Indirectly Supervised Natural Language Processing

Wenpeng Yin
Muhao Chen
Ben Zhou
Qiang Ning
Kai-Wei Chang
Dan Roth

July 9, 2023
ACL Tutorials
Indirectly Supervised Natural Language Processing

ACL 2023
Do We Need Supervision?

- All parameters in NLP networks are initialized via **pretraining**.
- Pretraining methods hide parts of the input and train the model to reconstruct those parts.

This **self-supervision** is the key reason for the original excitement with LLMs: the hope that we can get around the need to annotate a lot of data for supervised machine learning.

But this is **no longer true**. All the very large models use huge amounts of **supervision** and **RLHF** (Reinforcement Learning with Human Feedback) data that is more costly than earlier supervision protocols.
What Have We Learned?

- We learned that it’s possible to generate effective supervision
 - Without manual annotation
 - Without training directly for the task at hand

- Not new
 All the literature on Context Sensitive Spelling (accept/except; the/that,...) and (ESL) Text Correction is based on this self-supervision paradigm [Golding & Roth ICML’96]

- Needs to be generalized
 And applied to many machine learning tasks
 Since “simplistic” self-supervision isn’t good enough to support most tasks

This self-supervision is the key reason for the original excitement with LLMs: the hope that we can get around the need to annotate a lot of data for supervised machine learning.
Incidental Supervision

Data provides hints

Data exists independent of the task(s) at hand.

These “hints” are often sufficient to infer supervision signals for a range of tasks.
Feb 5 2017 Dozens of passengers heading to Chicago had to undergo additional screenings... It took Hesam Aamyab two tries to make it back to the United States from Iran. He is an Iranian citizen with a US visa who is doing post-doctoral research at UIC. "Right now, I am in the USA and I'm very happy," Aamyab said. But now, he can't go back to Iran or anywhere else without risk. Other travelers shared the same worry. Asem Aleisawi was at O'Hare on Sunday to meet his wife who was coming in from Jordan.

Learning/Supervision requires some level of reasoning to infer these weak signals.

Images

Difficult to label objects/faces
Easy to learn same/different
- Two objects in the same image are different
- Two consecutive video frames are likely to contain the same objects.

A way to train intermediate representations that make the eventual labeling/prediction easier
- Not the only way; but all realistic/scalable ways need to go through indirect supervision
Data provides hints
Data exists independent of the task(s) at hand.
These “hints” are often sufficient to infer supervision signals for a range of tasks

Utilizing these hints
Can be substantially less costly than producing explicit annotation
More realistic – provides signals for tasks we haven’t defined
Weak signals can be aggregated to produce higher quality signals

Examples:
Classification Tasks
Structured Prediction Tasks
Multimodal Tasks
Commonsense
.....
Diverse Supervision Signals

- Searching for supervision signals could be challenging.
- It is incidental, in the sense that it provides some signals that might be co-related with the target task and may not be useful all the time.

Assume a comparable, weakly temporally aligned news feeds.

Weak synchronicity provides a cue about the relatedness of (some) NEs across the languages, and can be exploited to associate them [Klementiev & Roth, 06,08]
Diverse Supervision Signals

- By itself, this temporal signal may not be sufficient to support learning robust models.
- Along with weak phonetic signals, context, topics, etc. it can be used to get robust models.

Assume a comparable, weakly temporally aligned news feeds.

Weak synchronicity provides a cue about the relatedness of (some) NEs across the languages, and can be exploited to associate them [Klementiev & Roth, 06,08]
Solving NLP

- Even if we think/hope that generative AI will move us forward
- We still need supervision
 - Alignment with human expectations
 - Fine-tuning of models
 - Verification: is this piece of text supported by this evidence?
 - Classification into organization-specific taxonomies (e.g., medical)
 - Naming visual events
 - Text, images, video retrieval
 ...
- We will never have enough annotated data to train all the models, for all the tasks we need
 - We do not learn by “training” on many examples
- Direct supervision is not scalable and, often, makes no sense
 - Complex tasks annotation is often impossible.

We need many forms of indirect supervision. We call this “incidental supervision” [Roth, AAAI’2017] since, unlike “standard supervision”, we don’t annotate for it, and we don’t assume it is exhaustive; sometimes it’s there and we use it.

“understanding” Events

When and Where?

Fu et al. ACL’22
Behavioral feedback is needed!

Take inspiration from language acquisition?

Clearly, a lot of incidental supervision

Harder problems (understanding verbs) bootstrap from easier

Smur! Rivvo della frowler.

“the language”

Scene 1

Scene n

Scene 3

Topid rivvo den marplox.

Marplox dorinda blicket.

Chase? Flee?

Cross-situational observations

Think about this as comparable text

Nouns identified

Bliet dor marplox, arno.

[Topid rivvo den marplox.]

[BabySRL: Connor, Fisher & Roth, 2012]
Sources of Incidental Supervision

- **Representation-driven:**
 Label-aware: the basis of zero-shot [Chang et al. AAAI’08]

- **Knowledge-driven**
 Enrichment of the text with existing knowledge

- **Constraints-driven:**
 Expectation from the output

- **Alignment-Driven:**
 comparable text; multimodal

- **Behavior-driven:**
 It’s end-to-end

If we know what the label “means”, there is no need to supervise for it

In Los Angeles that lesson was brought home today when tons of earth **cascaded** down a hillside, **ripping** two houses from their foundations. No one was **hurt**, but firefighters **ordered** the evacuation of nearby homes and said they’ll **monitor** the shifting ground until March 23rd.

We have **strong expectations** from the output: (1) Transitivity (2) Expertations on “typical” order of events.

Who are the Europeans female tennis players who made the most money in the last 10 years?

1. Halep
2. Wozniacki
3. Azarenka
4. Kvitova
5. Kerber
6. ...
This Tutorial
Tutorial Outline

■ Introduction
 Dan Roth 20 min.
■ Indirect Supervision from text classification
 Wenpeng Yin 30 + 5 min.
■ Indirect Supervision from text generation
 Muhao Chen 30 + 5 min.
■ Break 30 min.
■ Incidental Supervision from Natural Text
 Ben Zhou 25 + 5 min.
■ Theoretical Analysis of Incidental Supervision
 Qiang Ning 25 + 5 min.
■ Indirect Supervision from Multi-modalities
 Kai-Wei Chang 25 + 5 min.
■ Conclusion and Future Work
 Dan Roth 15 min.
Textual Entailment for 0-shot Text Classification

Zero-shot text classification

0
(health)

1
(anger)

2
(accident)

3
(crime)

...

Natural language inference

Premise

My car was smashed last night.

Hypothesis

This text expresses anger.

This text is about accident.

We can keep the original label strings, or use other related words — label verbalizer (Schick and Schütze, 2020)
Indirect Supervision from Textual Entailment (NLI)

Implementation & Applications

- Topic classification
- Entity typing
- Relation Extraction
- Event argument extraction
- Coref. resolution
- QA
- NLI

Benefits

- Scarce-annotation NLP
- Cross-task transferability
- Maximize the potential of small PLMs

Challenges & Solutions

- Domain discrepancy (solutions by algorithm and data threads)
- Inefficiency in testing (parallel-NLI)
- Cannot discover new labels (next chapter...)

Scarce-annotation NLP
Cross-task transferability
Maximize the potential of small PLMs

Domain discrepancy (solutions by algorithm and data threads)
Inefficiency in testing (parallel-NLI)
cannot discover new labels (next chapter...)
Indirect Supervision from Text Generation

1. Constrained Generation as Indirect Supervision

2. QA as Indirect Supervision

3. IR as Indirect Supervision
Constrained Decoding as Indirect Supervision

<table>
<thead>
<tr>
<th>RE Input</th>
<th>RE Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head: Mandelbrot</td>
<td>Type: Person</td>
</tr>
<tr>
<td>Tail: Poland</td>
<td>Type: Country</td>
</tr>
</tbody>
</table>

Context:
Mandelbrot was born in Poland but as a child moved to France

Rich (indirect) supervision signals can be introduced here.

<table>
<thead>
<tr>
<th>Probability Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3%] Title</td>
</tr>
<tr>
<td>[24%] City of Birth</td>
</tr>
<tr>
<td>[73%] Country of Birth</td>
</tr>
</tbody>
</table>

(a) Input Sequence Construction
(b) Relation Verbalization
(c) Constrained Decoding (Trie)

Summarization

Document → Pretrained Summarization Models → Summary

Allowing supervision signals to be transferred from rich summarization resources (CNN/Daily Mail, XSUM) or pretrained models (BART-CNN, Pegasus).

Lu et al. Summarization as Indirect Supervision for Relation Extraction. EMNLP 2022
Dense Retrieval as Indirect Supervision for Large-space Decision Making

- NLU tasks may have hundreds to millions of decisions

![Diagram showing types of chatbot intent](image)

Examples of NLU tasks:
- Extreme multi-label classification (XMLC)
- Entity Typing and Linking
- Intent Detection

Diagram showing learning to retrieve from a decision thesaurus as a general solution
Natural Texts are structured to contain rich information

How to generalize beyond the simple-minded pre-training done today?

Pre-trained language models (LMs) are a great proxy to use NT “incidentally”
However, they are flawed in a few major ways
- Cannot accurately capture local relational information (relation type / numbers)
- Cannot efficiently connect global information (e.g., more than one documents)
- Large LMs lack controllability without direct supervision (which can be hard to integrate)
Due to reporting biases, these flaws limit LM’s reasoning capabilities.

In this section of our tutorial, we discuss

How local texts can be more efficiently parsed and injected into models
How to utilize global information from natural texts
How LMs can be used to viewed as a generator of incidental signals from NT
Capture Local Information

- Use high-precision patterns based on SRL

Averaged duration prediction on a set of events with gold durations of “days”
Cross-sentence extraction
Based on explicit temporal expressions
Independent of event locations
Produces relative distance between start times

Zhou et al., Temporal Reasoning on Implicit Events from Distant Supervision, NAACL 2021
The Impact of Incidental Signals on the Concept Class

- \(c: X \rightarrow Y, \) where \(c \in C \)
- Learning theory shows that the size of the concept class determines the "easiness" of the learning problem

 \[R(c) \leq \hat{R}(c) + \sqrt{\frac{\ln |C| + \ln^2 \delta}{2m}} \]

 - E.g. the generalization bound

 - We will show that the use of incidental signals reduces the size of the concept class, and then will use the relative size of the reduction as a measure for the informativeness of the incidental signals

- \(S(C, \tilde{C}) = \sqrt{1 - \frac{\ln |\tilde{C}|}{\ln |C|}} \)
 - Smaller \(\tilde{C} \) leads to higher informativeness \(S \)

Reduce the concept class from \(C \) to \(\tilde{C} \)
To illustrate the learnability condition, we plot the relationship between the classification error of a hypothesis h and the minimum annotation loss (risk) it can have (over choices of transition hypotheses).

Under what conditions are incidental signal sufficient to support learning?
Several people walking on a sidewalk in the rain with umbrellas. **Main training objective is to predict missing words.**

VisualBERT

The model projects words and image regions into the same vector space and uses multiple Transformer layers to build joint representations.

Several people [MASK] on a [MASK] in the [MASK] with [MASK].

Input consists of an image and a caption with some masked words. Such data is easy to obtain from the internet.

Unsupervised pre-training on vision and language

Is it raining outside?

a) Yes, it is snowing.
b) Yes, [person8] and [person10] are outside.
c) No, it looks to be fall.
d) Yes, it is raining heavily.

An example from the VCR dataset

Transfer to answering commonsense questions.
Generating Pseudo Grounding Data from Captions

- Learn to align objects in image and phrases in text

 Train a teacher model with gold grounding data; produces boxes given image-caption data

 Distant supervision assumption: objects in the images are likely to be mentioned in captions
Learning Visual Concepts from Descriptions

- Using LLM as commonsense engine to specify visual concepts
- Enforcing VL models to align objects with rich description

Detect with specifications for shape & subpart (w/o object name)

<table>
<thead>
<tr>
<th>Target Object</th>
<th>Confusable Object</th>
</tr>
</thead>
</table>
| ![Tool Image](image1)
 tool: 0.59
 A kind of tool, wooden handle with a round head, used for pounding or hammering | ![Tool Image](image2)
 tool: 0.35
 A kind of tool, long handle, sharp blade, could be used for chopping wood |
| ![Tool Image](image3)
 tool: 0.35
 GLIP | ![Tool Image](image4)
 tool: 0.32
 GLIP |
Tutorial Outline

■ Introduction
 Dan Roth
 20 min.

■ Indirect Supervision from text classification
 Wenpeng Yin
 30 + 5 min.

■ Indirect Supervision from text generation
 Muhao Chen
 30 + 5 min.

■ Break
 30 min.

■ Incidental Supervision from Natural Text
 Ben Zhou
 25 + 5 min.

■ Theoretical Analysis of Incidental Supervision
 Qiang Ning
 25 + 5 min.

■ Indirect Supervision from Multi-modalities
 Kai-Wei Chang
 25 + 5 min.

■ Conclusion and Future Work
 Dan Roth
 15 min.