

Indirect Supervision from Generative and Retrieval Tasks Indirectly Supervised Natural Language Processing (Part II)

Muhao Chen

Department of Computer Science University of Southern California

July 2023

ACL Tutorials

Indirectly Supervised Natural Language Processing

How do we support more *expensive* NLU tasks with more *resource-rich* NLG/IR tasks?

The Root of All Problems: Expensive Supervision

Obtaining direct supervision can be difficult and expensive

On Tuesday, there was a typhoon-strength $(e_1:storm)$ in Japan. One man got $(e_2:killed)$ and thousands of people were left stranded. Police said an 81-year-old man $(e_3:died)$ in central Toyama when the wind blew over a shed, trapping him underneath. Later this afternoon, with the agency warning of possible tornadoes, Japan Airlines $(e_4:canceled)$ 230 domestic flights, $(e_5:affecting)$ 31,600 passengers.

~**\$7** per label in the general domain [Paulheim, 2018].

~**\$71** per label in proteomics domain [Sullivan+, 2017].

Even **more unaffordable** for drugs, diseases, clinical trials ...

Costly effort from expert annotators

Insufficiency

Reading long documents, recognizing complex structures

- **General domain**: A few hundred documents or ten thousand scale sentences with annotation
- **Specialized domains**: Up to several thousand sentences.

Low-resource Domains with Almost No Annotations

Result: Poor Generalization

Relation Extraction (Conditioned on entity mentions)

Hard to be modeled as NLI

- Diverse preconditions in the same context (different spans, entity pairs in the same input)
- Ambiguous entailment (the same input needs to entail many hypotheses)

Challenge: Very Large Decision Spaces

Entity Linking, Fine-grained Typing

Extreme multi-label classification (XMLC)

Tasks with very large decision spaces that to be supervised as NLI or classification.

Thousands to millions of labels, more like a dictionary.

Non-discriminative or structured decisions that are beyond the ability of NLI

Spans (Extractive QA)

Passage Context

The Matrix is a 1999 science fiction action film written and directed by The Wachowskis, starring Keanu Reeves, Laurence Fishburne, Carrie-Anne Moss, Hugo Weaving, and Joe Pantoliano. It depicts a dystopian future in which reality as perceived by most humans is actually a simulated reality called "the Matrix": created by sentient machines to subdue the human population, while their bodies' heat and electrical activity are used as an energy source. Computer programmer "Neo" learns this truth and is drawn into a rebellion against the machines, which involves other people who have been freed from the "dream world."

Question

Who stars in The Matrix?

week, shareherders week men money and ran

Generation (QFS)

Query: "Describe the coal mine accidents in China and actions taken"

Example summary (from Li and Li 2013):

 In the first eight months, the death toll of coal mine accidents across China rose 8.5 percent from the same period last year.
 China will close down a number of ill-operated coal mines at the end of this month, said a work safety official here Monday. (3) Li Yizhong, director of the National Bureau of Production Safety Supervision and Administration, has said the collusion between mine owners and officials is to be condemned. (4) from January to September this year, 4,228 people were killed in 2,337 coal mine accidents. (5) Chen said officials who refused to register their stakes in coal mines within the required time

1. Constrained Generation as Indirect Supervision

2. QA as Indirect Supervision

3. IR as Indirect Supervision

 \mathbf{O}

- ()

Information extraction suffers from insufficient supervision

Direct annotation is difficult and expensive

Can we transfer signals from a more resource-rich task?

An Exemplary Form of Indirect Supervision

Summarization as Indirect Supervision

Take Relation Extraction As An Example

Summarization: Generating concise expressions of synoptical information from the longer context

Document

Authorities said the incident took place on Sao Joao beach in Caparica, south-west of Lisbon.

The National Maritime Authority said a middle-aged man and a young girl died after they were unable to avoid the plane. [6 sentences with 139 words are abbreviated from here.] Other reports said the victims had been sunbathing when the plane made its emergency landing. [Another 4 sentences with 67 words are abbreviated from

[Another 4 sentences with 67 words are abbreviated from here.]

A more resource-rich task

- Million-scale parallel summary corpora (vs. a few hundred docs or <100k sentences for RE)
- More easy-to-consume sources (news summaries, paper abstracts, etc.)

Relation is just **one kind of synoptical information**. Can we reformulate RE as summarization?

Reformulating RE as Summarization

Allowing supervision signals to be transferred from rich summarization resources (CNN/Daily Mail, XSUM) or pretrained models (BART-CNN, Pegasus).

Input Sequence Construction

• Adding entity mentions and types: hint the summarization model which entity pair is targeted for summarization.

Entity Information Verbalization

Input Sequence

The subject entity is Mandelbrot. The object entity is France. The type of Mandelbrot is person. The type of France is country. Mandelbrot was born in Poland but as a child moved to France.

Relation Verbalization

• Simple template-based verbalization (using surface names of relations)

Both become natural language text that fits a summarization model.

Relations			
r_1	title	T_1	
r_2	city of birth	<i>T</i> ₂	
r_3	country of birth	Verbalization T_3	{s
r_4	founded by	T_4	
r_5	NA	T_5	{sı

Templates			
T_1	{subj} is a {obj}		
T_2	{subj} was born in the city {obj}		
T_3	{subj} was born in the country {obj}		
T_4	{subj} was founded by {obj}		
T_5	{subj} has no known relations to {obj}		

Relation Verbalization:

- r_1 : Mandelbrot is a Poland
- r_2 : Mandelbrot was born in the city Poland
- r_3 : Mandelbrot was born in the country Poland
- r_4 : Mandelbrot was founded by Poland
- r_5 : Mandelbrot has no known relation to Poland

How to let the model summarize only relation-descriptive information?

 $P(r_2) = P(y = was | CP_1, S)P(y = born | CP_2, S)P(y = country | CP_3, S)$

Summarization Results in Strong Indirect Supervision

Summarization provides strong indirect supervision for low-resource relation extraction.

Also leads to precise full-shot relation extraction.

Generative NER

Input: <s> have muscle pain and fatigue </s> Output: 2 3 7 2 5 6

Yan et al. A Unified Generative Framework for Various NER Subtasks. ACL 2021

Event extraction as a conditional generation problem

Hsu et al. DEGREE: A Data-Efficient Generation-Based Event Extraction Model. NAACL 2022

Agenda

1. Constrained Generation as Indirect Supervision

2. QA as Indirect Supervision

3. IR as Indirect Supervision

Extractive [SQuAD]

Question: At what speed did the turbine operate? Context: (Nikola_Tesla) On his 50th birthday in 1906, Tesla demonstrated his 200 horsepower (150 kilowatts) 16,000 rpm bladeless turbine. ... Gold answer: 16,000 rpm

Extractive QA

Supporting decisions inclusive to the input text

- Span detection (NER, Coref, etc.)
- Parsing (SRL, AMR, etc.)

Span or structural decisions.

Abstractive [NarrativeQA]

Question: What does a drink from narcissus's spring cause the drinker to do? **Context:** Mercury has awakened Echo, who weeps for Narcissus, and states that a drink from Narcissus's spring causes the drinkers to "Grow dotingly enamored of themselves." ...

Gold answer: fall in love with themselves

Abstractive/Generative QA

Supporting any free-form decisions

- Relation extraction
- Dialogue
- Intent prediction
- etc.

Benefit 1: Handling nested entity mentions (not feasible for sequence tagging)

Find facilities in the text, including buildings, airports, highways and bridges.

Benefit 2: Questions serve as label definitions

(Further improving generalization)

Entity	Natural Language Question
Location	Find locations in the text, including non-
	geographical locations, mountain ranges
	and bodies of water.
Facility	Find facilities in the text, including
	buildings, airports, highways and bridges.
Organization	Find organizations in the text, including
	companies, agencies and institutions.

Better performance than seq2seq generation

System F1

Li et al. A Unified MRC Framework for Named Entity Recognition. ACL 2020

Using the sentence that each mention is in as the "question", all other spans belonging to the same cluster as "answers"

Wu et al. CorefQA: Coreference Resolution as Query-based Span Prediction. ACL 2020

What did someone purchase? What did someone purchase? Wade purchased Cunningham's home

Who purchased something?

in San Diego for over \$1.6M

Federal agencies are investigating Rep.

What did someone sell to someone? Cunningham for **selling** his house to

Mitchell Wade

Who did someone sell something to?

The plane took off in Los Angeles. The tourists will **arrive** in Mexico at noon.

entity in motion	Who will arrive in Mexico?	
end point	Where will the tourists arrive?	
start point	Where will the tourists arrive from?	
manner	How will the tourists arrive?	
cause	Why will the tourists arrive?	
temporal	When will the tourists arrive?	

QA-SRL: QA as Semantic Role Labeling

Relation	Question	Sentence & Answers
$educated_at$	What is Albert Einstein 's alma mater?	Albert Einstein was awarded a PhD by the University
		of Zürich, with his dissertation titled
occupation	What did Steve Jobs do for a living?	Steve Jobs was an American businessman, inventor,
		and industrial designer .
spouse	Who is Angela Merkel married to?	Angela Merkel's second and current husband is quantum
		chemist and professor Joachim Sauer, who has largely

QA for Relation Extraction

Advantages of Extractive QA for Information Extraction Tasks (over Seq2Seq Gen)

- Handling nested spans
- Questions can serve as task-oriented prompts and semantic representation of the label space

Fitzgerald et a. Large-Scale QA-SRL Parsing. ACL 2018 Levy et al. Zero-Shot Relation Extraction via Reading Comprehension. CoNLL 2017

Benefits of An Abstractive QA Reformulation

- Supporting free-form, non-discriminative decision making
- Supporting multiple answers

Q: All possible intents from a user are [...], and slots could be [...]. A user said, "Look up directions to the nearest parking near S Beritania Street." What did the user intend to do?

A: The user intended to get directions, where destination is nearest parking near S Beritania Street. The intent for "nearest parking near S Beritania Street" is to get location, where location's category is parking and location modifiers are near S Beritania Street; nearest. The intent for "near S Beritania Street" is get location, where location is S Beritania Street and search radius is near.

Task-oriented Parsing (e.g., predicting user intent)

Event argument generation

Zhao et al. Compositional Task-Oriented Parsing as Abstractive Question Answering. NAACL 2022 Du and Ji. Retrieval-Augmented Generative Question Answering for Event Argument Extraction. EMNLP 2022

Generalizability and lack of annotations are more significant challenges here

Zhao et al. Knowledge-based Version Incompatibility Detection for Deep Learning. **ESEC/FSE** 2023

Clinical event extraction

Sign_symptom

Extracting drug-drug interaction

A man presented with an abnormal nodule measuring 0.8 x 1.5 cm in the left upper lung lobe imaged through chest computed tomography scanning.

Event trigger	nodule	
Event type	Sign_symptom	
Detailed description	abnormal	
Area	0.8 x 1.5 cm	
Biological structure	left upper lung lobe	

Diagnostic_	procesure

Event trigger	computed tomography	
Event type	Diagnostic_ procedure	
Biological structure	chest	

Xu et al. Can NLI Provide Proper Indirect Supervision for Low-resource Biomedical Relation Extraction? ACL 2023 Ma et al. DICE: Data-Efficient Clinical Event Extraction with Generative Models. ACL 2023 Agenda

1. Constrained Generation as Indirect Supervision

2. QA as Indirect Supervision

3. IR as Indirect Supervision

0

- ()

Some NLU tasks may have very large decision spaces

Large decision spaces in a hundred- to million-scale

Supervising a classifier is not ideal

- Too few instances per class
- Meaningless class label representation
- Not generalizable to unseen classes

Learning to lookup a label thesaurus should be more feasible

- A plausible source of indirection supervision: **Dense Retrievers**
- Meaningful label representation
- Generalizes well to unseen labels

A dual-encoder model for retrieving passages most relevant to a question

- Two encoders **P** and **Q** for passages and questions
- Contrastive learning to maximize $\vec{P}^T \cdot Q$ for correct question-passage pair
- Efficient (using MIPS) and generalizable retrieval

Entity candidates with descriptions

 $\boldsymbol{P} = enc_{P}([CLS] \phi title(e) \bigoplus \phi desc(e)[SEP])$

Reformulating entity linking into open-domain QA

- The **retriever** finds top-*K* candidate entities mentioned in the passage
- 2. The **reader** extracts spans of each selected entity

A pre-existing inductive bias that helps retrieve the identities of entities

85.8 in-domain *micro* F_1 and 60.5 out-of-domain F_1

Zhang et al. EntQA: Entity Linking as Question Answering. ICLR 2022

"How long will it take for me to get my card?" "Can you tell me how long it takes for a new card to come?" "Can you tell me the status of my new card?" "how many days processing new card?"

card_arrival
card_delivery_estimate
lost_or_stolen_card
contactless_not_working

Indirect supervision for retrieving from a fine-grained pool of intents Enhancing few-shot generalizability (+5.22~8.50% in accuracy for 5-shot prediction)

Yehudai et al. QAID: Question Answering Inspired Few-shot Intent Detection. ICLR 2023

Dense Retrieval as A General Solution

Dense retrieval from a decision thesaurus for any large-space decision making tasks

Ways of decision representation

- Lexical knowledge bases (WordNet, Wiktionary),
- LLM generated explanations
- Task training data

Retrieval tasks as a general form of indirect supervision

Xu et al. Dense Retrieval as Indirect Supervision for Large-space Decision Making. 2023

Indirect Supervision Improves Three Large-space Decision Making Tasks

Xu et al. Dense Retrieval as Indirect Supervision for Large-space Decision Making. 2023

03

Transactional

04

Feedback

Sources	Pros	Cons
NLI	 Generalizable reasoning abilities Applicable to any (incl. simple) classifiers 	 Cannot handle diverse preconditions in the same context Cannot handle non-discriminative or structured tasks High inference cost
Summarization	Suitable for tasks that refine input information	Less suitable for tasks that need more induction
Extractive QA	 Can handle span detection tasks Supports nested spans 	Decisions must be inclusive to the inputs
Abstractive QA	Can handle free-form decisions	 Less effective in tasks where decisions are inclusive to the inputs (e.g. span detection or sequence tagging)
Dense Retriever	 Suitable for large decision spaces Efficient 	Not suitable for tasks where decisions are inclusive to the inputs

Thank You