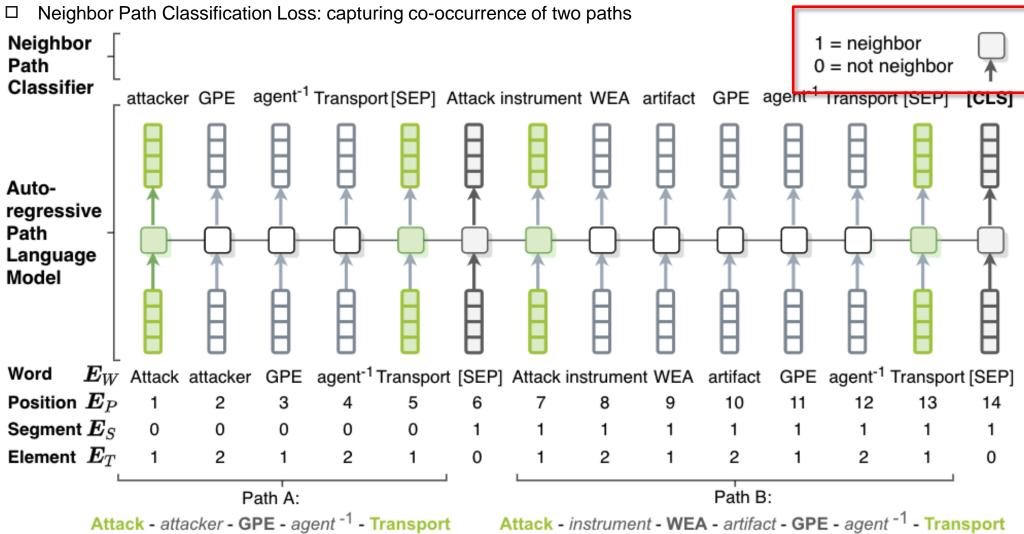
 History repeats itself: Instance graphs (a) and (b) refer to very different event instances, but they both illustrate a same scenario.

Select salient and coherent paths based on Path Language Model, and merge them into graph



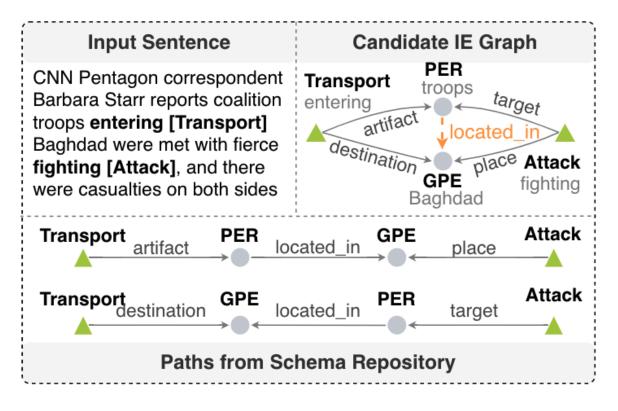
Path Language Model

- Path Language Model is trained on two tasks
 - Autoregressive Language Model Loss: capturing the frequency and coherence of a single path



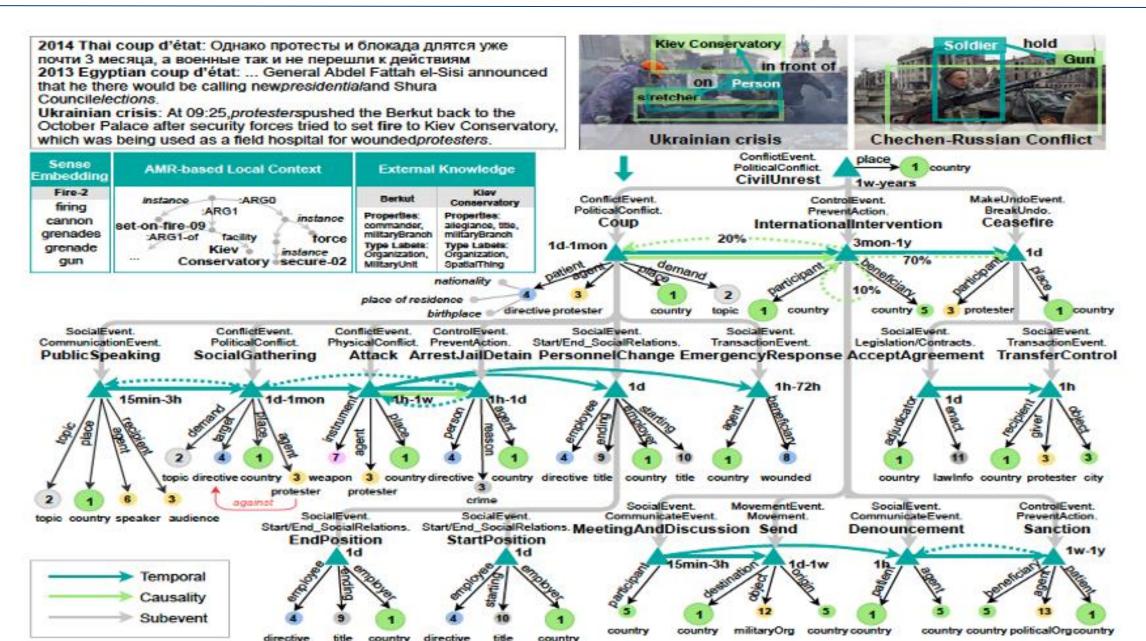
Schema-Guided Information Extraction

- Use the state-of-the-art IE system
 OneIE (Lin et al, 2020) to decode
 converts each input document into an IE graph
- Each path in the graph schema is encoded as a single global feature for scoring candidate IE graphs
- OneIE promotes candidate IE graphs containing paths matching schema graphs



Dataset	Entity	Event Trigger Identification	Event Trigger Classification	Event Argument Identification	Event Argument Classification	Relation
Baseline	90.3	75.8	72.7	57.8	55.5	44.7
+PathLM	90.2	76.0	73.4	59.0	56.6	60.9

Event Schema Induction for Event Prediction



Temporal Complex Event Schema (Li et al, 2021)

Graph Structure Aware:

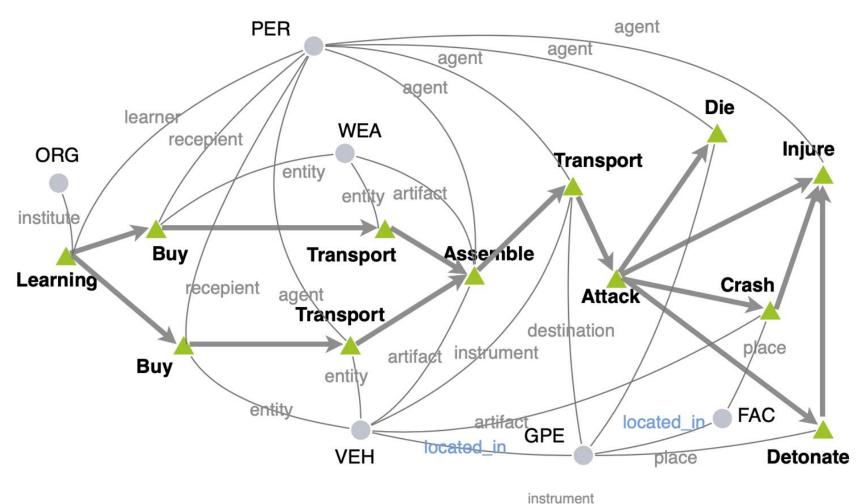
- Encode entity coreference and entity relation
- Capture the interdependency of events and entities (sequences can not)

Scenario guided:

Train one model based on instance graphs of the same scenario

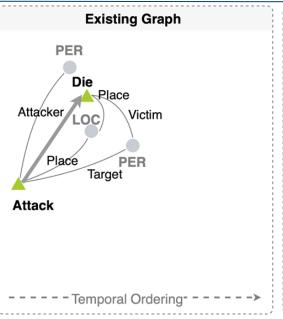
Probabilistic:

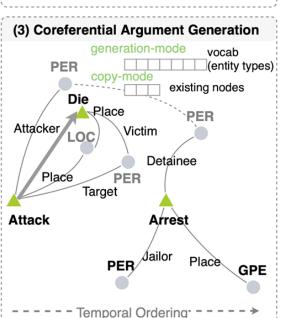
Support downstream tasks, such as event

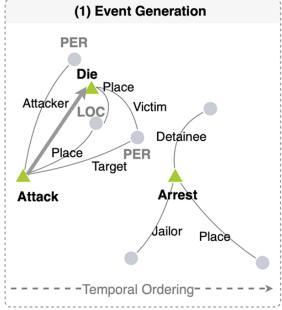


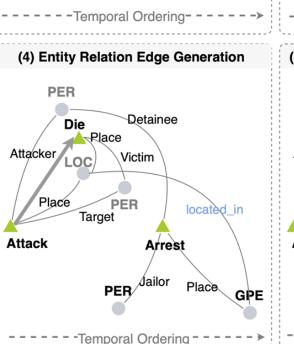
Generative Event Graph Model

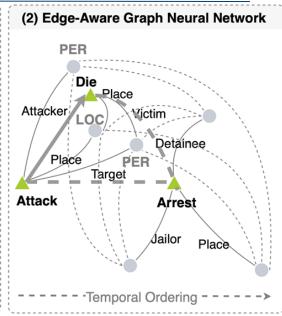
- Schemas are the hidden knowledge to control instance graph generatio
- Step 1. Event Node Generation
- Step 2.
 Message Passing
- Step 3. Argument Node Generation
- Step 4. Relation Edge Generation
- Step 5. Temporal Edge Generation

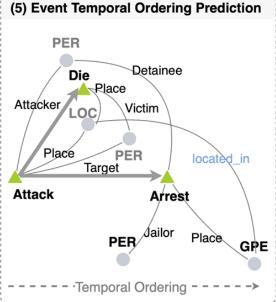








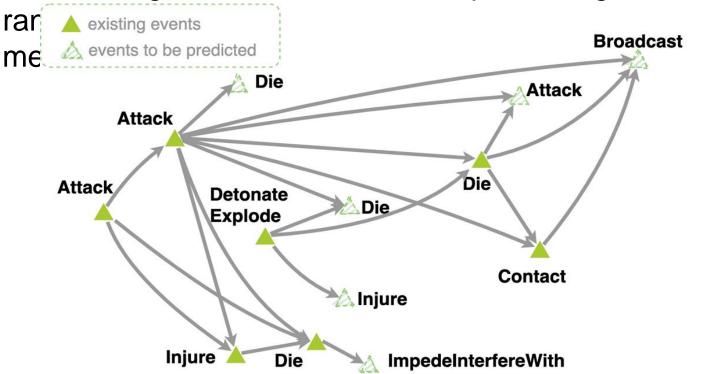




Extrinsic Evaluation

 Schema-guided Event Prediction: The task aims to predict ending events of each graph.

Considering that there can be multiple ending events in one instance graph, we



Event	aluation	
Human Schema	FireExplosion Die TrialHearing Transportation Sentence Broadcast	
Graph Temporal Schema	Die Injure Attack Broadcast Arrest	

Dataset	Models	MRR	HITS@1
General	Human Schema	0.173	0.205
General	Event Graph Model	0.401	0.520

Dataset	Models	MRR	HITS@1
IED	Human Schema	0.072	0.222
	Event Graph Model	0.223	0.691

Outline

- Understanding Commonsense from the Angle of Events
- Instance-level Event Knowledge Acquisition
 - Human Annotation
 - Automatic Event Knowledge Extraction
 - Language Modeling
- Schema-level Event Knowledge Acquisition
- Conclusion

Key takeaways

- There is a transferability from event knowledge to commonsense knowledge
- Compared with commonsense, acquiring event knowledge is cheaper and more scalable.
- All existing acquisition systems have advantages and limitations.

	Quality	Scale	Relation Coverage	Explainability	Robustness	Downstream Task
Human Annotation	High	Small	Middle	High	High	Difficult
Automatic Event Knowledge Extraction	Middle	Large	High	High	Middle	Difficult
Language Model	Middle	Large	High	Low	Low	Easy

Thanks

Key References

- WSC: Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. KRR 2012.
- ConceptNet: Hugo Liu and Push Singh, ConceptNet a practical commonsense reasoning tool-kit, BTTJ,
 2004
- ATOMIC: Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi, ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning. AAAI 2019
- COMET: Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin Choi. COMET: commonsense transformers for automatic knowledge graph construction. ACL 2019.
- LAMA: Fabio Petroni, Tim Rocktaschel, Se- "bastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander H. Miller. Language models as knowledge bases? EMNLP 2019.
- ASER: Hongming Zhang, Xin Liu, Haojie Pan, Yangqiu Song, and Cane Wing-Ki Leung. ASER: A Large-scale Eventuality Knowledge Graph. WWW 2020.
- TransOMCS: Hongming Zhang, Daniel Khashabi, Yangqiu Song, and Dan Roth. TransOMCS: From Linguistic Graphs to Commonsense Knowledge. International Joint Conference on Artificial Intelligence (IJCAI). 2020.
- KnowlyWood: Niket Tandon, Gerard de Melo, Abir De, and Gerhard Weikum. 2015. Knowlywood: Mining Activity Knowledge From Hollywood Narratives. CIKM 2015.
- Manling Li, Qi Zeng, Kyunghyun Cho, Heng Ji, Jonathon May, Nathanael Chambers, Clare Voss.
 Connecting the Dots: Event Graph Schema Induction with Path Language Modeling. ACL 2020.
- TacoLM: Ben Zhou, Qiang Ning, Daniel Khashabi, Dan Roth. Temporal Common Sense Acquisition with