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Abstract

Math word problems form a natural abstrac-
tion to a range of quantitative reasoning prob-
lems, such as understanding financial news,
sports results, and casualties of war. Solving
such problems requires the understanding of
several mathematical concepts such as dimen-
sional analysis, subset relationships, etc. In
this paper, we develop declarative rules which
govern the translation of natural language de-
scription of these concepts to math expres-
sions. We then present a framework for in-
corporating such declarative knowledge into
word problem solving. Our method learns
to map arithmetic word problem text to math
expressions, by learning to select the rele-
vant declarative knowledge for each opera-
tion of the solution expression. This pro-
vides a way to handle multiple concepts in the
same problem while, at the same time, sup-
port interpretability of the answer expression.
Our method models the mapping to declara-
tive knowledge as a latent variable, thus re-
moving the need for expensive annotations.
Experimental evaluation suggests that our do-
main knowledge based solver outperforms all
other systems, and that it generalizes better in
the realistic case where the training data it is
exposed to is biased in a different way than
the test data.

1 Introduction

Many natural language understanding situations re-
quire reasoning with respect to numbers or quanti-

∗Most of the work was done when the authors were at the
University of Illinois, Urbana Champaign.

ties – understanding financial news, sports results,
or the number of casualties in a bombing. Math
word problems form a natural abstraction to a lot
of these quantitative reasoning problems. Conse-
quently, there has been a growing interest in devel-
oping automated methods to solve math word prob-
lems (Kushman et al., 2014; Hosseini et al., 2014;
Roy and Roth, 2015).

Arithmetic Word Problem
Mrs. Hilt baked pies last weekend for a holiday din-
ner. She baked 16 pecan pies and 14 apple pies. If she
wants to arrange all of the pies in rows of 5 pies each,
how many rows will she have?
Solution (16 + 14)/5 = 6

Math Concept needed for Each Operation

Figure 1: An example arithmetic word problem and its
solution, along with the concepts required to generate
each operation of the solution

Understanding and solving math word problems
involves interpreting natural language description
of mathematical concepts, as well as understanding
their interaction with the physical world. Consider
the elementary school level arithmetic word prob-
lem shown in Fig 1. To solve the problem, one
needs to understand that “apple pies” and “pecan
pies” are kinds of “pies”, and hence, the number of



apple pies and pecan pies needs to be summed up
to get the total number of pies. Similarly, detecting
that “5” represents “the number of pies per row” and
applying dimensional analysis or unit compatibility
knowledge, helps us infer that the total number of
pies needs to be divided by 5 to get the answer. Be-
sides part-whole relationship and dimensional anal-
ysis, there are several other concepts that are needed
to support reasoning in math word problems. Some
of these involve understanding comparisons, trans-
actions, and the application of math or physics for-
mulas. Most of this knowledge can be encoded as
declarative rules, as illustrated in this paper.

This paper introduces a framework for incorpo-
rating this “declarative knowledge” into word prob-
lem solving. We focus on arithmetic word prob-
lems, whose solution can be obtained by combin-
ing the numbers in the problem with basic opera-
tions (addition, subtraction, multiplication or divi-
sion). For combining a pair of numbers or math sub-
expressions, our method first predicts the math con-
cept that is needed for it (e.g., subset relationship, di-
mensional analysis, etc.), and then predicts a declar-
ative rule under that concept to infer the mathemati-
cal operation. We model the selection of declarative
rules as a latent variable, which removes the need
for expensive annotations for the intermediate steps.

The proposed approach has some clear advan-
tages compared to existing work on word problem
solving. First, it provides interpretability of the so-
lution, without expensive annotations. Our method
selects a declarative knowledge based inference rule
for each operation needed in the solution. These
rules provide an explanation for the operations per-
formed. In particular, it learns to select relevant rules
without explicit annotations for them. Second, each
individual operation in the solution expression can
be generated independently by a separate mathemat-
ical concept. This allows our method to handle mul-
tiple concepts in the same problem.

We show that existing datasets of arithmetic word
problems suffer from significant vocabulary biases
and, consequently, existing solvers do not do well on
conceptually similar problems that are not biased in
the same way. Our method, on the other hand, learns
the right abstractions even in the presence of biases
in the data. We also introduce a novel approach to
gather word problems without these biases, creating

a new dataset of 1492 problems.
The next section discusses related work. We next

introduce the mathematical concepts required for
arithmetic word problems, as well as the declara-
tive rules for each concept. Section 4 describes our
model – how we predict answers using declarative
knowledge – and provides the details of our training
paradigm. Finally, we provide experimental evalua-
tion of our proposed method in Section 6, and then
conclude with a discussion of future work.

2 Related Work

Our work is primarily related to three major strands
of research - automatic word problem solving, se-
mantic parsing, as well as approaches incorporating
background knowledge in learning.

2.1 Automatic Word Problem Solving

There has been a growing interest in automatically
solving math word problems, with various systems
focusing on particular types of problems. These can
be broadly categorized into two types: arithmetic
and algebra.
Arithmetic Word Problems Arithmetic problems
involve combining numbers with basic operations
(addition, subtraction, multiplication and division),
and are generally directed towards elementary
school students. Roy and Roth (2015), Roy and
Roth (2017) as well as this work focus on this class
of word problems. The works of Hosseini et al.
(2014) and Mitra and Baral (2016) focus on arith-
metic problems involving only addition and subtrac-
tion. Some of these approaches also try to incor-
porate some form of declarative or domain knowl-
edge. Hosseini et al. (2014) incorporates the transfer
phenomenon by classifying verbs; Mitra and Baral
(2016) maps problems to a set of formulas. Both
require extensive annotations for intermediate steps
(verb classification for Hosseini et al. (2014), align-
ment of numbers to formulas for Mitra and Baral
(2016), etc). In contrast, our method can handle
a more general class of problems, while training
only requires problem-equation pairs coupled with
rate component annotations. Roy and Roth (2017)
focuses only on using dimensional analysis knowl-
edge, and handles the same class of problems as we
do. In contrast, our method provides a framework



for including any form of declarative knowledge, ex-
emplified here by incorporating common concepts
required for arithmetic problems.
Algebra Word Problems Algebra word problems
are characterized by the use of (one or more)
variables in contructing (one or more) equations.
These are typically middle or high school problems.
Koncel-Kedziorski et al. (2015) looks at single equa-
tion problems, and Shi et al. (2015) focuses on num-
ber word problems. Kushman et al. (2014) intro-
duces a template based approach to handle general
algebra word problems and several works have later
proposed improvements over this approach (Zhou
et al., 2015; Upadhyay et al., 2016; Huang et al.,
2017). There has also been work on generating ra-
tionale for word problem solving (Ling et al., 2017).
More recently, some focus turned to pre-university
exam questions (Matsuzaki et al., 2017; Hopkins et
al., 2017), which requires handling a wider range of
problems and often more complex semantics.

2.2 Semantic Parsing

Our work is also related to learning semantic parsers
from indirect supervision (Clarke et al., 2010; Liang
et al., 2011). The general approach here is to learn a
mapping of sentences to logical forms, with the only
supervision being the response of executing the log-
ical form on a knowledge base. Similarly, we learn
to select declarative rules from supervision that only
includes the final operation (and not which rule gen-
erated it). However, in contrast to the semantic pars-
ing work, in our case the selection of each declar-
ative rule usually requires reasoning across multi-
ple sentences. Also, we do not require an explicit
grounding of words or phrases to logical variables.

2.3 Background Knowledge in Learning

Approaches to incorporate knowledge in learning
started with Explanation based Learning (EBL) (De-
Jong, 1993; DeJong, 2014). EBL uses domain
knowledge based on observable predicates, whereas
we learn to map text to predicates of our declarative
knowledge. More recent approaches tried to incor-
porate knowledge in the form of constraints or ex-
pectations from the output (Roth and tau Yih, 2004;
wei Chang et al., 2007; Chang et al., 2012; Ganchev
et al., 2010; Smith and Eisner, 2006; Naseem et
al., 2010; Bisk and Hockenmaier, 2012; Gimpel and

Bansal, 2014).
Finally, we note that there has been some work

in the context of Question Answering on perturbing
questions or answers as a way to test or assure the
robustness of the approach or lack of (Khashabi et
al., 2016; Jia and Liang, 2017). We make used of
similar ideas in order to generate an unbiased test
set for Math word problems (Sec. 6).

3 Knowledge Representation

We introduce here our representation of domain
knowledge. We organize the knowledge hierarchi-
cally in two levels – concepts and declarative rules.
A math concept is a phenomenon which needs to be
understood to apply reasoning over quantities. Ex-
amples of concepts include part-whole relations, di-
mensional analysis, etc. Under each concept, there
are a few declarative rules, which dictate which op-
eration is needed in a particular context. An example
of a declarative rule under part-whole concept can
be that “if two numbers quantify “parts” of a larger
quantity, the operation between them must be addi-
tion”. These rules use concept specific predicates,
which we exemplify in the following subsections.

Since this work focuses on arithmetic word prob-
lems, we consider 4 math concepts which are most
common in these problems, as follows:

1. Transfer: This involves understanding the
transfer of objects from one person to another.
For example, the action described by the sen-
tence “Tim gave 5 apples to Jim”, results in Tim
losing “5 apples” and Jim gaining “5 apples”.

2. Dimensional Analysis: This involves under-
standing compatibility of units or dimensions.
For example, “30 pies” can be divided by “5
pies per row” to get the number of rows.

3. Part-Whole Relation: This includes asserting
that if two numbers quantify parts of a larger
quantity, they are to be added. For example,
the problem in Section 1 involves understand-
ing “pecan pies” and “apple pies” are parts of
“pies”, and hence must be added.

4. Explicit Math: Word problems often mention
explicit math relationships among quantities or
entities in the problem. For example, “Jim is 5



inches taller than Tim”. This concept captures
the reasoning needed for such relationships.

Each of these concepts comprises a small number
of declarative rules which determine the math oper-
ations; we describe them below.

3.1 Transfer

Consider the following excerpt of a word problem
exhibiting a transfer phenomenon: “Stephen owns 5
books. Daniel gave him 4 books. The goal of the
declarative rules is to determine which operation is
required between 5 and 4, given that we know that a
transfer is taking place. We note that a transfer usu-
ally involves two entities, which occur as subject and
indirect object in a sentence. Also, the direction of
transfer is determined by the verbs associated with
the entities. We define a set of variables to denote
these properties; we define as Subj1, Verb1, IObj1
the subject, verb and indirect object associated with
the first number, and as Subj2, Verb2, IObj2 the sub-
ject, verb and indirect object related to the second
number. For the above example, the assignment of
the variables are shown below:

[Stephen]Subj1 [owns]V erb1 5 books.
[Daniel]Subj2 [gave]V erb2 [him]IObj2 4 books.

In order to determine the direction of transfer,
we require some classification of verbs. In partic-
ular, we classify each verb into one of five classes:
HAVE, GET, GIVE, CONSTRUCT and DESTROY.
The HAVE class consists of all verbs which sig-
nify the state of an entity, such as “have”, “own”,
etc. The GET class contains verbs which indicate
the gaining of things for the subject. Examples of
such verbs are “acquire”, “borrow”, etc. The GIVE
class contains verbs which indicate the loss of things
for the subject. Verbs like “lend”, “give” belong
to this class. Finally CONSTRUCT class consti-
tutes verbs indicating construction or creation, like
“build”, “fill”, etc., while DESTROY verbs indi-
cate destruction related verbs like “destroy”, “eat”,
“use”, etc. This verb classification is largely based
on the work of (Hosseini et al., 2014).

Finally, the declarative rules for this concept have
the following form:

[Verb1 ∈ HAVE] ∧ [Verb2 ∈ GIVE] ∧
[Coref(Subj1, IObj2)]⇒ Addition

where Coref(A,B) is true when A and B repre-
sent the same entity or are coreferent, and is false
otherwise. In the examples above, Verb1 is “own”
and hence [Verb1 ∈ HAVE] is true. Verb2 is
“give” and hence [Verb2 ∈ GIVE] is true. Fi-
nally, Subj1 and IObj2 both refer to Stephen, so
[Coref(Subj1, IObj2)] returns true. As a result, the
above declarative rule dictates that addition should
be performed between 5 and 4.

We have 18 such inference rules for transfer, cov-
ering all combinations of verb classes and Coref()
values. All these rules generate addition or subtrac-
tion operations.

3.2 Dimensional Analysis

We now look at the use of dimensional analysis
knowledge in word problem solving. To use di-
mensional analysis, one needs to extract the units of
numbers as well as the relations between the units.
Consider the following excerpt of a word problem:
“Stephen has 5 bags. Each bag has 4 apples. Know-
ing that the unit of 5 is “bag” and the effective unit
of 4 is “apples per bag”, allows us to infer that the
numbers can be multiplied to obtain the total number
of apples.

To capture these dependencies, we first introduce
a few terms. Whenever a number has a unit of the
form “A per B”, we refer to “A” as the unit of the
number, and refer to “B” as the rate component of
the number. In our example, the unit of 4 is “apple”,
and the rate component of 4 is “bag”. We define
variables Unit1 and Rate1 to denote the unit and the
rate component of the first number respectively. We
similarly define Unit2 and Rate2. For the above ex-
ample, the assignment of variables are shown below:

Stephen has 5 [bags]Unit1. Each [bag]Rate2 has
4 [apples]Unit2.

Finally, the declarative rule applicable for our exam-
ple has the following form:



[Coref(Unit1,Rate2)]⇒ Multiplication

We only have 3 rules for dimensional analysis. They
generate multiplication or division operations.

3.3 Explicit Math

In this subsection, we want to capture the reasoning
behind explicit math relationships expressed in word
problems such as the one described in: “Stephen has
5 apples. Daniel has 4 more apples than Stephen”.
We define by Math1 and Math2 any explicit math
term associated with the first and second numbers
respectively. As was the case for transfers, we also
define Subj1, IObj1, Subj2, and IObj2 to denote the
entities participating in the math relationship. The
assignment of these variables in our example is:

[Stephen]Subj1 has 5 apples. [Daniel]Subj2 has
4 [more apples than]Math2 [Stephen]IObj2.

We classify explicit math terms into one of three
classes - ADD, SUB and MUL. ADD comprises
terms for addition, like “more than”, “taller than”
and “heavier than”. SUB consists of terms for sub-
traction like“less than”, “shorter than”, etc., and
MUL contains terms indicating multiplication, like
“times”, “twice” and “thrice”. Finally, the declara-
tive rule that applies for our example is:

[Coref(Subj1, IObj2)] ∧ [Math2 ∈ ADD] ⇒
Addition

We have only 7 rules for explicit math.

3.4 Part-Whole Relation

Understanding part-whole relationship entails un-
derstanding whether two quantities are hyponym,
hypernym or siblings (that is, co-hyponym, or parts
of the same quantity). For example, in the excerpt
“Mrs. Hilt has 5 pecan pies and 4 apple pies”, de-
termining that pecan pies and apple pies are parts of
all pies, helps inferring that addition is needed. We
have 3 simple rules which directly map from Hy-
ponym, Hypernym or Sibling detection to the cor-
responding math operation. For the above example,
the applicable declarative rule is:

[Sibling(Number1,Number2)]⇒ Addition

The rules for part-whole concept can generate addi-
tion and subtraction operations. Table 1 gives a list
of all the declarative rules. Note that all the declar-
ative rules are designed to determine an operation
between two numbers only. We introduce a strat-
egy in Section 4, which facilitates combining sub-
expressions with these rules.

4 Mapping of Word Problems to
Declarative Knowledge

Given an input arithmetic word problem x, the goal
is to predict the math expression y, which generates
the correct answer. In order to derive the expres-
sion y from the word problem x, we leverage math
concepts and declarative rules that we introduced in
Section 3. In order to combine two numbers men-
tioned in x, we first predict a concept k, and then we
choose a declarative knowledge rule r from k. The
rule r generates the math operation needed to com-
bine the two numbers. Consider the first example
in Table 2. To combine 6 and 9, we first decide on
the transfer concept, and then choose an appropriate
rule under transfer to generate the operation.

Next we need to combine the sub-expression (6+
9) with the number 3. However, our inference rules
were designed for the combination of two num-
bers only. In order to combine a sub-expression,
we choose a representative number from the sub-
expression, and use that number to determine the
operation. In our example, we choose the number 6
as the representative number for (6 + 9), and decide
the operation between 6 and 3, following a similar
procedure as before. This operation is now used to
combine (6 + 9) and 3.

The representative number for a sub-expression is
chosen such that it preserves the reasoning needed
for the combination of this sub-expression with
other numbers. We follow a heuristic to choose a
representative number from a sub-expression:

1. For transfers and part-whole relationship, we
choose the representative number of the left
subtree.

2. In case of rate relationship, we choose the num-
ber which does not have a rate component.



Transfer
[Verb1 ∈ HAVE] ∧ [Verb2 ∈ HAVE] ∧ [Coref(Subj1,Subj2)]⇒ −
[Verb1 ∈ HAVE] ∧ [Verb2 ∈ (GET ∪ CONSTRUCT)] ∧ [Coref(Subj1,Subj2)]⇒ +
[Verb1 ∈ HAVE] ∧ [Verb2 ∈ (GIVE ∪ DESTROY)] ∧ [Coref(Subj1,Subj2)]⇒ −
[Verb1 ∈ (GET ∪ CONSTRUCT)] ∧ [Verb2 ∈ HAVE] ∧ [Coref(Subj1,Subj2)]⇒ −
[Verb1 ∈ (GET ∪ CONSTRUCT)] ∧ [Verb2 ∈ (GET ∪ CONSTRUCT)] ∧ [Coref(Subj1,Subj2)]⇒ +
[Verb1 ∈ (GET ∪ CONSTRUCT)] ∧ [Verb2 ∈ (GIVE ∪ DESTROY)] ∧ [Coref(Subj1,Subj2)]⇒ −
[Verb1 ∈ (GIVE ∪ DESTROY)] ∧ [Verb2 ∈ HAVE] ∧ [Coref(Subj1,Subj2)]⇒ +
[Verb1 ∈ (GIVE ∪ DESTROY)] ∧ [Verb2 ∈ (GET ∪ CONSTRUCT)] ∧ [Coref(Subj1,Subj2)]⇒ −
[Verb1 ∈ (GIVE ∪ DESTROY)] ∧ [Verb2 ∈ (GIVE ∪ DESTROY)] ∧ [Coref(Subj1,Subj2)]⇒ +

We also have another rule for each rule above, which states that if Coref(Subj1,Obj2) or
Coref(Subj2,Obj1) is true, and none of the verbs is CONSTRUCT or DESTROY, the final operation
is changed from addition to subtraction, or vice versa.
Dimensionality Analysis
[Coref(Unit1,Rate2) ∨ Coref(Unit2,Rate1)]⇒ ×
[Coref(Unit1,Unit2)] ∧ [Rate2 6= null]⇒ ÷
[Coref(Unit1,Unit2)] ∧ [Rate1 6= null]⇒ ÷ (Reverse order)
Explicit Math
[Coref(Subj1, IObj2) ∨ Coref(Subj2, IObj1)] ∧ [Math1 ∈ ADD ∨Math2 ∈ ADD]⇒ +
[Coref(Subj1, IObj2) ∨ Coref(Subj2, IObj1)] ∧ [Math1 ∈ SUB ∨Math2 ∈ SUB]⇒ −
[Coref(Subj1,Subj2)] ∧ [Math1 ∈ ADD ∨Math2 ∈ ADD]⇒ −
[Coref(Subj1,Subj2)] ∧ [Math1 ∈ SUB ∨Math2 ∈ SUB]⇒ +
[Coref(Subj1,Subj2)] ∧ [Math1 ∈ MUL]⇒ ÷ (Reverse order)
[Coref(Subj1,Subj2)] ∧ [Math2 ∈ MUL]⇒ ÷
[Coref(Subj1, IObj2) ∨ Coref(Subj2, IObj1)] ∧ [Math1 ∈ MUL ∨Math2 ∈ MUL]⇒ ×
Part-Whole Relationship
[Sibling(Number1,Number2)]⇒ +
[Hyponym(Number1,Number2)]⇒ −
[Hypernym(Number1,Number2)]⇒ −

Table 1: List of declarative rules used in our system. ÷ (reverse order) indicates the second number being divided by
the first. To determine the order of subtraction, we always subtract the smaller number from the larger number.

3. In case of explicit math, we choose the num-
ber which is not directly associated with the ex-
plicit math expression.

4.1 Scoring Answer Derivations

Given the input word problem x, the solution math
expression y is constructed by combining numbers
in x with operations. We refer to the set of opera-
tions used in an expression y as �(y). Each opera-
tion o in �(y) is generated by first choosing a con-
cept ko, and then selecting a declarative rule ro from
that concept.

In order to discriminate between multiple candi-
date solution expressions of a word problem x, we

score them using a linear model over features ex-
tracted from the derivation of the solution. Our scor-
ing function has the following form:

SCORE(x, y) =
∑

o∈�(y)

wkφk(x, ko) + wrφr(x, r
o)

where φk(x, ko) and φr(x, ro) are feature vectors re-
lated to concept ko, and declarative rule ro, respec-
tively, and wk and wr are the corresponding weight
vectors. The term wkφk(x, ko) is the score for the
selection of ko, and the termwrφr(x, r

o) is the score
for the selection of ro. Finally, the total score is the
sum of the scores of all concepts and rule choices,
over all operations of y.



Word Problem Tim ’s cat had 6 kittens . He gave 3 to Jessica. Then Sara gave him 9 kittens . How
many kittens does he now have ?

Knowledge
based Answer

Derivation

Word Problem Mrs. Hilt baked pies last weekend for a holiday dinner. She baked 16 pecan pies and
14 apple pies. If she wants to arrange all of the pies in rows of 5 pies each, how many
rows will she have?

Knowledge
based Answer

Derivation

Table 2: Two examples of arithmetic word problems, and derivation of the answer. For each combination, first a math
concept is chosen, and then a declarative rule from that concept is chosen to infer the operation.

4.2 Learning

We wish to estimate the parameters of the weight
vectors wk and wr, such that our scoring function
assigns a higher score to the correct math expres-
sion, and a lower score to other competing math
expressions. For learning the parameters, we as-
sume access to word problems paired with the cor-
rect math expression. We show in Section 5 that
certain simple heuristics and rate component anno-
tations can be used to create somewhat noisy anno-
tations for the concepts needed for individual op-
erations. Hence, we will assume for our formu-
lation access to concept supervision as well. We
thus assume access to m examples of the following
form: {(x1, y1, {ko}o∈�(y1)), (x2, y2, {ko}o∈�(y2)),
. . . , (xm, ym, {ko}o∈�(ym))}.

We do not have any supervision for declarative
rule selection, which we model as a latent variable.
Two Stage Learning: A straightforward solution
for our learning problem could be to jointly learn
wk and wr using latent structured SVM. However,
we found that this model does not perform well. In-
stead, we chose a two stage learning protocol. At the
first stage, we only learn wr, the weight vector for

scoring the declarative rule choice. Once learned,
we fix the parameters for wr, and then learn the pa-
rameters for wk.

In order to learn the parameters for wr, we solve:

min
wr

1

2
||wr||2 + C

m∑
i=1

∑
o∈�(yi)

[
max

r̂∈ko,r̂⇒ô
wr · φr(x, r̂)+

∆(ô, o)
]
− max

r̂∈ko,r̂⇒o
wr · φr(x, r̂),

where r̂ ∈ ko implies that r̂ is a declarative rule
for concept ko, r̂ ⇒ o signify that the declarative
rule r̂ generates operation o, and ∆(ô, o) represents
a measure of dissimilarity between operations o and
ô. The above objective is similar to that of latent
structured SVM. For each operation o in the solu-
tion expression yi, the objective tries to minimize the
difference between the highest scoring rule from its
concept ko, and highest scoring rule from ko which
explains or generates the operation o.

Next we fix the parameters of wr, and solve:

min
wk

1

2
||wk||2 + C

m∑
i=1

max
y∈Y

[SCORE(xi, y) + ∆(y, yi)]− SCORE(xi, yi).



This is equivalent to a standard structured SVM ob-
jective. We use a 0 − 1 loss for ∆(ô, o). Note that
fixing the parameters of wr determines the scores
for rule selection, removing the need for any latent
variables at this stage.

4.3 Inference

Given an input word problem x, inferring
the best math expression involves computing
arg maxy∈Y SCORE(x, y), where Y is the set of all
math expressions that can be created by combining
the numbers in x with basic math operations.

The size of Y is exponential in the number of
quantities mentioned in x. As a result, we perform
approximate inference using beam search. We ini-
tialize the beam with the set E of all numbers men-
tioned in the problem x. At each step of the beam
search, we choose two numbers (or sub-expressions)
e1 and e2 fromE, and then select a math concept and
a declarative rule to infer an operation o. We cre-
ate a new sub-expression e3 by combining the sub-
expressions e1 and e2 with operation o. We finally
create a new set E′ from E, by removing e1 and
e2 from it, and adding e3 to it. We remove E from
the beam, and add all such modified sets E′ to the
beam. We continue this process until all sets in the
beam have only one element in them. We choose the
highest scoring expression among these elements as
the solution expression.

5 Model and Implementation Details

5.1 Supervision

Each word problem in our dataset is annotated with
the solution math expression, along with alignment
of numbers from the problem to the solution expres-
sion. In addition, we also have annotations for the
numbers which possess a rate component. An ex-
ample is shown in Fig 2. This is the same level of
supervision used in (Roy and Roth, 2017). Many of
the annotations can be extracted semi-automatically.
The number list is extracted automatically by a num-
ber detector, the alignments require human supervi-
sion only when the same numeric value is mentioned
multiple times in the problem. Most of the rate com-
ponent annotations can also be extracted automati-
cally, see (Roy and Roth, 2017) for details.

We apply a few heuristics to obtain noisy anno-

Problem: Mrs. Hilt baked pies last weekend for a
holiday dinner. She baked 16 pecan pies and 14 apple
pies. If she wants to arrange all of the pies in rows of
5 pies each, how many rows will she have?
Number List: 16, 14, 5
Solution: (16[1] + 14[2])/5[3] = 6
Rates: 5

Figure 2: Annotations in our dataset. Number List refers
to the numbers detected in the problem. The subscripts in
the solution indicate the position of the numbers in the
number list.

tations for the math concepts for operations. Con-
sider the case for combining two numbers num1 and
num2, by operation o. We apply the following rules:

1. If we detect an explicit math pattern in the
neighborhood of num1 or num2, we assign
concept ko to be Explicit Math.

2. If o is multiplication or division, and one of
num1 or num2 has a rate component, we as-
sign ko to be Dimensional Analysis.

3. If o is addition or subtraction, we check if the
dependent verb of both numbers are identical.
If they are, we assign ko to be Part-Whole re-
lationship, otherwise, we assign it to be Trans-
fer. We extract the dependent verb using the
Stanford dependency parser (Chen and Man-
ning, 2014).

The annotations obtained via these rules are of
course not perfect. We could not detect certain
uncommon rate patterns like “dividing the cost 4
ways”, and “I read same number of books 4 days
running”. There were part-whole relationships ex-
hibited with complementary verbs, as in “I won 4
games, and lost 3.”. Both these cases lead to noisy
math concept annotations.

However, we tested a small sample of these anno-
tations, and found less than 5% of them to be wrong.
As a result, we assume these annotations to be cor-
rect in our problem formulation.

5.2 Features

We use dependency parse labels and a small set
of rules to extract subject, indirect object, depen-
dent verb, unit and rate component of each number



mentioned in the problem. Details of these extrac-
tions can be found in the released codebase. Us-
ing these extractions, we define two feature func-
tions φk(x, ko) and φr(x, r

o), where x is the in-
put word problem, and ko and ro are the concept
and the declarative rule for operation o respectively.
φr(x, r

o) constitutes the following features:

1. If ro contains Coref(·) function, we add fea-
tures related to similarity of the arguments of
Coref(·) (jaccard similarity score and presence
of pronoun in one of the arguments).

2. For part-whole relationships, we add indica-
tors for a list of words like “remaining”, “rest”,
“either”, “overall”, “total”, conjoined with the
part-whole function in ro (Hyponymy, Hyper-
nymy, Sibling).

3. Unigrams from the neighborhood of numbers
being combined.

Finally, φk(x, ko) generates the following features:

1. If ko is related to dimensional analysis, we add
features indicating the presence of a rate com-
ponent in the combining numbers.

2. If ko is part-whole, we add features indicating
whether the verbs of combining numbers are
identical.

Note that these features capture several interpretable
functions like coreference, hyponymy, etc.

We do not learn three components of our system
– verb classification for transfer knowledge, catego-
rization of explicit math terms, and irrelevant num-
ber detection. For verb classification, we use a seed
list of around 10 verbs for each category. Given a
new verb v, we choose the most similar verb v′ from
the seed lists according to Glove vector (Pennington
et al., 2014) based similarity . We assign v the cat-
egory of v′. This can be replaced by a learned com-
ponent (Hosseini et al., 2014). However we found
seed list based categorization to work well in most
cases. For explicit math, we check for a small list of
patterns to detect and categorize math terms. Note
that for both the cases above, we still have to learn
Coref(·) function to determine the final operation.
Finally, to detect irrelevant numbers (numbers which

are not used in the solution), we use a set of rules
based on the units of numbers. Again, this can be
replaced by a learned model (Roy and Roth, 2015).

6 Experiments

6.1 Results on Existing Dataset

We first evaluate our approach on the existing
datasets of AllArith, AllArithLex, and AllAr-
ithTmpl (Roy and Roth, 2017). AllArithLex and Al-
lArithTmpl are subsets of the AllArith dataset, cre-
ated to test the robustness to new vocabulary, and
new equation forms respectively. We compare to the
top performing systems for arithmetic word prob-
lems. They are as follows:

1. TEMPLATE : Template based algebra word
problem solver of (Kushman et al., 2014).

2. LCA++ : System of (Roy and Roth, 2015)
based on lowest common ancestors of math ex-
pression trees.

3. UNITDEP: Unit dependency graph based
solver of (Roy and Roth, 2017).

We refer to our approach as KNOWLEDGE. For all
solvers, we use the system released by the respec-
tive authors. The system of TEMPLATE expects an
equation as the answer, whereas our dataset contains
only math expressions. We converted expressions to
equations by introducing a single variable, and as-
signing the math expression to it. For example, an
expression “(2 + 3)” gets converted to “X = (2 + 3)”.

The first few columns of Table 3 shows the per-
formance of the systems on the aforementioned
datasets1. The performance of KNOWLEDGE is on
par or lower than some of the existing systems. We
analyzed the systems, and found most of them to
be not robust to perturbations of the problem text;
Table 4 shows a few examples. We further ana-
lyzed the datasets, and identified several biases in
the problems (in both train and test). Systems which
remember these biases get an undue advantage in
evaluation. For example, the verb “give” only ap-
pears with subtraction, and hence the models are

1Results on the AllArith datasets are slightly different from
(Roy and Roth, 2017), since we fixed several ungrammatical
sentences in the dataset



System AllArith AllArith
Lex

AllArith
Tmpl

Aggregate Aggregate
Lex

Aggregate
Tmpl

Train on
AllArith,
Test on
Perturb

TEMPLATE 71.96 64.09 70.64 54.62 45.05 54.69 24.2
LCA++ 78.34 66.99 75.66 65.21 53.62 63.0 43.57
UNITDEP 79.67 71.33 77.11 69.9 57.51 68.64 46.29
KNOWLEDGE 77.86 72.53 74.7 73.32∗ 66.63∗ 68.62 65.66∗

Table 3: Accuracy in solving arithmetic word problems. All columns except the last report 5-fold cross validation
results. ∗ indicates statistically significant improvement (p = 0.05) over second highest score in the column.

Problem Systems which solved correctly
Trained on AllArith Trained on Aggregate

Adam has 70 marbles. Adam gave 27 marbles to
Sam. How many marbles does Adam have now?

TEMPLATE, UNITDEP,
LCA, KNOWLEDGE

LCA, UNITDEP,
KNOWLEDGE

Adam has 70 marbles. Sam gave 27 marbles to
Adam. How many marbles does Adam have now?

KNOWLEDGE TEMPLATE, KNOWLEDGE

Adam has 5 marbles. Sam has 6 more marbles than
Adam. How many marbles does Sam have?

LCA, UNITDEP,
KNOWLEDGE

LCA, UNITDEP,
KNOWLEDGE

Adam has 11 marbles. Adam has 6 more marbles
than Sam. How many marbles does Sam have?

TEMPLATE, KNOWLEDGE TEMPLATE, KNOWLEDGE

Table 4: Pairs of pertubed problems, along with the systems which get them correct

learning an erroneous correlation of “give” with sub-
traction. Since the test also exhibit the same bias,
these systems get all the “give”-related questions
correct. However, they fail to solve the problem
in Table 4, where “give” results in addition. We
also tested KNOWLEDGE on the addition subtrac-
tion problems dataset released by (Hosseini et al.,
2014). It achieved a cross validation accuracy of
77.19%, which is competitive with the state of the
art accuracy of 78% achieved with the same level of
supervision. The system of (Mitra and Baral, 2016)
achieved 86.07% accuracy on this dataset, but re-
quires rich annotations for formulas and alignment
of numbers to formulas.

6.2 New Dataset Creation

In order to remove the aforementioned biases from
the dataset, we augment it with new word problems
collected via a crowdsourcing platform. These new
word problems are created by perturbing the original
problems minimally, such that the answer is differ-
ent from the original problem. For each word prob-
lem p with an answer expression a in our original
dataset AllArith, we replace one operation in a to

create a new math expression a′. We ask annotators
to modify problem p minimally, such that a′ is now
the solution to the modified word problem.

We create a′ from a either by replacing an addi-
tion with subtraction or vice versa, or by replacing
multiplication with division or vice versa. We do not
replace addition and subtraction with multiplication
or division, since there might not be an easy per-
turbation that supports this conversion. We only al-
lowed perturbed expressions which evaluate to val-
ues greater than 1. For example, we generate the
expression “(3+2)” from “(3-2)”, we generated ex-
pressions “(10+2)/4” and “(10-2)*4” for the expres-
sion “(10-2)/4”. We generate all possible perturbed
expressions for a given answer expression, and ask
for problem text modification for each one of them.

We show the annotators the original problem text
p paired with a perturbed answer a′. The instructions
advised them to copy over the given problem text,
and modify it as little as possible so that the given
math expression is now the solution to this modified
problem. They were also instructed to not add or
delete the numbers mentioned in the problem. If the
original problem mentions two “3”s and one “2”, the



modified problem should also contain two “3”s and
one “2”.

We manually pruned problems which did not
yield the desired solution a′, or were too different
from the input problem p. This procedure gave us
a set of 661 new word problems, which we refer to
as Perturb. Finally we augment AllArith with the
problems of Perturb, and call this new dataset Ag-
gregate. Aggregate has a total of 1492 problems.

The addition of the Perturb problems ensures
that the dataset now has problems with similar lex-
ical items generating different answers. This mini-
mizes the bias that we discussed in subsection 6.1.
To quantify this, consider the probability distribu-
tion over operations for a quantity q, given that word
w is present in the neighborhood of q. For an un-
biased dataset, you will expect the entropy of this
distribution to be high, since the presence of a sin-
gle word in a number neighborhood will seldom be
completely informative for the operation. We com-
pute the average of this entropy value over all num-
bers and neighborhood words in our dataset. AllAr-
ith and Perturb have an average entropy of 0.34 and
0.32 respectively, whereas Aggregate’s average en-
tropy is 0.54, indicating that, indeed, the complete
data set is significantly less biased.

6.3 Generalization from Biased Dataset

First, we evaluate the ability of systems to general-
ize from biased datasets. We train all systems on
AllArith, and test them on Perturb (which was cre-
ated by perturbing AllArith problems). The last col-
umn of Table 3 shows the performance of systems
in this setting. KNOWLEDGE outperforms all other
systems in this setting with around 19% absolute im-
provement over UNITDEP. This shows that declara-
tive knowledge allows the system to learn the correct
abstractions, even from biased datasets.

6.4 Results on the New Dataset

Finally, we evaluate the systems on the Aggre-
gate dataset. Following previous work (Roy and
Roth, 2017), we compute two subsets of Aggregate
comprising 756 problems each, using the MAWPS
(Koncel-Kedziorski et al., 2016) system. The first,
called AggregateLex, is one with low lexical rep-
etitions, and the second called AggregateTmpl is
one with low repetitions of equation forms. We

also evaluate on these two subsets on a 5-fold cross-
valiation. Columns 4-6 of Table 3 show the perfor-
mance of systems on this setting. KNOWLEDGE sig-
nificantly outperforms other systems on Aggregate
and AggregateLex, and is similar to UNITDEP on
AggregateTmpl. There is a 9% absolute improve-
ment on AggregateLex, showing that KNOWLEDGE

is significantly more robust to low lexical overlap
between train and test. The last column of Table 4
also shows that the other systems do not learn the
right abstraction, even when trained on Aggregate.

6.5 Analysis
Coverage of the Declarative Rules We chose
math concepts and declarative rules based on their
prevalance in arithmetic word problems. We found
that the four concepts introduced in this paper cover
almost all the problems in our dataset; only missing
4 problems involving application of area formulas.
We also checked earlier arithmetic problem datasets
from the works of (Hosseini et al., 2014; Roy and
Roth, 2015), and found that the math concepts and
declarative rules introduced in this paper cover all
their problems.

A major challenge in applying these concepts and
rules to algebra word problems is the use of variables
in constructing equations. Variables are often im-
plicitly described, and it is difficult to extract units,
dependent verbs, associated subjects and objects for
the variables. However, we need these extractions in
order to apply our declarative rules to combine vari-
ables. There has been some work to extract meaning
of variables (Roy et al., 2016) in algebra word prob-
lems; an extension of this can possibly support the
application of rules in algebra word problems. We
leave this exploration to future work.

Higher standard word problems often require ap-
plication of math formulas like ones related to area,
interest, probability, etc. Extending our approach to
handle such problems will involve encoding math
formulas in terms of concepts and rules, as well
as adding concept specific features to the learned
predictors. The declarative rules under the Explicit
Math category currently handles simple cases, this
set needs to be augmented to handle complex num-
ber word problems found in algebra datasets.
Gains achieved by Declarative Rules Table 5
shows examples of problems which KNOWLEDGE



Isabel had 2 pages of math homework and 4 pages
of reading homework. If each page had 5 prob-
lems on it, how many problems did she have to
complete total ?
Tim’s cat had kittens. He gave 3 to Jessica and 6
to Sara . He now has 9 kittens . How many kittens
did he have to start with ?
Mrs. Snyder made 86 heart cookies. She made
36 red cookies, and the rest are pink. How many
pink cookies did she make?

Table 5: Examples which KNOWLEDGE gets correct, but
UNITDEP does not.

gets right, but UNITDEP does not. The gains can
be attributed to the injection of declarative knowl-
edge. Earlier systems like UNITDEP try to learn the
reasoning required for these problems from the data
alone. This is often difficult in the presence of lim-
ited data, and noisy output from NLP tools. In con-
trast, we learn probabilistic models for interpretable
functions like coreference, hyponymy, etc., and then
use declarative knowledge involving these functions
to perform reasoning. This considerably reduces the
complexity of the target function to be learnt, and
hence we end up with a more robust model.
Effect of Beam Size We used a beam size of 1000 in
all our experiments. However, we found that vary-
ing the beam size does not effect the performance
significantly. Even lowering the beam size to 100
reduced performance by only 1%.
Weakness of Approach A weakness of our method
is the requirement to have all relevant declarative
knowledge during training. Many of the component
functions (like coreference) are learnt through latent
alignments with no explicit annotations. If too many
problems are not explained by the knowledge, the
model will learn noisy alignments for the compo-
nent functions.

Table 6 shows the major categories of errors with
examples. 26% of the errors are due to extraneous
number detection. We use a set of rules based on
units of numbers, to detect such irrelevant numbers.
As a result, we fail to detect numbers which are ir-
relevant due to other factors, like associated entities,
or associated verb. We can potentially expand our
rule based system to detect those, or replace it by a
learned module like (Roy and Roth, 2015). Another
major source of errors is parsing of rate components,

Irrelevant
Number
Detection
(26%)

Sally had 39 baseball cards, and
9 were torn. Sara bought 24 of
Sally’s baseball cards . How many
baseball cards does Sally have now?

Parsing Rate
Component
(26%)

Mary earns $46 cleaning a home.
How many homes did she clean, if
she made 276 dollars?

Coreference
(22%)

There are 5 people on the Green
Bay High track team. If a relay
race is 150 meters long, how far will
each team member have to run?

Table 6: Examples of errors made by KNOWLEDGE

that is, understanding “earns $46 cleaning a home”
should be normalized to “46$ per home”. Although
we learn a model for coreference function, we make
several mistakes related to coreference. For the ex-
ample in Table 6, we fail to detect the coreference
between “team member” and “people”.

7 Conclusion

In this paper, we introduce a framework for incorpo-
rating declarative knowledge in word problem solv-
ing. Our knowledge based approach outperforms
all other systems, and also learns better abstractions
from biased datasets. Given that the variability in
text is much larger than the number of declarative
rules that governs Math word problems, we believe
that this is a good way to introduce Math knowledge
to a natural language understanding system. Conse-
quently, future work will involve extending our ap-
proach to handle a wider range of word problems,
possibly by supporting better grounding of implicit
variables and including a larger number of math con-
cepts and declarative rules. An orthogonal explo-
ration direction is to apply these techniques to gen-
erate summaries of financial or sports news, or gen-
erate statistics of war or gun violence deaths from
news corpora. A straightforward approach can be
to augment news documents with a question asking
for the required information, and treating this aug-
mented news document as a math word problem.

Code and dataset are available at https://
github.com/CogComp/arithmetic.

https://github.com/CogComp/arithmetic
https://github.com/CogComp/arithmetic
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