

Minimally Supervised Information Extraction New Frontiers of Information Extraction (Part I)

Ben Zhou

Computer and Information Sciences

University of Pennsylvania

July 2022

NAACL Tutorials

New Frontiers of Information Extraction

Information Extraction

- > From the texts:
- > 1. Identify the concepts
 - » Entities, events, terms, etc.
- > 2. Identify the relations and other properties
 - » Entity-entity / event-event
 - » Temporal properties
 - » etc.

Lexical IE:

- Named entity recognition
- Entity/event typing
- Entity/event linking

Relational IE:

- Relation extraction
 - Entity / events
 - Sentence/Document
 - Temporal
- Coreference Resolution

- > Direct supervision
 - » CoNLL 2003: 20K+ entity mention annotations for NER
 - » Ontonotes5.0: exhaustive NER annotation on 2.9M tokens
- > But
 - » Closed label set
 - » Poor transferability
 - » Annotation artifacts
 - » "Worse" on "rare" items
 - » High cost for new tasks

A multi-head classification model drops from **96** to **74** (F1) on CoNLL, when it's trained on Ontonotes on the <u>same</u> types.

Zhou et al. (2021) reports \$1.0 per instance to annotate clean temporal relations on obscure texts.

In this part of the tutorial:

> We explore the the central question

How do we find alternative supervision sources for IE tasks?

- Cheaper to generalize to new / rare / hard tasks
- Alleviate in-distribution artifacts

Alternative Supervision Sources

- > Weak supervision: from task-related distant signals
 - » Easy to acquire
 - » Task-specific
 - » May be noisy
- > Indirect supervision: from other tasks
 - » Human annotations from other popular tasks such as NLI and QA
 - » Non-task-specific
 - » Needs clever ways to be applied

Weak Supervision

- > Mark joined Amazon a month ago.
 - » What is the entity type?
- > Weak Supervision:
 - » From knowledge bases 🖛
 - » Amazon.com, Inc is an American multinational technology company.

Weak Supervision – Knowledge Bases

- > One of the earliest attempts: entity and entity relations
- > Ling and Weld (2012): NER from KB supervision

Weak Supervision – Knowledge Bases

- > One of the earliest attempts: entity and entity relations
- > Mintz et al. (2009)
 - » Assumes Freebase relations exist sentences that contain the same entity pairs.
 - » Learns a large set of relations (102), but noisy

Freebase Relation	Entity Pairs	Sentence with same EPs
/location/location/contains	Paris, Montmartre	Montmartre is a large hill in Paris' s 18th arrondissement.
/film/director/film	Michael Mann, Collateral	Collateral is a 2004 American neo-noir action thriller film directed and produced by Michael Mann .
/people/person/profession	Barak Obama, President	Obama announced his run for the president.

Weak Supervision – Knowledge Bases

- > One of the earliest attempts: entity and entity relations
- > Hoffmann et al. (2010): Learn from Wikipedia infoboxes

» Matching info box entities with context, to learn context-dependent relation extraction.

- » 5000+ relations
- » Many follow-up work on de-noising, but with similar weak signals

Weak Supervision

- > Mark joined Amazon a month ago.
 - » What is the entity type?
- > Weak Supervision:
 - » From knowledge bases
 - » Amazon.com, Inc is an American multinational technology company.
 - » From weak but richer label representations
 - » Word-embedding(company) is close to Word-embedding(Amazon)

Weak Supervision from Label Representations

- > Chen et al. (2020): Event Process Typing
- > Direct label understanding is difficult
 - » Add glossary definition as a "weak" label defintion

Why using label glosses?

- Semantically richer than labels themselves
- Capturing the association of a process-gloss pair (two sequences) is much easier
- Jump-starting few-shot label representations (and benefiting with fairer prediction)

Weak Supervision from Label Representations

- > Chen et al. (2020)
- > Gloss knowledge brings the most improvement

- > Yuan and Downey (2018): Open entity typing from label embeddings
 - » Labels as meaningless indices -> labels as word embeddings (carries information)
 - » Optimizes gold "label embedding" to be closer to the mention embedding.

Weak Supervision from Label Representations

> Huang et al. (2022): Similar idea but with modern LMs

Model	P	R	F1
UFET-biLSTM [†] (Choi et al., 2018)	48.1	23.3	31.3
LabelGCN ^{\dagger} (Xiong et al., 2019)	50.3	29.2	36.9
LDET [†] (Onoe and Durrett, 2019)	51.5	33.0	40.1
Box4Types* [†] (Onoe et al., 2021)	52.8	38.8	44.8
LRN (Liu et al., 2021)	54.5	38.9	45.4
MLMET [†] (Dai et al., 2021)	53.6	45.3	49.1
UNISTBASE	49.2	49.4	49.3
UNIST _{LARGE} *	50.2	49.6	49.9

Experiments on ultrafine dataset (Choi et al. 2018)

Weak Supervision

- > Mark joined Amazon a month ago.
 - » What is the entity type?
- > Weak Supervision:
 - » From knowledge bases
 - » Amazon.com, Inc is an American multinational technology company.
 - » From weak but richer label representations
 - » Word-embedding(company) is close to Word-embedding(Amazon)
 - » From pre-trained LMs 🔶
 - » Amazon is a [MASK] <- [MASK] = <u>company</u>

Weak Supervision from PLMs

- > Pre-trained language models can also be used as weak supervision
 - » It did not use additional annotations
 - » It is not task-specific
 - » It contains inductive biases (weak signals)
- > PLMs are applied for IE in many creative ways
 - » Contextual embeddings to replace word embeddings
 - » Direct probing
 - » Direct probing + task-specific finetuning
 - » Task-specific finetuning (not covered)

Paris is a [MASK].

Output			0.2
suburb			
city			
village			
commune			
town		suburb	

Using pre-trained LM Representations

> Zhou et al. (2018): entity typing with LM representation + Wikipedia

Probing pre-trained LMs

- > Comparing to ELMo, BERT made direct probing easier
- > Petroni et al. (2019): Language models as knowledge bases
 - » Google-RE
 - » 16.1% birth-place
 - » 1.4% birth-date

e.g. ELMo/BERT

>

Petroni et al. (2019): Language models as knowledge bases

	Relation	Query	Answer	Generation
	P19	Francesco Bartolomeo Conti was born in	Florence	Rome [-1.8], Florence [-1.8], Naples [-1.9], Milan [-2.4], Bologna [-2.5]
	P20	Adolphe Adam died in	Paris	Paris [-0.5], London [-3.5], Vienna [-3.6], Berlin [-3.8], Brussels [-4.0]
	P279	English bulldog is a subclass of	dog	dogs [-0.3], breeds [-2.2], dog [-2.4], cattle [-4.3], sheep [-4.5]
	P37	The official language of Mauritius is	English	English [-0.6], French [-0.9], Arabic [-6.2], Tamil [-6.7], Malayalam [-7.0]
	P413	Patrick Oboya plays in position.	midfielder	centre [-2.0], center [-2.2], midfielder [-2.4], forward [-2.4], midfield [-2.7]
	P138	Hamburg Airport is named after	Hamburg	Hess [-7.0], Hermann [-7.1], Schmidt [-7.1], Hamburg [-7.5], Ludwig [-7.5]
	P364	The original language of Mon oncle Benjamin is	French	French [-0.2], Breton [-3.3], English [-3.8], Dutch [-4.2], German [-4.9]
	P54	Dani Alves plays with	Barcelona	Santos [-2.4], Porto [-2.5], Sporting [-3.1], Brazil [-3.3], Portugal [-3.7]
	P106	Paul Toungui is a by profession .	politician	lawyer [-1.1], journalist [-2.4], teacher [-2.7], doctor [-3.0], physician [-3.7]
	P527	Sodium sulfide consists of	sodium	water [-1.2], sulfur [-1.7], sodium [-2.5], zinc [-2.8], salt [-2.9]
×	P102	Gordon Scholes is a member of the political party.	Labor	Labour [-1.3], Conservative [-1.6], Green [-2.4], Liberal [-2.9], Labor [-2.9]
·Re	P530	Kenya maintains diplomatic relations with	Uganda	India [-3.0], Uganda [-3.2], Tanzania [-3.5], China [-3.6], Pakistan [-3.6]
Ę,	P176	iPod Touch is produced by	Apple	Apple [-1.6], Nokia [-1.7], Sony [-2.0], Samsung [-2.6], Intel [-3.1]
	P30	Bailey Peninsula is located in .	Antarctica	Antarctica [-1.4], Bermuda [-2.2], Newfoundland [-2.5], Alaska [-2.7], Canada [-3.1]
	P178	JDK is developed by	Oracle	IBM [-2.0], Intel [-2.3], Microsoft [-2.5], HP [-3.4], Nokia [-3.5]
	P1412	Carl III used to communicate in	Swedish	German [-1.6], Latin [-1.9], French [-2.4], English [-3.0], Spanish [-3.0]
	P17	Sunshine Coast, British Columbia is located in	Canada	Canada [-1.2], Alberta [-2.8], Yukon [-2.9], Labrador [-3.4], Victoria [-3.4]
	P39	Pope Clement VII has the position of	pope	cardinal [-2.4], Pope [-2.5], pope [-2.6], President [-3.1], Chancellor [-3.2]
	P264	Joe Cocker is represented by music label	Capitol	EMI [-2.6], BMG [-2.6], Universal [-2.8], Capitol [-3.2], Columbia [-3.3]
	P276	London Jazz Festival is located in	London	London [-0.3], Greenwich [-3.2], Chelsea [-4.0], Camden [-4.6], Stratford [-4.8]
	P127	Border TV is owned by	ITV	Sky [-3.1], ITV [-3.3], Global [-3.4], Frontier [-4.1], Disney [-4.3]
	P103	The native language of Mammootty is	Malayalam	Malayalam [-0.2], Tamil [-2.1], Telugu [-4.8], English [-5.2], Hindi [-5.6]
	P495	The Sharon Cuneta Show was created in	Philippines	Manila [-3.2], Philippines [-3.6], February [-3.7], December [-3.8], Argentina [-4.0]
	AtLocation	You are likely to find a overflow in a	drain	sewer [-3.1], canal [-3.2], toilet [-3.3], stream [-3.6], drain [-3.6]
	CapableOf	Ravens can	fly	fly [-1.5], fight [-1.8], kill [-2.2], die [-3.2], hunt [-3.4]
	CausesDesire	Joke would make you want to	laugh	cry [-1.7], die [-1.7], laugh [-2.0], vomit [-2.6], scream [-2.6]
Net	Causes	Sometimes virus causes	infection	disease [-1.2], cancer [-2.0], infection [-2.6], plague [-3.3], fever [-3.4]
ptl	HasA	Birds have	feathers	wings [-1.8], nests [-3.1], feathers [-3.2], died [-3.7], eggs [-3.9]
nce	HasPrerequisite	Typing requires	speed	patience [-3.5], precision [-3.6], registration [-3.8], accuracy [-4.0], speed [-4.1]
ට	HasProperty	Time is	finite	short [-1.7], passing [-1.8], precious [-2.9], irrelevant [-3.2], gone [-4.0]
	MotivatedByGoal	You would celebrate because you are	alive	happy [-2.4], human [-3.3], alive [-3.3], young [-3.6], free [-3.9]
	ReceivesAction	Skills can be	taught	acquired [-2.5], useful [-2.5], learned [-2.8], combined [-3.9], varied [-3.9]
	UsedFor	A pond is for	fish	swimming [-1.3], fishing [-1.4], bathing [-2.0], fish [-2.8], recreation [-3.1]

These predictions are highly relevant to typing and relation extraction > Use templates + [MASK] to retrieve entity types

Pattern	F1
M and any other H	25.3
M and some other H	24.8
H such as M	20.7
such H as M	18.1
H including M	17.4
H especially M	11.5

Input		Top Words for [MASK]
In late 2015, [MASK	K] such as Leonardo DiCaprio starred in The	actors, stars, actor, directors,
Revenant.		filmmakers
At some clinics, they	and some other [MASK] are told the doctors	patients, people, doctors, kids,
don't know how to d	eal with AIDS, and to go someplace else.	children
Finkelstein says he e	expects the company to "benefit from some of	company, business, companies,
the disruption faced b	by our competitors and any other [MASK]."	group, investors

- > Zhang et al. (2020)
- > Entity Set Expansion: expand a small set of entities with new ones belonging to the same semantic class.
 - » {"United States", "China", "Canada} ->{"Japan", "Mexico"}
 - » A "entity set" fine-grained typing

- > Zhang et al. (2020)
- > Entity set expansion by probing pre-trained LMs

Probing pre-trained LMs for IE

- > Zhang et al. (2020)
- > Entity set expansion by probing pre-trained LMs

- > Zhang et al. (2020)
- > Entity set expansion by probing pre-trained LMs

	Wiki		APR			
Methods	MAP@10	MAP@20	MAP@50	MAP@10	MAP@20	MAP@50
Egoset (Rong et al., 2016)	0.904	0.877	0.745	0.758	0.710	0.570
SetExpan (Shen et al., 2017)	0.944	0.921	0.720	0.789	0.763	0.639
SetExpander (Mamou et al., 2018)	0.499	0.439	0.321	0.287	0.208	0.120
CaSE (Yu et al., 2019b)	0.897	0.806	0.588	0.619	0.494	0.330
MCTS (Yan et al., 2019)	$0.980^{ abla}$	0.930▽	$0.790^{ abla}$	$0.960^{ abla}$	$0.900^{ abla}$	$0.810^{ abla}$
CGExpan-NoCN	0.968	0.945	0.859	0.909	0.902	0.787
CGExpan-NoFilter	0.990	0.975	0.890	0.979	0.962	0.892
CGExpan	0.998	0.981	0.893	0.992	0.990	0.955

Table 2: Mean Average Precision on Wiki and APR. " ∇ " means the number is directly from the original paper.

Probing pre-trained LMs through Generation

- LMs that are trained with autoregressive structures can be probed through conditional generation (with some supervision)
- > Li et al. (2021): Event argument extraction via BART + conditional generation

Weak Supervision

- > Mark joined Amazon a month ago.
 - » What is the entity type?
- > Weak Supervision:
 - » From knowledge bases
 - » Amazon.com, Inc is an American multinational technology company.
 - » From weak but richer label representations
 - » Word-embedding(company) is close to Word-embedding(Amazon)
 - » From pre-trained LMs
 - » Amazon is a [MASK] <- [MASK] = <u>company</u>.
 - » From linguistic patterns 🖛
 - » PER join company

> We can use simple linguistic patterns to mine many relations from text

[event] at [time]

[event] because [event]

Works better with events, as entities would lose contextual information.

- > Zhou et al. (2020): Temporal Information Extraction from Patterns
- > Goal: model events' temporal property distributions
 - » Duration, Frequency, Typical Time

- > Zhou et al. (2020): Temporal Information Extraction from Patterns
 - » Step 1: Extract distant signals of contextualized events and their duration, frequency etc. via linguistic patterns

- > Zhou et al. (2020): Temporal Information Extraction from Patterns
 - » Step 1: Extract distant signals of contextualized events and their duration, frequency etc. via linguistic patterns
 - » Step 2: further pre-train a language model with extracted instances

> Zhou et al. (2020): Temporal Information Extraction from Patterns

- > Zhou et al. (2021): Temporal relation extraction from patterns
 - » event-event before/after relation
- > Within-sentence extraction
 - » Not enough:
 - » LMs may know this already
 - » Does not tell how far the two start times are

I went to the park on January 1st. I was very hungry after some hiking. Luckily, I purchased a lot of food before I went to the park. I enjoyed the trip and wrote an online review about the trip on the 10th.

within-sentence

[I purchased food, I went to the park.]: before

cross-sentence

[I went to the park, I wrote a review]: **<u>before</u>**, weeks

- > Zhou et al. (2021): Temporal relation extraction from patterns
 - » Automatically extracts weak supervision instances from unannotated texts
- Cross-sentence extraction
 - » Based on explicit temporal expressions
 - » Independent of event locations
 - » Produces relative distance between start times

I went to the park on January 1st. I was very hungry after some hiking. Luckily, I purchased a lot of food before I went to the park. I enjoyed the trip and wrote an online review about the trip on the 10th.

within-sentence

[I purchased] od, I went to the park.]: before

cross-sentence

[I went to the park, I wrote a review]: before, weeks

Zhou et al. Temporal Common Sense Acquisition with Minimal Supervision. ACL 2020

Weak Supervision – Linguistic Patterns

- > Zhou et al. (2021): Temporal relation extraction from patterns
 - » Automatically extracts weak supervision instances from unannotated texts

■ PatternTime ■ SymTime

T5-3B

> Evaluation done on TRACIE (from the same paper)

T5-Large

85

80

75

» Evaluates temporal relation of both start and end time

T5-Matres

SymTime: explicitly computes end time with the start time and duration estimations from PatternTime (detail omitted)

Weak Supervision

- > Mark joined Amazon a month ago.
 - » What is the entity type?
- > Weak Supervision:
 - » From knowledge bases
 - » Amazon.com, Inc is an American multinational technology company.
 - » From weak but richer label representations
 - » Word-embedding(company) is close to Word-embedding(Amazon)
 - » From pre-trained LMs
 - » Amazon is a [MASK] <- [MASK] = <u>company</u>.
 - » From linguistic patterns
 - » PER join <u>company</u>

Similarity: None of them directly reveals the type in the given context, but they all <u>hint/suggest</u> it.

Alternative Supervision Sources

- > Weak supervision: from task-related distant signals
 - » Easy to acquire
 - » Task-specific
 - » May be noisy
- > Indirect supervision: from other tasks
 - » Human annotations from other popular tasks such as NLI and QA
 - » Non-task-specific
 - » Needs clever ways to be applied

Indirect Supervision for IE

- > Intuition: Information extraction tasks can benefit from other tasks'
 - » Formulation
 - » Supervision
- > Comparing to weak supervision:
 - » clean human annotations
 - » good baselines

Born in 1963, James graduated from Harvard University and became a teacher there. graduate school workplace
Indirect IE from QA: Q: Where did James graduate from? A: Harvard University
we may train on Squad first...

Direct IE:

(James, Harvard),

relation, graduate_from

Indirect Supervision for IE

- > Part 1: Indirect Supervision from task formulation
 - » Transform an IE task to another task
 - » Not use additional supervision (even though indirect) to make fair comparisons
 - » Question answering
 - » Relation extraction
 - » Named entity recognition

> Levy et al. (2017): Relation extraction formulated as QA

Relation	Question	Sentence & Answers
advacted at What is Albert Firstein's almo mater?		Albert Einstein was awarded a PhD by the University
euucuieu_ui	What is Albert Emistem's anna mater:	of Zürich, with his dissertation titled
occuration	What did Stove Jobs do for a living?	Steve Jobs was an American businessman, inventor,
occupation		and industrial designer .
(empa) ep	Who is Angela Markel married to?	Angela Merkel's second and current husband is quantum
		chemist and professor Joachim Sauer , who has largely

Schema Querification (crowdsourced)

- » Why would it work?
 - » Question provides "indirect" information on relation labels

Li et al. A Unified MRC Framework for Named Entity Recognition. ACL 2020

- > Li et al. (2020): NER as QA, where does the improvement come from?
 - » Questions serve as "label definitions", provides additional indirect supervision

Entity	Natural Language Question
Location	Find locations in the text, including non-
	geographical locations, mountain ranges
	and bodies of water.
Facility	Find facilities in the text, including
	buildings, airports, highways and bridges.
Organization	Find organizations in the text, including
	companies, agencies and institutions.

- > Li et al. (2020): NER as QA, where does the improvement come from?
 - » Pre-trained language models understand "natural language" better than "labels"

English OntoNotes 5.0			
Model	F1		
BERT-Tagger	89.16		
Position index of labels	88.29 (-0.87)		
Keywords	89.74 (+0.58)		
Wikipedia	89.66 (+0.59)		
Rule-based template filling	89.30 (+0.14)		
Synonyms	89.92 (+0.76)		
Keywords+Synonyms	90.23 (+1.07)		
Annotation guideline notes	91.11 (+1.95)		

Indirect Supervision from QA

> Wu et al. (2020): Coreference as QA

Use the sentence that each mention is in as the "question", all other spans belonging to the same cluster as "answers"

Indirect Supervision for IE

- > Part 2: Indirect Supervision from task formulation + supervision
 - » Transform an IE task to another task, which has a representation that's easier for models
 - » Use additional supervision from the original task format (e.g., QA, NLI)

Indirect Supervision from QA

> Wu et al. (2020): Coreference as QA

> Pre-train on Quoref + SQuAD improves ~1%, while the overall system improves 3.5%

Indirect Supervision from NLI

Template-based hypothesis generation

> Li et al. (2022): Entity typing formulated as textual entailment (NLI)

It flows over Rogie Falls, then past Contin, before flowing into the River Conon near Moy Bridge.		
Entity-mentioning sentence		
person, location, organization, object stream, river, current, body of water, 		
Label Space		
\downarrow		
It is a river.		
In this context, <u>it</u> is referring to river		
River flows over Rogie Falls, then past Contin, before flowing into the River Conon near Moy Bridge.		
Generated by pre-defined templates		

53

Li et al. Ultra-fine Entity Typing with Indirect Supervision from Natural Language Inference. TACL 2022

Indirect Supervision from NLI

- Li et al. (2021): Entity typing formulated as textual entailment (NLI) >
 - » "[Entity] is [Label]"
 - "In this context, [Entity] is referring to [Label]" **»**
 - Replace [Entity] with [Label] in original context
- Advantages >
 - "Natural language" representation
 - Existing entailment dataset transfers well
 - Open label space **》**

51

50

49

48

47

46

45

LITE

32.7

6~10 shot

38.3

MLMET

Template-based hypothesis generation It flows over Rogie Falls, then past Contin, before flowing into the River Conon near Moy Bridge. Entity-mentioning sentence person, location, organization, object... stream, river, current, body of water, Label Space It is a river. In this context, it is referring to river **River** flows over Rogie Falls, then past Contin, before flowing into the River Conon near Moy Bridge. Generated by pre-defined templates

Indirect Supervision from NLI

- > Lyu et al. (2021), Sainz (2022)
 - » Event trigger / argument extraction via QA and NLI
 - » Better zero/few-shot performances

Event type: TRANSFER-OWNERSHIP

Sainz et al. Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning. NAACL 2022

Indirect Supervision with Summarization

vanced reading comprehension	Input: Example	
	Subject: Mandelbrot Type: person	
specific tasks	Object: Poland Type: country	
traction as summarization	Sentence:	
pject types as natural language	Mandelbrot was born in Poland but as a child moved to France.	
adal ta gaparata varbalizad relationa	Input Sequence Construction:	
oder to generate verbalized relations	The subject is Mandelbrot. The object is Poland. The type of Mandelbrot is person. The type of Poland is country. Mandelbrot was born in Poland but as a child moved to France.	
NN/Dailymail (Hermann et m (Narayan et al., 2021)	Relation Verbalization: r_1 : Mandelbrot is a Poland r_2 : Mandelbrot was born in the city Poland r_3 : Mandelbrot was born in the country Poland r_4 : Mandelbrot was founded by Poland r_5 : Mandelbrot has no known relations to Poland	
	Trie Scoring Output:	
TACRED 1%		
SURE (BART + CNN) ■ SURE (BART+XSUM)	$P(r_1) P(r_2) P(r_3) P(r_4) P(r_5)$ (Mandelbrot country of birth Poland)	

Summarization requires ad > » Can also be tailored to

- Lu et al. (2022): Relation ex >
 - » Format input subject/ob
 - » Ask a summarization me

Pre-trained on CN al., 2015) and XSu

■ RECENT ■ SURE (BART)

55

50

45

40

35

30

Conclusion and Future Directions

- > Direct supervision is not the answer to all problems
- > Weak supervision
 - » Knowledge bases and dictionaries
 - » Label definitions
 - » Pre-trained language models
 - » Linguistic patterns
- Indirect supervision
 - » From other task formulation
 - » From other task formulation and supervision
- > Future directions:
 - » Quantify task-task relations
 - » Unified framework