
Mach Learn
DOI 10.1007/s10994-012-5296-5

Structured learning with constrained conditional models

Ming-Wei Chang · Lev Ratinov · Dan Roth

Received: 6 May 2008 / Accepted: 6 May 2012
© The Author(s) 2012

Abstract Making complex decisions in real world problems often involves assigning values
to sets of interdependent variables where an expressive dependency structure among these
can influence, or even dictate, what assignments are possible. Commonly used models typ-
ically ignore expressive dependencies since the traditional way of incorporating non-local
dependencies is inefficient and hence leads to expensive training and inference.

The contribution of this paper is two-fold. First, this paper presents Constrained Con-
ditional Models (CCMs), a framework that augments linear models with declarative con-
straints as a way to support decisions in an expressive output space while maintaining mod-
ularity and tractability of training. The paper develops, analyzes and compares novel algo-
rithms for CCMs based on Hidden Markov Models and Structured Perceptron. The proposed
CCM framework is also compared to task-tailored models, such as semi-CRFs.

Second, we propose CoDL, a constraint-driven learning algorithm, which makes use of
constraints to guide semi-supervised learning. We provide theoretical justification for CoDL
along with empirical results which show the advantage of using declarative constraints in
the context of semi-supervised training of probabilistic models.

Keywords Semi-supervised learning · Information extraction · Natural language
processing

1 Introduction

Decision making in domains such as natural language processing is characterized by am-
biguity and partial or imperfect information sources, which necessitate the use of models

Editor: Hal Daume III.

M.-W. Chang · L. Ratinov (�) · D. Roth
Computer Science Department, University of Illinois at Urbana-Champaign, Urbana, IL, USA
e-mail: ratinov2@illinois.edu

M.-W. Chang
e-mail: mchang21@illinois.edu

D. Roth
e-mail: danr@illinois.edu

mailto:ratinov2@illinois.edu
mailto:mchang21@illinois.edu
mailto:danr@illinois.edu

Mach Learn

learned from data. Decisions made with these models often involve assigning values to sets
of interdependent variables where the expressive dependency structure among variables of
interest can influence, or even dictate, what assignments are possible. To cope with these
difficulties, problems are typically modeled as stochastic processes involving both output
variables (those whose values are sought) and the information sources, often referred to as
input or observed variables.

The dominant family of models used in these tasks are linear models, which can be
represented as a weight vector w, corresponding to a set of feature functions {Φ}. For an
input instance x and an output assignment y, the “score” of the instance can be expressed as
a weighted sum of feature functions: f (x,y) = ∑

wiφi(x,y). When the model is evaluated
on an unlabeled instance x, the aim is to infer the best assignment to the output variables,

y∗ = arg max
y

∑
wiφi(x,y). (1)

We refer to this problem as the “inference problem”. Many different discriminative and
generative learning algorithms can be represented as linear models. This view has given
rise to developing learning algorithms for structured models expressed linearly over more
expressive feature functions (Roth 1999; Collins 2002; Lafferty et al. 2001).

While linear models share the same “prediction function” (Eq. (1)), there exist several
fundamentally different learning algorithms for these models. One approach is to com-
pletely ignore the output structure at the learning stage (by learning local models that make
independent local decisions), while enforcing coherent assignments only at the inference
stage (Roth and Yih 2004, 2007). Another learning solution is to, directly or indirectly,
model the dependencies among the output variables in the learning process and thus in-
duce models that optimize a global performance measure. In this scenario, to allow effi-
cient training and inference, the model of the joint distribution is factored into functions of
subsets of the variables, yielding models such as Markov Random Fields (MRFs), Condi-
tional Random Fields (CRFs) and Hidden Markov Models (HMMs). Although, in general,
the feature functions Φ(x,y) used in a linear representation such as in Eq. (1) can repre-
sent any function of x and y, it is typical to use Φ(x,y) which only encode local relation-
ships, as in the linear representation of first/second-order HMMs (Roth 1999; Collins 2002;
Lafferty et al. 2001). This makes the process of finding the best assignment given an instance
x tractable. However, such restrictions usually render the feature functions not expressive
enough to capture non-local dependencies that are present in the problem.

In many problems, dependencies among output variables have non-local nature, and in-
corporating them into the model as if they were probabilistic phenomena can undo a great
deal of the benefit gained by the aforementioned factorization, as well as making the model
more difficult to design and understand. For example, consider an information extraction
task where two particular types of entities cannot appear together in the same document.
Modeling mutual exclusion in the scenario where n random variables can be assigned mu-
tually exclusive values introduces n2 pairwise edges in the graphical model, with obvious
impact on training and inference. Obviously, this is very expensive given that a lot of pa-
rameters are being wasted in order to learn something the model designer already knows.
For example, in order to capture such constraints by higher order HMMs or CRFs, we need
to build a T -order model which can consider all connections if there are T tokens in x. This
requires a significant increase in the number of parameters even though we actually know
that all the weights on the links between yi and yj should be −∞ if yi equals to yj . In
short, HMMs and CRFs do not have a way to encode the knowledge directly but only indi-
rectly, by adding more features or increasing the order of the models (Roth and Yih 2005).

Mach Learn

However, inference problems in high-order models are very expensive and achieving good
performance by learning a more complex model requires more labeled examples. Therefore,
high order models will have a huge disadvantage when the number of examples is limited. In
short, non-local and first-order relationships can be very difficult to model using only local
features and might require a lot of training examples to achieve good results.

In this paper, we address the need of having a general framework that allows one to en-
code expressive knowledge about the model directly and develop a general learning frame-
work to address this issue. The contributions of the paper are as follows:

1. We propose the Constrained Conditional Model (CCM) framework, which provides a
direct way to inject prior knowledge into a conditional model, in the form of constraints.
One advantage of CCMs is that it allows combining simple models with declarative
and expressive constraints. This is an effective approach to making probabilistic models
expressive. Therefore, CCMs can be considered as an interface for incorporating knowl-
edge into off-the-shelf statistical models without designing a task-specific model. Note
that adding constraints to CCMs does not enlarge the feature space but rather augments
the simple linear model. Along with appropriate training approaches that we discuss later,
we need to learn simpler model than standard high order probabilistic models but can still
make decisions with expressive models. Since within CCMs we combine declarative con-
straints, possibly written as first order logic expressions (Rizzolo and Roth 2007), with
learned probabilistic models, we can treat CCMs as a way to combine or bridge logical,
declarative, expressions and learning statistical models. We also discuss how to solve
inference problems with expressive constraints efficiently in Sect. 2.2.

2. Based on the principle introduced by CCMs, we introduce HMMCCM, a constraint-
infused Hidden Markov Model. We demonstrate how to train and test HMMCCM in a
principled way and show that adding little knowledge can improve the model signifi-
cantly.
Note that by modeling the constraints directly, the inference problem in Eq. (1), becomes
harder to solve, compared to the one used by low order HMMs/CRFs. As we show later,
such a sacrifice is usually very rewarding in terms of final performance. Moreover, we
show that constraints do not add any overhead to our learning algorithm of HMMCCM

under our assumption.
3. We show that prior knowledge plays a crucial role when the amount of labeled data is

limited. We empirically show that incorporating high-level knowledge via CCMs signif-
icantly improves the results of both supervised learning and semi-supervised learning.
Note that semi-supervised learning results are especially interesting, since we can con-
sider constraints as a supervision resource that guides the semi-supervised learning pro-
cedure.

This paper formally defines CCMs so that it is easier to apply constraints to statistical
models in both supervised and semi-supervised settings. Moreover, we provide a principled
justification for the algorithms proposed in (Chang et al. 2007) (with modifications) and
obtain better empirical results. Finally, this paper includes a wide set of experiments that
show the properties of the HMMCCM algorithm and compares it to other algorithms.

Note that we are not the first to point out the importance of long distance relationships and
other approximate supervised training algorithms have been proposed (see Sect. 7 for more
details). However, we want to stress that in CCMs, the notion of constraints is different and
more general. For example, the CCM framework offers the possibility to separate models
(features) and constraints. Therefore, it is possible to apply constraints to a trained model
directly without re-training the model. Moreover, such separation is the key to the success

Mach Learn

of our semi-supervised learning algorithm, which uses constraints as a form of supervision.
We clarify this point later in the text.

The rest of the paper is organized as follows: Sect. 2 formally defines Constrained Con-
ditional Models. We introduce an instance of CCMs based on a Hidden Markov Model in
Sect. 3. In Sect. 4 we introduce the tasks and the data on which the algorithms will be tested.
The experimental results are presented in Sect. 5. In Sect. 6 we discuss other options of
using a CCM, beyond a Hidden Model, and provide some results on learning CCMs with
structured perceptron. We discuss related work in Sect. 7 and make conclusions in Sect. 8.

2 Constrained conditional model

CCMs target structured prediction problems. Given a point x in an input space X , the goal
is to find a labeled assignment y in the set of all possible output structures for x, Y(x). For
example, in part-of-speech (POS) tagging, Y(x) is the set of all possible POS tags for a
given input sentence x.

Given a set of feature functions Φ = {φi(·)}n
i=1, φi : X × Y → R, which typically encode

the local properties of a pair (x,y) (often, the image of φi is {0,1}), the “score” of a structure
y of a linear model can be represented as

f (x,y) = wT Φ(x,y) =
n∑

i=1

wiφi(x,y).

The prediction function of this linear model is arg maxy∈Y(x) f (x,y).
Constrained Conditional Models provide a general interface that allows users to easily

combine domain knowledge (which is provided by humans) and statistical models (which
are learned from the data). In this paper, we represent domain knowledge as a (usually
small) set of constraints C = {Ck(·)}m

k=1, Ck : X × Y → {0,1} which encode predicates over
a pair (x,y). If Ck(x,y) = 1, it means that the pair (x,y) violates the constraint Ck . For
each constraint, we are also provided a function dCk

: X × Y → R that measures the degree
to which the constraint Ck is violated in a pair (x,y). While there are different ways to
estimate dCk

, in this paper, we define the “violation function” as follows. Let

y[1...i] = (y1, y2, . . . , yi),

be a partial assignment of y. Then

dCk
(x,y) =

|y|∑

i=1

Ĉk(x;y[1...i]), (2)

where Ĉk(x;y[1...i]) is a binary function which indicates whether yi violates the constraint
Ck with respect to a partial assignment y[1...i−1]. Note that for some constraints, the violation
cannot be calculated with partial assignments. In these cases, Ĉk will return 0 to indicate the
constraints i is not violated according to the current partial assignment.

A Constrained Conditional Model can be represented using two weight vectors: the
feature weight vector w and the constraint penalty vector ρ. The score of an assignment

Mach Learn

y ∈ Y for an instance x ∈ X can then be obtained by1

fΦ,C(x,y) =
n∑

i=1

wiφi(x,y) −
m∑

k=1

ρkdCk
(x,y). (3)

A CCM then selects the best structure using the inference problem

y∗ = arg max
y∈Y(x)

fΦ,C(x,y), (4)

as its prediction.
Note that Eq. (3) allows using both “hard constraints” (constraints that should not be

violated) and “soft constraints” (constraints that can occasionally be violated). Assume that
the constraint set can be partitioned into a soft constraint set S and a hard constraint set H
(H ∩ S = ∅ and H ∪ S = C). The set of “feasible” structures for a given input x is then
reduced to

Ȳ(x) = {
u | u ∈ Y(x),Ck(x,u) = 0,∀Ck ∈ H

}

Eq. (4) can be rewritten as

arg max
y∈Ȳ(x)

n∑

i=1

wiφi(x,y) −
∑

k:Ck∈S

ρkdCk
(x,y).

Note that a CCM is not restricted to be trained with any particular learning algorithm.
The key goal of a CCM is to allow combining constraints and models in the test phase.
Similarly to other linear models, specialized algorithms may need to be developed to train
CCMs. Notice also that the left component in Eq. (3) may stand for multiple linear models,
trained separately. Unlike standard linear models, we assume the availability of some prior
knowledge, encoded in the form of constraints. When there is no prior knowledge, there is
no difference between CCMs and other linear models.

2.1 The benefits of distinguishing between constraints and features

In Eq. (3), the constraints term (the second term) appears to be similar to the features term
(the first time). In fact, the decision of whether to use constraints or features to express long
distance relationships can sometimes be a design choice. However, it is important to note
that both in this work and in many other recent publications (Roth and Yih 2004, 2005;
Chang et al. 2007; Graca et al. 2007; Bellare et al. 2009; Carlson et al. 2010; Ganchev et al.
2010), people have demonstrated the importance of separating features and constraints. In
this section we discuss this issue in details.

We note that the distinction is neither obvious nor natural. For example, it is sometimes
possible to clamp the weights in CRFs/MRFs to achieve the “constraints behavior” and our
encoding of constraints with FOL-like expressions can sometimes be seen as nothing more
than a syntactic sugaring. However, consider the constraint “two labels A and B cannot
appear in the same assignment”. Adding the O(|y|2) weights and clamping them requires a
special machinery, for which our declarative formulation seems extremely appropriate.

1Recall that n is the number of features and is typically very large, and m is the number of constraints,
typically small.

Mach Learn

– Hard constraints vs. features:
While we simplified our notation in Eq. (3), the constraints term is different from the
features term because it can be used to enforce hard constraints. Hence, it is necessary to
separate constraints and features.

– Reusing and improving existing models with expressive constraints:
It is often expensive to retrain a complex NLP system. While choosing features or con-
straints to express long distance relationships can be a design choice, adding more features
often requires expensive retraining. Moreover, in Roth and Yih (2004), it is proposed to
use constraints to combine two independently trained models. Note that if we model the
long distance constraints as features, we need to train these two models jointly, which can
be significantly more expensive than training them separately by separating constraints
from the features.
The benefit of adding constraints to existing models without retraining is partly due to
the fact that constraints can be a lot more expressive than the features used in the existing
models. Note that the predicate C(x,y) should be thought of as similar to a “first order
logic expression”, which is very different from features Φ(x,y). An example of C(x,y)

might be “1, if all yis in the sequence y are assigned different values, 0 otherwise”, which
is very difficult to model using features. We note that usually, due to their first order logic
functionality, the set of constraints is compact. In fact, in our experiments, we only have
about 10 constraints. Compared to the feature vector, which may contain thousands of
features, due to their propositional “grounded” nature, the size of C(x,y) is quite small.
Moreover, C(x,y) usually encodes long distance relationships among y variables, which
cannot be captured by the feature functions Φ(x,y).

– Implications on learning algorithms:
Distinguishing expressive constraints from models also impacts the learning performance.
Many recent works have shown the benefits of keeping the existing model and treating
the expressive constraints as a form of supervision (Chang et al. 2007; Graca et al. 2007;
Bellare et al. 2009; Carlson et al. 2010; Ganchev et al. 2010). As we show in this work, us-
ing constraints as a supervision resource can be very effective when there are few labeled
examples, e.g., in a semi-supervised setting.
In a supervised setting, we distinguish the constraints from features in Eq. (3) because
the constraints should be trusted most of the time. Therefore, the penalties ρ can be fixed
or handled separately. For example, if we are confident about our knowledge, rather than
learning the {ρj }, we can directly set them to ∞, thus forcing the chosen assignment y to
satisfy the constraints. These issues are discussed in details later in the paper.

– Efficiency:
Another difference between ρ and w is that ρ should always be positive. The reason
is that dCi

(x,y) ≥ 0 and the assignments that violate the constraints should be penalized
(see Eq. (3)). This allows us to design an admissible heuristic and speed up exact inference
using A∗ search. This nice result hinges on distinguishing constraints from features. This
is of particular importance, since the constraints could be non-local, therefore efficient
dynamic programming algorithms are not applicable.

There are several additional advantages of using constraints. First, constraints provide a
platform for encoding prior knowledge, possibly expressed as high level predicates. As we
will show later, this is especially important when the number of labeled instances is small.
Second, constraints can be significantly more expressive than features commonly used by
linear models. Third, adding constraints can simplify the modeling of a complex structured
output problem. Instead of building a model from complex features, with the additional
training cost this implies, CCMs provide a way to combine “simple” learned models with

Mach Learn

a small set of “expressive” constraints to support final decisions. Importantly, combining
simple models with constraints often results in better performance. For example, the top-
ranking system in the CoNLL 2005 shared task uses a CCM approach and outperforms
many systems built using complex models (Punyakanok et al. 2005a). There is a lot of more
recent literature that provides additional evidence for this.

2.2 Inference with constraints

Adding expressive constraints comes with a cost—the dynamic programming inference al-
gorithms often used in off-the-shelf statistical models can no longer be applied. In this sec-
tion, we discuss three different types of inference algorithms that allow solving the inference
problem in Eq. (4) with expressive constraints.

2.2.1 Integer linear programming

In the earlier related works that made use of constraints, the constraints were assumed to be
Boolean functions; in most cases, a high level (first order logic) description of the constraints
was compiled into a set of linear inequalities, and exact inference was done using an integer
linear programming formulation (ILP) (Roth and Yih 2004, 2005, 2007; Punyakanok et al.
2005a; Barzilay and Lapata 2006; Clarke and Lapata 2006). Although ILP can be intractable
for very large-scale problems, it has been shown to be quite successful in practice when
applied to many practical NLP tasks (Roth and Yih 2005, 2007).

2.2.2 A∗ search

Recall that the inference problem for CCMs is define by (as in Eq. (4)):

max
y

fΦ,C(x,y) = max
y

wT Φ(x,y) −
m∑

k=1

ρkdCk(x,y).

Assume that there exists an efficient dynamic programming algorithm that computes
arg max wT Φ(x,y) without considering the constraints.2 This implies that if we ignore the
constraints, given a partial label assignment y[1...i], we can efficiently complete the label as-
signment y[(i+1)...|y|] without considering the constraint penalty, where |y| represents the total
number of “parts” of the output structure. That is, we can solve the following optimization
problem efficiently and exactly:

h(x,y[1...i]) = max
y[(i+1)...|y|]

wT Φ(x,y[(i+1)...|y|] | y[1...i]) (5)

Note that in the above equation, y[1...i] is fixed and we search over the rest of an assignment
y[(i+1)...|y|] to complete y = y[1...i] · y[(i+1)...|y|]. The value wT Φ(x,y[(i+1)...|y|] | y[1...i]) is the
partial score for the y[(i+1)...|y|] with the given prefix and hence,

wT Φ(x,y[1...i] · y[(i+1)...|y|]) = wT Φ(x,y[1...i]) + wT Φ(x,y[(i+1)...|y|] | y[1...i]).

2This is the case for virtually all off-the-shelf structured statistical models, since their feature function Φ(x,y)

can be decomposed. For example, if the task is a sequential tagging task and the feature function only captures
the relationship of consecutive tokens, there exists an efficient Viterbi algorithm that can return the optimal
sequence.

Mach Learn

We can perform this factorization because of the assumption that the feature function can be
decomposed.

We also define g as the function that returns the score (including constraint penalties) of
the current partial assignment y[1...i]:

g(x,y[1...i]) = wT Φ(x,y[1...i]) −
m∑

j=1

ρjdCj
(x,y[1...i]). (6)

Next, we show that using g and h, the A∗algorithm can always return the optimal solution
of the CCM inference problem.

Theorem 1 Assume that ρk ≥ 0 for k = 1 . . .m (that is, we always penalize the assignment
that violates the constraints) and that the A∗ algorithm uses h(x,y[1...i]) (Eq. (5)) as the
heuristic function and uses g(x,y[1...i]) (Eq. (6)) to obtain the score of the current partial
assignment as an estimation of the final score (that is, we use g(x,y[1...i]) + h(x,y[1...i])).
Then, the A∗ algorithm will always return the optimal solution of Eq. (3), the CCM inference
problem.

Proof The proof follows by showing that h is an admissible heuristic function. Since ρk ≥ 0,
for k = 1 . . .m and by the definition of Eq. (3),

max
u,u[1...i]=y[1...i]

fΦ,C(x,u) ≤ g(x,y[1...i]) + h(x,y[1...i]).

Hence, we never underestimate the final score given the current partial assignment y[1...i].
Given that we are solving a maximization problem, h is an admissible heuristic function for
the A∗algorithm. �

2.2.3 Approximate search

While the A∗ algorithm is technically sound, in this paper, we use beam search to approxi-
mate the solution for the inference problem in Eq. (4). The advantage of using this procedure
is that the memory usage of beam search is fixed while the memory usage of the A∗ algo-
rithm can be potentially large. We found that the approximate inference procedure performs
very well in our experiments. The comparison of the three proposed inference algorithms on
other domains is an interesting issue to address in future research.

3 Learning constrained conditional models based on HMM

In this section, we demonstrate how to apply the idea of CCMs to a commonly used Hidden
Markov Model (HMM) and propose HMMCCM. The new model naturally incorporates the
constraints into an HMM and makes it a very powerful model. In Sect. 2.2, we showed that
while the constraints introduce some overhead to the inference problem, we can still solve
it efficiently in practice. Interestingly, constraints do not add any overhead to our learning
algorithm of HMMCCM.

The rest of this section is organized as follows: we first review HMM, a commonly used
model for structured prediction. Then we show how to derive the supervised training algo-
rithm for HMMCCM. In the third part of this section, we describe CoDL, a semi-supervised
learning algorithm for CCMs and apply it to HMMCCM.

Mach Learn

3.1 Hidden Markov models: a review

Hidden Markov Model (HMM) is one of the most commonly used models for sequence
labeling. An HMM is a generative model parameterized by P (yi |yi−1) (the transition proba-
bilities between consecutive hidden states), P (xi |yi) (the emission probabilities of observing
xi from the state yi) and P (y1) (the prior probabilities). In the discussion below, we denote
the HMM parameters as Θ . HMM models the joint probability PΘ(y,x) of a series of tokens
x of length T and a sequence assignment y as follows:

PΘ(y,x) = P (y1)

T∏

i=2

P (yi |yi−1)

T∏

i=1

P (xi |yi). (7)

Note that while the independence assumptions allow a compact representation of the joint
probability and tractable inference algorithms, HMMs capture only the “local” behavior of
a given task. For example, the transition table represents the probability of the assignment to
yi given the assignment to yi−1. HMMs do not model “long distance” relationships such as
the relationship between the first assignment y1 and the last assignment yT , nor they model
global properties of the output sequence.

Standard training of an HMM is done by finding the parameters that maximize the like-
lihood of the labeled instances and can be efficiently done with partial counting over the
training data (Rabiner and Juang 1986). That is, learning an HMM is equivalent to finding
a Θ which maximizes the log likelihood

∑l

j=1 logPΘ(xj ,yj), where l is the number of
training samples.

When evaluating the model on a new instance, the Viterbi algorithm (Rabiner and Juang
1986) can be used to efficiently find the most likely assignment y defined as:

arg max
y

PΘ(y|x). (8)

Past works have shown that the prediction problem in HMMs can be viewed as a linear
model over “local” features (Roth 1999; Collins 2002). That is, one can show that

arg max
y

PΘ(y|x) = arg max
y

logPΘ(x,y) = arg max
y

wT Φ(x,y), (9)

where w is a weight vector and Φ represents the feature functions. Therefore, we can convert
the probability tables Θ of an HMM into a linear function represented by w with appropriate
feature functions. In this representation, the feature function Φ(x,y) is expressed as a set
of features, consisting of “prior features”, Φp(y1), “transition features”, Φt(yi, yi−1), and
“emission features”, Φe(xi, yi) (Roth 1999). In other words, there exists a one-to-one map-
ping between the active features and the associated probability representation, which can be
rewritten in the form of a linear function.

θ = arg max
θ

P (D|θ) = arg max
θ

l∑

j=1

logP
(
xj ,yj |θ)

,

where θ is the set of parameters that represent the prior, emission and transmission distribu-
tions.

Mach Learn

3.2 HMMCCM: supervised training

Assume that we have m constraints C1,C2, . . . ,Cm. In HMMCCM, in order to combine sta-
tistical models and constraints (Eq. (3)), we adopt the idea of “product of experts” (Hinton
1999), where the HMM is the expert that predicts the probability of the label assignment, and
the constraints component downgrades solutions that violate the constraints. This defines a
new scoring function:

Ω
(
xj ,yj

) = HMM Probability × Constraint Violation Score

= PΘ

(
xj ,yj

) m∏

k=1

Tj∏

i=1

P (Ck = 1)
c
j
k,i P (Ck = 0)

1−c
j
k,i , (10)

where Θ are the parameters of the HMM, Tj represents the number of tokens in the sentence
xj , c

j

k,i is a binary variable equal to 1 if the label assignment to y
j

i violates the constraint Ck

with respect to partial assignment yj

[1...i−1], and Ck = 1 indicates the event that the constraint
Ck is violated. It is important to notice that the constraint violation score captures the “degree
of violation” by counting the penalty multiple times.

The new scoring function Ω(xj ,yj) augments the original HMM with the constraints
we have. It is important to notice that Eq. (10) is a CCM. We can write logΩ(xj ,yj) in the
form of (3) as follows:

logΩ
(
xj ,yj

) ≡ f̂w,ρ

(
xj ,yj

)

= wT Φ
(
xj ,yj

) +
m∑

k=1

log
P (Ck = 1)

P (Ck = 0)

Tj∑

i

c
j

k,i + c

= wT Φ
(
xj ,yj

) −
m∑

k=1

ρkdCk

(
xj ,yj

) + c, (11)

where ρk = − log P(Ck=1)

P (Ck=0)
, dCk

(xj ,yj) = ∑Tj

i c
j

k,i and c is a constant which does not af-

fect the inference results. Note that the definition of the terms dCk
(xj ,yj) matches the one

defined earlier in Eq. (2).
To train HMMCCMwe need to find w and ρ that maximize the new scoring function

l∑

j=1

logΩ
(
xj ,yj

) =
l∑

j=1

f̂w,ρ

(
xj ,yj

)
. (12)

It is worth noting several things. First, despite the fact that we use probabilities extensively
in the scoring function, the function in Eq. (12) itself does not represent the log likelihood of
the dataset, since the augmented model does not have a likelihood interpretation. Neverthe-
less, it is still a smooth concave function and its optimal value can be determined by setting
the gradient to zero. Algorithm 1 describes the training procedure in detail. Interestingly, the
solution resembles the standard HMM model. In fact, we can estimate the prior probability,
transition probability and emission probability in exactly the same way as in HMM. For the
constraint violation part, a simple derivation shows that the optimal value for P (Ck = 1) is

Mach Learn

obtained by

P (Ck = 1) =
∑l

j=1

∑Tj

i c
j

k,i
∑l

j=1 Tj

. (13)

Note that the training procedure is “inference-free” in the sense that it is only based
on partial counting. We do not need to solve any inference problems during the training
but apply the constraints only at the test phase. In Sect. 2.2 we discuss several alternatives
for efficient approximate and exact solutions to the inference problem. This completes the
machinery for supervised training and inference in HMMCCM.

Algorithm 1 Supervised Learning HMMCCM. The algorithm optimizes the objective func-
tion

∑l

j=1 log f̂w,ρ(xj ,yj) defined in Eq. (12)

Require: L: labeled training set, {Ck}m
k=1: a set of constraints

1: Calculate Θ , the parameters of the HMM model with traditional HMM training.
2: Obtain w by applying the transformation on Θ described in Roth (1999), Collins (2002)
3: for k = 1 . . .m (constraint index) do
4: for j = 1 . . . |L| (training instance index) do
5: for i = 1 . . . Tj (token position) do
6: c

j

k,i ← Ĉk(xj ;yj

1 , . . . , y
j

i)

7: end for
8: end for
9: end for

10: P (Ck = 1) =
∑l

j=1
∑Tj

i
c
j
k,i

∑l
j=1 Tj

.

11: ρk = − log P(Ck=1)

P (Ck=0)
.

12: return w, ρ

3.3 HMMCCM: semi-supervised learning

Acquiring labeled data is a difficult and expensive task. Therefore, an increased attention
has been recently given to semi-supervised learning, where large amounts of unlabeled data
are used to improve models learned from a small training set (Yarowsky 1995; Blum and
Mitchell 1998; Collins and Singer 1999; Thelen and Riloff 2002; Haghighi and Klein 2006).

Before we discuss unsupervised and semi-supervised training in HMMCCM, it is useful to
introduce some new notation. Throughout this section, we assume, for the sake of simplicity
and wlog, that there is only one unlabeled observed input example, xU , with associated
unobserved output sequence h. When we use a model or an oracle to assign values to h, we
call the pair (xU ,h) pseudo-labeled data. Also, to avoid notation overload, we assume that
we have one labeled and one unlabeled instance. This allows us to drop the sums of the form∑

j P (xj ,yj) and write instead P (x,y). We note that this is done without loss of generality
and for notational convenience only.

Traditionally, unsupervised and semi-supervised learning are done with the Expectation
Maximization (EM) algorithm (Dempster et al. 1977; Borman 2004). Given only the unla-
beled data xU , the EM algorithm is an iterative method for finding the model parameters θ

Mach Learn

that maximize the objective function3

θ∗ = arg max
Θ

logPΘ(xU) = arg max
Θ

log
∑

h

PΘ(xU |h)PΘ(h).

Unfortunately, while it is possible to estimate the full distribution P (h|xU) when the
model only captures “local decisions”, it is very difficult to estimate this distribution when
long distance, expressive constraints are used.4

In order to alleviate the difficulty of estimating the full distribution in the presence of
constraints, we maximize the function logΩ(xU ,h) over both the model parameters (w, ρ)

and the label assignment h, which is equivalent to solving the problem:

(
w∗, ρ∗,h∗) = arg max

w,ρ,h
logΩ(xU ,h) = arg max

w,ρ,h
f̂w,ρ(xU ,h).

In contrast to EM, which only maximizes the likelihood of the unlabeled data by marginal-
izing over hidden variables, we search for the best pseudo-label h and the model parameters
(w, ρ) at the same time.

Our objective function can be optimized as follows (with initial w and ρ):

1. (Inference) Fix w and ρ, and optimize h.
The solution for h with fixed w and ρ is given in Eq. (11) and can be found using

the algorithms described in Sect. 2.2. In other words, h is the solution of the following
optimization problem:

h ← arg max
h

f̂w,ρ(xU ,h) = arg max
h

wT Φ(xU ,h) −
m∑

k=1

ρkdCk
(xU ,h).

2. (Learning) Fix h, and optimize w and ρ.
The solution for optimizing w and ρ can be obtained by applying Algorithm 1 on the

pseudo-labeled data (xU ,h).

By the definition in Eq. (11), both steps are guaranteed to increase the objective function.
Again, note that this procedure has an advantage over EM: it does not need to compute the
conditional probability distribution, but only to get the best assignment h for the example xU .

In HMMCCM, the weight vector and the penalty vector resemble the probability distribu-
tions defined in Sect. 3.3 so they can be estimated easily. As in EM, the objective function
is not convex. Therefore, it is essential to have a good starting point.

Since a good starting point is necessary, we move our focus to “semi-supervised learn-
ing” and use a small number of labeled examples to initialize the weight vector. One key
difference between semi-supervised learning and unsupervised learning is that we need to
balance the labeled training data and the unlabeled training data in order to have the best re-
sults. It is known that traditional semi-supervised training can degrade the learned model’s
performance (Nigam et al. 2000; Cozman et al. 2003). Nigam et al. (2000) has suggested
balancing the contribution of labeled and unlabeled data to the parameters. In our algorithm,
we use a similar intuition, but instead of weighting data instances, we introduce a smoothing

3Recall that θ can be rewritten in the form of CCMs using w and ρ.
4Ganchev et al. (2010) proposed to use expectation constraints to address this issue. See Sect. 7 for a discus-
sion.

Mach Learn

parameter γ which controls the convex combination of the models induced by the labeled
and unlabeled data.

Algorithm 2 provides the pseudocode of the semi-supervised algorithm we called CoDL
(COnstraint-Driven Learning) in Chang et al. (2007). We note that CoDL is a general pro-
cedure, and as such, can and will be applied to models other than HMMCCMin later sections.

As is often the case in semi-supervised learning, the algorithm can be viewed as a process
that improves the model by generating feedback through labeling unlabeled examples. Our
algorithm pushes this intuition further, in that the use of constraints allows us to better ex-
ploit domain information as a way to label, along with the current learned model, unlabeled
examples. Given a small amount of labeled data and a large unlabeled pool, our framework
initializes the model with the labeled data and then repeatedly:

1. Uses constraints and the learned model to label the instances in the pool (line 5)
2. Updates the model using newly labeled data (line 8).

This way, we can generate better “training” examples during the semi-supervised learning
process. Note that line 8 also performs the linear combinations among models with the
parameter γ .

Algorithm 2 Constraint driven learning algorithm, which uses constraints to guide semi-
supervised learning
Require: L: labeled training set, U: unlabeled dataset N : learning cycles

γ : balancing parameter with the supervised model,
{C}: a set of constraints,
learn(.): a supervised learning algorithm

1: Initialize (w, ρ) = (w0, ρ0) = learn(L).
2: for N iterations do
3: T = ∅
4: for x ∈ U do
5: ĥ ← arg maxy wT Φ(x,y) − ∑m

k=1 ρkdCk
(x,y)

6: T = T ∪ {(x, ĥ)}
7: end for
8: (w, ρ) = γ (w0, ρ0) + (1 − γ)learn(T)

9: end for

CoDL uses constraints as prior knowledge in the semi-supervised setting. We later show
that prior knowledge plays a crucial role when the amount of labeled data is limited. CoDL
makes use of CCMs, which provide a good platform for combining the learned models with
prior knowledge. It is very important to note that CoDL can naturally be presented as a
general purpose semi-supervised learning algorithm for any CCM model. For example, in
Sect. 6 we show how to apply CoDL to averaged structured perceptron within the CCM
framework.

It is interesting to note that in the absence of constraints, CoDL reduces to “hard-EM”,
which only finds the best assignment in every step. To further illustrate the difference be-
tween CoDL, “hard-EM” and (soft) EM, consider the problem of unsupervised part-of-
speech tagging. In (soft) EM, we do not find the most likely label assignment given the
data as part of the training procedure. On the other hand, when estimating the model param-
eters, we smoothed over all possible label assignments weighted by their likelihood. When

Mach Learn

we run “hard-EM”, we get the most likely label assignment as part of the procedure. Like
“hard-EM”, CoDL also finds only the best assignment during the learning processing. How-
ever, unlike “hard-EM”, CoDL makes use of constraints to guide the learning process. More
comparisons between CoDL, “hard-EM” and EM will be discussed in Sect. 5.3.

3.4 HMMCCM versus HMMCCM
∞

We would like to stress again that HMMCCM is just one algorithm of applying CCMs to
Hidden Markov Models. One simple variation is to use “hard constraints” in CCM (denoted
HMMCCM

∞ , given that the penalty is infinity). The advantage of using hard constraints in
CCMs is that we do not need to learn the penalty vector ρ, and the learning algorithm for
the supervised setting is exactly the same as for HMM. The semi-supervised learning algo-
rithm for HMMCCM(Algorithm 2) can be directly applied to HMMCCM

∞ . The disadvantage of
HMMCCM

∞ is that it always enforces the constraints, which can in fact be violated in the gold
data. See Sect. 5.5 for more comparisons between these two CCM approaches.

4 Tasks and data

In this section we introduce two information extraction problems which we used to evaluate
the models and ideas presented in this paper. In both problems, given input text, a set of pre-
defined fields is to be identified. Since the fields are typically related and interdependent,
these kinds of applications provide a good test case for an approach like ours (the data for
both problems is available at: http://cogcomp.cs.illinois.edu/page/resources/data5).

The first task is to identify fields from citations (McCallum et al. 2000). The data origi-
nally included 500 labeled references, and was later extended with 5,000 unannotated cita-
tions collected from papers found on the Internet (Grenager et al. 2005). Given a citation,
the task is to extract the fields that appear in the given reference. There are 13 possible fields
including author, title, location, etc.

To gain an insight into how the constraints can improve the model accuracy and guide
semi-supervised learning, assume that the sentence shown in Fig. 1 appears in the unlabeled
data pool. Part (a) of the figure shows the correct labeled assignment and part (b) shows the
assignment labeled by an HMM trained on 30 labeled samples. However, if we apply the

(a) [AUTHOR Lars Ole Andersen .] [TITLE Program analysis and
specialization for the C programming language .] [TECH-REPORT PhD
thesis ,] [INSTITUTION DIKU , University of Copenhagen ,] [DATE May
1994 .]
(b) [AUTHOR Lars Ole Andersen . Program analysis and] [TITLE spe-
cialization for the] [EDITOR C] [BOOKTITLE Programming language]
[TECH-REPORT . PhD thesis ,] [INSTITUTION DIKU , University of
Copenhagen , May] [DATE 1994 .]

Fig. 1 Error analysis of an HMM model. The labels are underlined to the right of each open bracket. The
correct assignment is shown in (a). The predicted assignment (b) violates some constraints, most obviously,
the punctuation marks

5Note that we used different training-test split in our experiments than Grenager et al. (2005).

http://cogcomp.cs.illinois.edu/page/resources/data

Mach Learn

Table 1 The list of constraints used in the citations domain. Some constraints are relatively difficult to
represents in traditional models

Citations

Start The citation can only start with author or editor.

AppearsOnce Each field must be a consecutive list of words, and can appear at most once in a citation.

Punctuation State transitions must occur on punctuation marks.

BookJournal The words proc, journal, proceedings, ACM are JOURNAL or BOOKTITLE.

Date Four digits starting with 20xx and 19xx are DATE.

Editors The words ed, editors correspond to EDITOR.

Journal The word journal are JOURNAL.

Note The words note, submitted, appear are NOTE.

Pages The words pp., pages correspond to PAGE.

TechReport The words tech, technical are TECH_ REPORT.

Title Quotations can appear only in titles.

Location The words CA, Australia, NY are LOCATION.

constraint that state transition can occur only on punctuation marks, the same HMM will re-
sult in the correct labeling (a). Therefore, by adding the improved labeled assignment we can
generate better training samples during semi-supervised learning. In fact, the requirements
on punctuation marks are only some of the constraints that can be applied to this problem.
The set of constraints we used in our experiments appears in Table 1. Note that some of the
constraints are non-local and are very intuitive for people, yet it is very difficult to inject this
knowledge into most models.

The second problem we consider is extracting fields from advertisements (Grenager et al.
2005). The dataset consists of 8,767 advertisements for apartment rentals in the San Fran-
cisco Bay Area downloaded in June 2004 from the Craigslist website. In the dataset, only
302 entries have been labeled with 12 fields, including size, rent, neighborhood, features,
and so on. The data was preprocessed using regular expressions for phone numbers, email
addresses and URLs. The list of the constraints for this domain is given in Table 2. We im-
plement some global constraints and include unary constraints which were largely imported
from the list of seed words used in Haghighi and Klein (2006). We slightly modified the
seed words due to differences in pre-processing.

5 Experimental results

We empirically verify the effectiveness of combining constraints and statistical models in
this section. The experiments are designed to answer the following series of research ques-
tions.

(1) How important is it to add knowledge into statistical models? More specifically:

– How does HMMCCM perform compared to the original HMM?
– How efficient is it to use constraints as a supervision resource?

Note that these two questions address different aspects of using constraints in CCMs. The
first question addresses the amount of improvement obtained by adding constraints. The
second question, on the other hand, addresses the issue of using constraints as a supervision
resource compared to labeling examples.

Mach Learn

Table 2 The list of constraints used in the advertisements domain. Some constraints are relatively diffi-
cult to represents in traditional models. *Phone*, *Email* and *Money* are tokens corresponding to phone
numbers, email addresses and monetary units, which were identified in text using regular expressions. This
preprocessing was done before applying any training algorithms

Advertisements

FieldLength Each field must be at least 3 words long.

Punctuation State transitions can occur only on punctuation marks or the newline symbol.

Address The words address, carlmont, st, cross are ADDRESS.

Available The words immediately, begin, cheaper are AVAILABLE.

Contact The words *Phone*, *Email* are CONTACT.

Features The words laundry, kitchen, parking are FEATURES.

Neighborhood The words close, near, shopping are NEIGHBORHOOD.

Photos The words http, image, link are PHOTOS.

Rent The words $, *Money* are RENT.

Restrictions The words smoking, dogs, cats are RESTRICTIONS.

Roomates The words roommates, respectful, drama are ROOMMATES.

Size The words sq, ft, bdrm are SIZE.

Utilities The words utilities, pays, electricity are UTILITIES.

(2) How do our CCM training algorithms compare against other algorithms?

– Is it beneficial to use the CoDL algorithm with the hard-EM approach, which finds
the best assignment of the hidden variables, as opposed to EM, which calculates the
full posterior distribution?

– How is the CCM approach compared to other approaches?

First, we ask the question about what are the benefits of using CoDL as opposed to
the standard EM and hard EM algorithms. We then compare CoDL to other approaches of
encoding long distance relationships. Note that we can often design a heavily engineered and
tailored model for a specific task. However, this process is challenging and time consuming,
and must be repeated for every new task. On the other hand, CCMs provide an easy to use
model-specification language that works for all tasks. Therefore, we compare HMMCCM to
several tailored models to see if our general purpose model can match the performance of
a specifically designed model. It is natural to expect that a tailored model will perform at
least as well as CoDL; however, if CoDL matches the performance of a tailored model, we
consider it a success. We also compared the results to recent approaches of using expectation
constraints (Bellare et al. 2009).

(3) What are the properties of CCMs and CoDL? These questions include:

– In HMMCCM, do we need to learn the penalty vector ρ?
– What is the utility of each constraint in our experiments?
– How important is it to tune γ in CoDL?

Among all of the research questions, the most important one is to verify whether adding
constraints can improve the models or not. Again, while CCMs are not the only way to
incorporate constraints, they provide a nice interface so that users do not need to invent a
tailored model for every task.

The results reported in this and the following sections are token-level accuracies, which
were averaged over 5 randomly generated training sets. We tested on a fixed test set and a

Mach Learn

fixed development set, both containing 100 labeled samples. When semi-supervised learning
algorithms are used, we use 1000 held-out unlabeled examples as part of our training data
in both domains. This setting was first used by Grenager et al. (2005), Chang et al. (2007),
Haghighi and Klein (2006) and then used by many other works. In the semi-supervised
setting we ran 5 iterations of CoDL. The reason that we choose to run only 5 iterations is
that our semi-supervised learning procedure usually converges very fast (see Sect. 5.3 for
more details).

5.1 How does HMMCCM perform compared to the original HMM?

To see the impact of using constraints, we compare HMM and HMMCCMin Table 3. The
effect of applying constraints is significant: for example, when there are only 5 labeled
examples, the constraints push the accuracy from 58 % to 71 % in citation domain and from
53 % to 61 % in advertisement domain. The results for more data points are shown in Fig. 2.

In the semi-supervised setting, adding constraints improves the HMM models more dra-
matically. One interesting result (see Table 3) is that with small amount of labeled data,
the benefit of applying constraints is greater in the semi-supervised setting than that in the
supervised setting. That is, with 5 labeled samples, in the advertisements domain, applying
constraints in the supervised setting reduces the error rate by 15.47 % while applying con-
straints in the semi-supervised setting reduces the error rate by 25.58 %. Similarly, on the
citations domain, applying the constraints reduces the error rate by 31.69 % in the super-
vised setting, while in the semi-supervised setting, the error rate decreases by 36.96 %. This
result highlights the utility of using constraints in semi-supervised setting.

While with small amounts of labeled data, the majority of improvement comes from guid-
ing semi-supervised learning with constraints, the situation is reversed when more labeled
data is available. In this scenario, the parameters of the basic model are learned fairly well
and semi-supervised learning cannot improve them further. In this case, most of the improve-
ment comes from applying the constraints, while the utility of semi-supervised learning is
limited. Nevertheless, for the advertisements domain, semi-supervised learning with con-
straints outperforms the supervised protocol with constraints by 1.2 % (82.00 versus 80.80)
even when 100 labeled samples are available.

Table 3 The impact of using
constraints for supervised and
semi-supervised learning
(generative HMM). Note that
while semi-supervised HMMs
performs much better than
supervised HMMs, using
constraints still improves the
semi-supervised HMMs
significantly. The numbers in the
brackets denote error reduction
over similar algorithm without
constraints

labeled
samples

Supervised Semi-supervised

HMM HMMCCM HMM HMMCCM

Citations

5 58.48 71.64 (31.69 %) 64.55 77.65 (36.96 %)

10 63.37 75.44 (32.94 %) 69.86 81.51 (38.67 %)

20 70.78 81.15 (35.49 %) 75.35 85.11 (39.61 %)

300 86.69 93.92 (54.29 %) 87.89 94.32 (53.07 %)

Advertisements

5 53.90 61.16 (15.74 %) 60.75 70.79 (25.58 %)

10 61.21 68.12 (17.80 %) 66.56 75.40 (26.42 %)

20 67.69 72.64 (15.32 %) 71.36 77.56 (21.63 %)

100 76.29 80.80 (19.02 %) 77.38 82.00 (20.40 %)

Mach Learn

Fig. 2 The utility of constraints
in semi-supervised setting

5.2 How efficient is it to use constraints as a supervision resource?

We would like to view the results in the previous section from a different perspective: we
can acquire knowledge either by adding constraints or adding more labeled samples. Here
we view the “constraints” as a supervision resource rather than a part of the models and
examine the utility of adding constraint as opposed to adding more labeled data.

The results in Table 3 clearly suggest that adding constraints is more efficient than adding
labeled samples. Note that the model driven by constraints and 20 labeled samples outper-
forms the traditional HMM trained with 100 labeled samples on the advertisements domain
and is only slightly worse compared to the traditional HMM trained with 300 labeled sam-
ples on the citations domain.

Figure 3 strengthens the claim of using constraints as a supervision resource. The left
figure shows that in the citations domain, the semi-supervised HMMCCMachieves, with 25
labeled samples, similar performance to the supervised version without constraints with 300
labeled samples. The right figure distinguishes the impact constraints made in the training
phase and in the test phase. Semi-HMM(CoDL) represents the results where we train the
HMM model with CoDL but do not apply the constraints in the test phase. The goal of
this experiment is to see how well can CoDL guide the statistical component of the CCMs
(in this case, the statistical component is HMM). Semi-HMM (CoDL) and HMM have the

Mach Learn

Fig. 3 Using constraints as supervision resource. Left: In the citations domain, with 25 labeled citations, our
semi-supervised algorithm performs competitively to the supervised version trained on 300 samples. Right:
The ads domain. Note that in semi-HMM (CoDL), we train the HMM model with CoDL, but do not apply
the constraints in the test phase. The goal of this experiment is to see how well can CoDL guide the statistical
component of the CCMs (in this case, the statistical component is HMM). The superior performance of
semi-HMM (CoDL) shows that CoDL indeed can successfully guide the HMM

same expressivity, but the former is trained with constraints (using CoDL) while the lat-
ter is trained without using constraints. The superior performance of semi-HMM (CoDL)
shows that CoDL can indeed guide the HMM successfully. This demonstrates the value of
constraints as an additional supervision resource.

In other words, injecting constraints into the model requires design effort, but we believe
that the increased expressivity of the model is well worth the effort. For example, applying
constraints to the basic HMM trained on 300 labeled samples, improves the accuracy from
86.66 % to 94.03 %. We wanted to get a rough estimate on the number of additional labeled
samples that are needed to achieve similar performance with the traditional HMM. Since the
performance of the semi-supervised model on the citations domain is 94.51 %, we assume
that the labels assigned to the unlabeled examples are fairly accurate. Therefore, we used our
final model to label the unlabeled data and appended it to the training set. This way, we had
1300 labeled samples, which we used to train an HMM without constraints. The resulting
accuracy was 88.2 %, still far from 94.51 %.

Moreover, when we trained the HMM on the training and the test set (400 labeled sam-
ples altogether), the resulting accuracy was 95.63 %. That is, even after seeing the test sam-
ples, the HMM does not have the expressivity to learn the true concept. On the other hand,
when the constraints are applied, the accuracy goes up to 99.22 %. Therefore, we speculate
that the basic HMM is simply unable to capture the expressive declarative aspects of the
problem, no matter how much labeled data is available.

5.3 Is it beneficial to use the CoDL algorithm with the hard-EM approach, which finds the
best assignment of the hidden variables, as opposed to EM, which calculates the full
posterior distribution?

Expectation Maximization is the standard semi-supervised learning algorithm for generative
models. In Sect. 3.3 we showed that our semi-supervised learning algorithm has an objective
function which is different from that of EM, and very similar in spirit to hard-EM, which
only find the best assignment instead of finding the full posterior distribution. In fact, when
constraints are not used, our learning procedure is identical to hard-EM. The difference
between EM and hard-EM is that the former requires to predict a full posterior distribution

Mach Learn

according to the parameters, while the latter one only requires finding the best assignment.
It is important to note that when hard constraints are used, it is very difficult to calculate
the distribution P (y|x) because of the long distance relationships. Note that one can relax
constraints by transforming them into expectation constraints and make calculating posterior
tractable (Ganchev et al. 2010). Please see the discussion in Sect. 7 for more details. In
Sect. 5.4, we compare our algorithm to published results of a framework called alternating
projections (AP), which uses expectation constraints in an EM-like algorithm.

In this section, we compare three approaches: EM, hard-EM and semi-HMMCCM. Note
that the difference between hard-EM and semi-HMMCCM is the use of the constraints. The
experimental results of using 5 labeled examples are in Fig. 4. For all of the approaches, we
put more weight on the labeled data and less weight on the unlabeled data (γ = 0.9). Putting
more weights on the supervised model helps all three approaches.

First, in our experiments, we find that the accuracy of the EM approach degrades as the
number of iterations grows in Fig. 4. While EM tries to maximize the log likelihood of the
observed variables, it does not necessary mean that the model will get better performance as
the number of the iterations grows (Liang and Klein 2008). This observation is consistent
with Merialdo (1991), Liang and Klein (2008), Collins-Thompson (2009). Therefore, in our

Fig. 4 The test accuracy vs.
number of iterations of
semi-supervised learning in the
citations and ads domains with 5
labeled examples. Note that the
difference between hard-EM and
semi-HMMCCM is the usage of
the constraints. See the text for
more discussion

Mach Learn

experiments, we find that while the EM approach can be better than the hard-EM approach
(see Fig. 4(b), number of iterations equals to 5), the hard-EM approach is generally more
stable as the number of iterations grows. In fact, we hardly see any change for the hard-EM
approach after 5 iterations, and this is the reason why we choose to run only 5 iterations for
the semi-supervised learning algorithms.

Recall that Algorithm 2 is similar to the hard-EM procedure but allows using constraints.
Figure 4 shows that the semi-HMMCCM approach is significantly better than both EM and
hard-EM. Figure 4 also demonstrates that it is important to use constraints in the semi-
supervised learning algorithms when the size of the labeled data is small.

5.4 How is the CCM approach compared to other approaches?

In this section, we compare the proposed approach to other existing approaches. First, we
compare to a “tailored model” with a semi-CRF model (Sarawagi and Cohen 2004), which
integrates the long distance relationships and local relationships together in one model. Sec-
ond, we compared CCM to the alternating projection (AP) framework (Bellare et al. 2009),
which can be considered as a discriminative special case of the Posterior Regularization
framework (Ganchev et al. 2010). Note that the AP framework is not a “tailored model”
given that the AP framework also keeps the baseline model and the constraints separately.

Comparison with CRF and semi-CRF We have seen that constraints allow us to capture
properties of the problem which HMM cannot capture. However, it can be argued that we can
modify an HMM model with certain amount of work. For example, if we segment the text
on punctuation marks, and use a multinomial emission model for each state, we can capture
the “transition on punctuation marks” constraint. The question is whether such a tailored
model will perform significantly better than an off-the-shelf HMM with our constraints. Be-
fore we go into further discussion, we note that an HMM cannot be tailored to capture all
the constraints; for example, the constraint “each field can appear only once” cannot be in-
jected into an HMM model by tailoring segmentation, emission and transition components.
Also, we argue that it is significantly more time consuming to engineer and implement a tai-
lored model (particularly with semi-supervised training) than to take an off-the-shelf model
and downweigh the output space with constraints violation penalties. Moreover, the tailored
model we consider in this section can also be augmented with additional declarative con-
straints. In fact, the tailored model can be considered as an instance of CCMs, but with a
tailored way to inject the constraints. Therefore, if the more general way of injecting con-
straints which we propose in this paper is competitive with the tailored model, we consider
it a success for CCMs.

We choose Semi-Markov CRF (semi-CRF) (Sarawagi and Cohen 2004) as our tailored
model competitor. Semi-CRF operates on a segment level rather than on a token level. That
is, we define a segmentation to be s = (s1, . . . , sT) where each si (1 ≤ i ≤ T) is a triple
(ti , ui, li) with ti denoting the segment beginning, ui the segment end, and li—the assigned
label. Training a semi-CRF involves finding the weights, and inference involves finding the
segmentation which optimizes the following function:

P (s|x,W) = 1

Z(x)
expwT Φ(x,s)

where x is the input sequence, s is the segmentation, Φ(x, s) are the features extracted from
the segmentation s of x, and Z(x) = ∑

s′ expwT Φ(x,s′).

Mach Learn

Table 4 Comparison between HMMCCM and tailored models in the citations domain. Note that semi-CRF
is a supervised learning algorithm and that semi-CRF+ uses additional features such as the segmentation
length. Also note that in this table, both HMMCCM and semi-CRF only use the “Punctuation” constraint and
all the other models do not use any constraint. We only show the results for the citation domain, because we
could not tune the semi-CRF model to perform competitively on the advertisements domain using the same
features

Training instances HMM HMMCCM CRF Semi-CRF Semi-CRF+

5 58.48 63.68 51.43 50.69 60.14

10 63.37 66.88 54.61 50.38 62.51

20 70.78 77.52 63.92 62.96 72.22

300 86.69 93.35 89.09 92.46 94.60

This allows the model to extract segment-level features, such as string edit distance to a
multi-token dictionary of entities, and an average field length. Semi-CRFs exploit the fact
that in many applications, adjacent tokens take the same label, an assumption that indeed
holds in our data as well. For our problems, semi-CRFs have an attractive quality—they
allow to inject segment-level features like “segment length” and “segment ends on a punc-
tuation mark”. Another attractive property of semi-CRFs is that the computational penalty
paid for adding the segment-level expressivity when compared to first-order CRF is linear
in L, the maximal segment length. We stress that there are important differences between
semi-CRF (which tailors the training and inference to accommodate segment-level features),
order-L CRF and CRF with a constrained output space. Comparing these models is outside
the scope of this paper; the interested reader is referred to Sarawagi and Cohen (2004) and
Roth and Yih (2005).

Semi-CRFs were originally proposed for the problem of named entity recognition (Co-
hen 2004; Sarawagi and Cohen 2004) with significant performance gains due to the ability
of the model to capture inexact segment-level string matching to gazetteers. The computa-
tional penalty is high—the maximal length of a named entity was assumed to be 4, so the
inference for semi-CRF is 4 times slower than for token-level first order CRF. In our prob-
lems, however, the maximum field length for citations was 100 tokens, and the maximum
field length for the advertisements was 200 tokens, making the training and the inference of
the model prohibitively slow.

Therefore, we compared the behavior of the competing models with a single constraint—
“transition on punctuation marks”. This constraint is readily injected into the semi-CRF by
adding a feature indicating whether a segment ends with a punctuation mark. We compared
the following models: HMM, HMMCCM, CRF and semi-CRF. The HMM and the CRF mod-
els are without constraints. HMMCCMand semi-CRF use a single constraint—“transition on
punctuation marks”. The default implementation of semi-CRF makes use of multiple ad-
ditional features, including token normalization, token prefixes, suffixes, whether the token
contains only digits, and also, most importantly—the segment length. To make a fair com-
parison, we removed most of these features, and used the same token-level features as in
HMM. However, we were curious to see how much the segment length feature can improve
the performance, particularly since it comes built in with the tailored model design. There-
fore, we have 2 flavors of semi-CRFs: semi-CRF and semi-CRF+, one with and one without
the segment length feature.

The results are summarized in Table 4. We note that CRF is a discriminative model,
therefore, as it is often the case, it performs worse than the generative model (HMM) when
there is little training data and outperforms the HMM when a lot of training data is available

Mach Learn

Table 5 Comparison to Alternating Projections (Bellare et al. 2009), a discriminative special case of Poste-
rior Regularization (Ganchev et al. 2010). The AP results are taken from Bellare et al. (2009), while the CCM
results are from Table 3

labeled AP-T AP-I Semi-HMMCCM

5 75.6 74.6 77.65

20 85.4 85.1 85.11

300 94.0 94.3 94.32

(Ng and Jordan 2001). Furthermore, semi-supervised training in discriminative models is
substantially harder. We also note that the injection of constraints in a generic way as done
in the CCM framework improves the HMM performance from 86.66 to 93.35 with 300
labeled samples. Injecting the constraint “state transitions can occur only on punctuation
marks” by tailoring CRF, improves the performance from 89.09 for CRF to 92.46 for semi-
CRF, and including the additional feature of segment length in semi-CRF+ further improves
the performance to 94.60 on the citation domain with 300 labeled samples. Therefore, we
see that although the tailored model has some potential, injecting constraints in the CCM
framework actually brings bigger performance gains.

It is important to note that while semi-CRF performed very well on the citations domain,
we failed to tune it to perform competitively on the advertisements domain. We suspect
that the reason is the fact that we use very simple features in our CRF model, since the
advertisements domain is a lot more difficult than the citation domains.

Comparison with expectation constraints approaches The Posterior Regularization Frame-
work (PR) (Ganchev et al. 2010) is very related to the CCM-based CoDL algorithm (see
Sect. 7 for a discussion). It is motivated by the observation that, while calculating poste-
rior with hard constraints can be difficult, calculating posterior distribution with expectation
constraints can be tractable, with a careful design.

The Alternating Projections framework (Bellare et al. 2009) can be considered as a spe-
cial case of PR, tailored for discriminative models. In (Bellare et al. 2009), the authors
perform experiments on the citation dataset in a very similar setting to the one we use in this
paper, although their training-test data split is a bit different. Table 5 is created using our
results in Table 3 and citing their reported results in (Bellare et al. 2009).

In Table 5, there are two AP approaches: AP-T uses the test dataset as the unlabeled
dataset while AP-I uses another unlabeled dataset to bootstrap the results. Note that the
performance of AP models are quite similar to those of the CCM models. This is so, despite
the fact that the baseline model used by the AP models is a much stronger CRF model
than both the CRF or and HMM baseline models we built in this paper. Their baseline CRF
model is built with many different additional features including token features (identity,
token prefixes, token suffixes and character n-grams), lexicon features (presence of a token
in a lexicon of author names, journal names, etc.), regular expressions (common patterns for
years and page numbers), and other bi-gram features.

5.5 In HMMCCM, do we need to learn the penalty vector ρ?

Previous works (Punyakanok et al. 2005b; Roth and Yih 2005) have used “hard” constraints
to disallow any label assignments that violate them. In the problems considered in this work,
several gold assignments in the training set violate the constraints. Therefore, it seems ben-
eficial to learn a constraint penalty vector ρ. As mentioned in Sect. 3.4, HMMCCM is just

Mach Learn

Table 6 Comparison of using
hard and soft constraints in
semi-supervised learning

Training samples 5 10 20 300

(a)-Citations

semi-HMMCCM 77.65 81.51 85.11 94.32

semi-HMMCCM∞ 78.18 81.11 85.16 92.80

(b)-Advertisement

semi-HMMCCM 70.79 75.40 77.56 82.00

semi-HMMCCM∞ 69.91 73.46 75.25 79.59

Table 7 Utility of hard
constraints on the citations
domain; supervised and
semi-supervised setting with
5 training examples

Constraint Supervised Semi-supervised

None 58.48 64.55

Start 58.52 64.52

AppearsOnce 58.69 65.92

Punctuation 63.68 71.23

BookJournal 58.96 64.68

Date 61.50 66.76

Editor 58.70 64.77

Journal 58.66 64.73

Note 58.55 64.61

Pages 58.77 64.68

TechReport 58.73 64.43

Title 59.66 65.54

Location 58.81 64.97

ALL 71.64 77.65

one instance of a CCM model, and we can also have a CCM version of HMM that makes
use of hard constraints HMMCCM

∞ . Table 6 shows that with sufficient amount of labeled data,
HMMCCM (learning with soft constraints) outperforms HMMCCM

∞ in both the citations and
the advertisements domains.

5.6 What is the utility of each constraint in our experiments?

To highlight the impact of each constraint, in the following experiments, rather than learn-
ing the penalty of constraints violation from the data, we have enforced hard constraints.
Tables 7 and 8 show the contribution of each constraint individually. Table 7 shows that the
constraint Start (which requires the citations to start with either author or editor) actually
hurts the performance in the semi-supervised setting. The constraint AppearsOnce hurts the
performance in the supervised setting, but improves it significantly in the semi-supervised
setting. Global constraints, such as Punctuation, improve the performance the most. Another
interesting result is that while local constraints do not improve the performance significantly
(even in the semi-supervised setting), when combined with the global constraints, they lead
to significant performance improvements. While Tables 7 and 8 show the impact of using
hard constraints, it is worthwhile to note that the soft constraints perform better (see Table 6).

Mach Learn

Table 8 Utility of hard
constraints on the advertisements
domain; supervised and
semi-supervised setting with
5 training examples

Constraint Supervised Semi-supervised

None 53.90 60.75

FieldLength 54.38 63.85

Address 53.95 60.85

Available 53.96 60.77

Contact 53.90 60.75

Features 54.20 60.84

Neighborhood 53.90 60.75

Photos 53.90 60.67

Rent 53.89 60.80

Restrictions 54.27 60.79

Roomates 53.90 60.78

Size 54.22 61.11

Punctuation 58.64 68.81

Utilities 54.05 60.89

All 61.16 70.79

Fig. 5 The performance of the HMM semi-supervised algorithm with constraints on the citations domain.
The x axis represents the weight γ of the supervised model. When the weight is 0, there is no smoothing at
all and the model is equivalent to pure semi-supervised training. When weighting parameter is 1, the results
will be equivalent to those of a purely supervised model

5.7 How important is it to tune γ in CoDL?

It is well known (for example, Cozman et al. 2003) that semi-supervised learning can de-
grade the performance when the assumptions of the model do not hold on the data. One way
to overcome this problem is to reweigh labeled and unlabeled samples. Recall that in anal-
ogy to Nigam et al. (2000), when performing semi-supervised learning, we use the weighted
average of the models trained on labeled and unlabeled data (see Sect. 3.3).

Figure 5 summarizes the effect of weighting parameter γ in line 8 of Algorithm 2. As
expected, when the amount of the labeled data is increased, the model performs better with
smaller values of γ . Note that in the experiments reported in this paper, we do not adjust
the weighting parameter for different sizes of labeled data. We always use a fixed weighting

Mach Learn

parameter γ = 0.9, which is not the optimal value for small training sets (for example, for 5
labeled examples).

6 CCM-infused Structured Perceptron (SPCCM)

Section 5 focused on using a maximum likelihood based training of HMM. In this section we
show that the techniques discussed in Sect. 5 can generalize to other models by introducing
a CCM-infused structured perceptron (SPCCM) algorithm.

Recall that the objective function of a CCM (Eq. (3)) is:

fΦ,C(x,y) =
n∑

i=1

wiφi(x,y) −
m∑

k=1

ρkdCk
(x,y). (14)

Let us first ignore the constraints part and denote ŷ = arg maxy wT Φ(x,y). In structured
perceptron, the training of the weight vector w is done with the following update rule:

wnew = wold + Φ
(
x,y∗) − Φ(x, ŷ), (15)

where ŷ,y∗ are the predicted and correct values of y, respectively.
The challenge of adapting CCMs to structured perceptron lies in training the complete

model: the weight vector w and the violation penalty vector ρ. When the constraints are
hard, ρ is fixed to infinity, and need not be tuned. However, even when ρ = ∞, two strate-
gies can be used for training the weight vector w. The difference is whether we want to
consider the constraints when predicting the values ŷ during training. In one strategy, we
use the same procedure during training and inference—this training scheme is referred to as
Inference Based Training (IBT) in Punyakanok et al. (2005b). Surprisingly, it turns out that
it is often better to ignore the constraints when predicting the values ŷ during training, and to
enforce the constraints only during inference. This approach is called Learning Plus Infer-
ence (L+ I) in Punyakanok et al. (2005b). Finally, when the constraints are soft, it is possible
to treat the constraint violation penalties as features, and proceed with the traditional struc-
ture perceptron training framework. We call this update rule Joint Inference Based Training
(JIBT). More formally, Algorithm 3 gives the pseudocode of the three training strategies for
SPCCM.

Table 9 compares these approaches and the baseline structured perceptron without con-
straints, denoted by L. We note that all the results were obtained with averaged percep-
tron, which performs better than perceptron without averaging. It can be seen that while
IBT seems like a reasonable strategy, it does not perform well. L + I performs better than
the baseline structured perceptron and IBT. Moreover, consistently with Punyakanok et al.
(2005b), for a small number of examples, L + I outperforms all other algorithms, but when
the amount of training data is large enough, learning the constraint violation penalties from
the data (JIBT) achieves the best results.

Generally, semi-supervised training in discriminative models is challenging (Zhu 2006).
Here, we propose an algorithm that has the CoDL flavor. It uses the following strategy: in-
stead of averaging between the models of the supervised and the pseudo-labeled training
data in line 8 of Algorithm 2, we first trained the perceptron on the pseudo-labeled data
to obtain the weight vector wU , then initialized the weight vector to be w0 ← (1 − γ)wU

(where γ is the smoothing parameter from Algorithm 2), and then continued to train w0 on
the labeled data. We refer to this algorithm as semi-SPCCM. Table 10 summarizes the perfor-

Mach Learn

Table 9 Comparison between discriminative learning strategies for average structured perceptron. Note that
there are three strategies to learn a SPCCM: L + I, IBT and JIBT. See the text for more details. Note that
L + I outperforms L while IBT performs poorly. JIBT achieves the best results when enough data is used.
Note that in the last row, we use 300 training examples for the citation domain and 100 examples for the
advertisement domain

Tasks Citations domain Advertisements domain

Algorithm SP SPCCM SP SPCCM

Labeled samples L L + I IBT JIBT L L + I IBT JIBT

5 53.61 68.66 65.41 62.28 42.47 53.81 54.87 45.87

10 63.17 75.57 72.83 70.06 57.33 64.24 57.49 58.93

20 70.00 79.72 75.36 78.76 64.61 68.01 66.06 67.80

300 (100) 91.69 92.58 89.72 94.57 76.08 75.28 74.98 79.36

mance of these algorithms. Our heuristic algorithm improves the performance of structured
perceptron for all cases except the citations domain with 300 labeled samples. A better and
more principled semi-supervised learning algorithm for structured perceptron would be an
interesting future research topic.

Algorithm 3 SPCCM with three training strategies: L + I, IBT, and JIBT
Require: D is the training dataset, m is the number of constraints, M is the number of

iterations, rule is the training strategy used for SPCCM.
1:

∀k = 1 . . .m : ρk =
{∞ if (rule = L + I) ∨ (rule = IBT)

0 if (rule = JIBT)

2: for t = 1 . . .M do
3: for (x,y∗) ∈ D do
4:

ŷ =
{

arg maxy[wT Φ(x,y) − ∑
ρkdCk

(x,y)] if (rule = JIBT) ∨ (rule = IBT)

arg maxy[wT Φ(x,y)] if (rule = L + I)

5: w = w + Φ(x,y∗) − Φ(x, ŷ)

6: if (rule = JIBT) then ∀k : ρk = ρk + dCk
(x,y∗) − dCk

(x, ŷ)

7: end for
8: end for

7 Related work

In this section we review selected publications related to the CCM framework. We first
discuss several publications that can be considered as special cases of the CCMs framework.
Other related publications are grouped into three different categories and the corresponding
discussions are also included in this section.

Our work on CCMs builds on several works that can be considered as special cases of
CCMs. In most cases, these works combine hard constraints with learning algorithms in the

Mach Learn

Table 10 Comparison between
HMMCCM and SPCCM. Our
CoDL-like training algorithm
improves the performance of
structured perceptron (SP) for all
cases except the citations domain
with 300 labeled samples. Note
that HMMCCM is almost always
superior in performance both
when little labeled data and when
all labeled data is available

Labeled samples HMMCCM semi-HMMCCM SP semi-SPCCM

Citations domain

5 71.64 77.65 62.28 65.84

10 75.44 81.51 70.06 73.22

20 81.15 85.11 78.76 79.20

300 93.92 94.36 94.57 93.75

Advertisements domain

5 61.15 70.79 45.87 47.03

10 68.12 75.40 58.93 59.44

20 72.64 77.56 67.80 69.29

100 80.80 82.00 79.36 79.72

supervised setting. The first work in this line (Roth and Yih 2004) (extended in Roth and Yih
2007) suggests a formalism that combines constraints with linear models on information ex-
traction tasks. They use linear inequalities and suggest Integer Linear Programming as the
inference framework. Following Roth and Yih (2004, 2007), a series of works proposed
and studied models that incorporate learned models with declarative constraints with suc-
cessful applications in Natural Language Processing and Information Extraction, including
semantic role labeling (Roth and Yih 2005; Punyakanok et al. 2005a, 2008), summariza-
tion (Clarke and Lapata 2006; Barzilay and Lapata 2006), generation (Marciniak and Strube
2005) and co-reference resolution (Denis and Baldridge 2007).

Most of these works use only hard constraints with the factored approach and with su-
pervised classifiers. In contrast, we introduce soft constraints (modeled as the degree of
violating a constraint), into the model and integrate constraints into semi-supervised learn-
ing, extending (Chang et al. 2007). In addition, we investigate different training paradigms
for CCMs, both for the probabilistic component, and for the constraints component and pro-
vide a more rigorous analysis of using constraints in structured prediction tasks. The Never-
Ending-Language-Learner (NELL) project provides a web scale experiment (Carlson et al.
2010) of the model proposed here for using constraints in semi-supervised learning algo-
rithms. They highlight the importance of decoupling constraints from the model by showing
that the constraints can have significant impact on the performance in the semi-supervised
setting.

7.1 Capturing long distance relationships

In order to make the inference procedure of finding the best assignment tractable, most
structured output prediction models only capture local relationships. While CCMs are de-
signed to address this issue, several other approaches (most of which only focus on the
supervised learning algorithms) have been proposed to address long distance relationships.
For example, Collins (2000), Charniak and Johnson (2005), Toutanova et al. (2005) propose
to use a two stage approach to address this issue: in the first stage, a local model is used to
produce the k-best solutions and, in the second stage, a global model which captures long
distance relationships is used to rerank the k-best solutions generated in the first stage. Since
the global model only focuses on k assignments, modeling long distance relationships be-
comes tractable. However, this approach suffers from the problem of error propagation. If
the k-best solutions produced by the local model does not contain the correct parse tree, it
is impossible for the global model to find the correct solution.

Mach Learn

Recently, Daumé and Marcu (2005), Kazama and Torisawa (2007), Huang (2008) pro-
posed to use approximate inference procedure and let the weights of the long distance fea-
tures guide the search procedure. This approach is similar to the beamsearch procedure we
proposed in Sect. 2.2.3, in the sense that the search procedure is guided by the constraint
penalties. Importantly, CCMs focus on injecting high level knowledge in the form of “first-
order” like declarative features. For example, in this paper, we show that we can improve
HMM very significantly with only 10 additional constraints. In contrast, lots of grounded
features are used in Daumé and Marcu (2005), Kazama and Torisawa (2007), Huang (2008)
to capture long distance relationships.

The named entity recognition system (Finkel et al. 2005) captures long distance rela-
tionships by using Gibbs sampling as their inference algorithm. The CCM framework is
more general because (Finkel et al. 2005) only focuses on a specific type of long distance
relationship while CCMs allow the use of general long distance relationships. It would be
interesting to explore the possibilities of using sampling based methods such as Gibbs sam-
pling methods in the CCM framework.

7.2 Expectation-maximization framework and posterior regularization

Posterior Regularization (PR) (Ganchev et al. 2010) is probably the work that is most
related to the CoDL algorithm. It develops a CoDL-like approach, but is different in that
it extends the EM algorithm by incorporating expectation constraints. While modeling the
exact posterior distribution with hard constraints is expensive in general, PR relaxes the
constraints to expectation constraints.

Let θ be the model parameters and Pθ(y|x) be the conditional probability distribution
according the θ . The E-step of the standard EM algorithm finds a posterior distribution q ′

according to:

q ′ = arg min
q

D
(
q ‖ Pθ(y|x)

)
,

where D(q ‖ Pθ(y|x)) is the Kullback-Leibler divergence between the distributions q and
Pθ(y|x).

Given m constraints, Ganchev et al. (2010) assumes that the k-th constraint can be written
in the following form:

fk(x,y) ≤ bk.

The expectation constraints can be expressed by

Eq

[
f(x,y)

] ≤ b,

where f(x,y)T = [
f1(x,y) . . . fm(x,y)

]T
, and b = [

b1 . . . bm

]T
.

The E-step in the PR framework then finds the best posterior probability which satisfies
the expectation constraints

q ′ = arg min
q:Eq [f(x,y)]≤b

D
(
q ‖ Pθ(y|x)

)
.

The CoDL algorithm proposed in Sect. 3.3 also uses an EM-like procedure. In fact,
the main differences between CoDL and PR are in the E-step. There are two major dif-
ferences: (1) The CoDL framework allows the use of hard constraints, while PR uses ex-

Mach Learn

pectation constraints.6 (2) While the PR algorithm obtains a distribution by minimizing the
KL-divergence, the CoDL algorithm only finds the best assignment.

There exist other approaches which aim to combine constraints with statistical models.
For example, Mann and McCallum (2008), Bellare et al. (2009) proposes a Generalized Ex-
pectation Criteria, which uses a different distance function in the E-step. Liang et al. (2009)
proposes Learning from Measurements, which incorporates prior information about model
posteriors from a Bayesian point of view. The PR paper Ganchev et al. (2010) explains
the relationships between these frameworks very clearly. An empirical comparison between
these frameworks is an interesting future research direction.

7.3 Injecting knowledge into graphic models

The combination of constraints and probabilistic graphical models has also been studied
before from the probabilistic modeling perspective. For example, Dechter and Mateescu
(2004) propose a combination of the Bayesian network model with a collection of deter-
ministic constraints and call the resulting model a mixed network. They conclude that the
deterministic constraints of a mixed network are handled more efficiently when maintained
separately from the Bayes network and processed with special purpose algorithms. In addi-
tion, they find that the semantics of a mixed network are easier to work with and understand
than an equivalent, “pure” Bayes network with deterministic constraints modeled probabilis-
tically.

Similar in spirit, CCMs differ from the mixed networks by allowing the probabilistic
portion of the model to represent an arbitrary conditional distribution, instead of a joint
distribution (in the form of a Bayes network). We consider this an advantage, since CCMs
do not waste their power to model the probability of input variables. Moreover, the current
work proposes also algorithms for learning mixed representations in the form of CCMs.

Markov Logic Networks (MLN) (Richardson and Domingos 2006) is a probabilistic
logic framework which uses logic to provide a convenient way of specifying a Markov
Random Field, following a long tradition of works in this direction (Friedman et al. 1999;
Ngo and Haddawy 1995; Kersting and Raedt 2000; Jaeger 1997).

MLN and CCMs are similar in that they both combine declarative knowledge into sta-
tistical models. The crucial difference between CCM and MLN is on the issue of model
decomposition. MLN includes the expressive features (constraints) as part of the probabilis-
tic model, while we propose factoring the model into a simpler probabilistic model with
additional constraints, also expressed declaratively using first order logic like expressions
(Rizzolo and Roth 2007). This has significant implications on the learning procedure. While
in MLNs the learning problem is that of learning the whole joint model, in CCMs the goal is
to learn a simpler model (e.g., an HMM in our experiments here) but nevertheless it supports
doing inference with a more expressive model.

8 Conclusions

This paper provides a unified view of a framework aimed to facilitate decision making with
respect to multiple interdependent variables the values of which are determined by learned

6The approximation we used in Sect. 2 is similar to the expectation constraint when the approximation col-
lects statistics over the whole dataset. However, unlike the PR, we do not calculate the full posterior distribu-
tion.

Mach Learn

statistical models. We proposed Constrained Conditional Models (CCMs), a framework that
augments linear models with expressive declarative constraints as a way to support decisions
in an expressive output space while maintaining modularity and tractability of training. Im-
portantly, this framework provides a principled way to incorporate expressive background
knowledge into the decision process. It also provides a way to combine conditional models,
learned independently in different situations, along with declarative information to support
coherent global decisions.

Acknowledgements This work was supported by NSF grant NSF SoD-HCER-0613885, DARPA funding
under the Bootstrap Learning Program and by MIAS, a DHS-IDS Center for Multimodal Information Access
and Synthesis at UIUC.

References

Barzilay, R., & Lapata, M. (2006). Aggregation via set partitioning for natural language generation. In Pro-
ceedings of HLT/NAACL, June 2006.

Bellare, K., Druck, G., & McCallum, A. (2009). Alternating projections for learning with expectation con-
straints. In Proceedings of uncertainty in artificial intelligence (UAI).

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of
the annual ACM workshop on computational learning theory (COLT) (pp. 92–100).

Borman, S. (2004). The expectation maximization algorithm—a short tutorial. Introduces the Expectation
Maximization (EM) algorithm and fleshes out the basic mathematical results, including a proof of con-
vergence. The Generalized EM algorithm is also introduced, July 2004.

Carlson, A., Betteridge, J., Wang, R. C., Hruschka, E. R. Jr., & Mitchell, T. M. (2010). Coupled semi-
supervised learning for information extraction. In Proceedings of the third ACM international confer-
ence on web search and data mining.

Chang, M., Ratinov, L., & Roth, D. (2007). Guiding semi-supervision with constraint-driven learning. In
Proceedings of the annual meeting of the association for computational linguistics (ACL), Prague, Czech
Republic, June 2007 (pp. 280–287). New York: Association for Computational Linguistics.

Charniak, E., & Johnson, M. (2005). Coarse-to-fine n-best parsing and maxent discriminative reranking. In
Proceedings of the annual meeting of the association for computational linguistics (ACL), Ann Arbor,
Michigan (pp. 173–180). New York: ACL.

Clarke, J., & Lapata, M. (2006). Constraint-based sentence compression: an integer programming approach.
In Proceedings of the annual meeting of the association for computational linguistics (ACL), Sydney,
Australia, July 2006 (pp. 144–151). New York: ACL.

Cohen, W. (2004). Exploiting dictionaries in named entity extraction: combining semi-Markov extraction
processes and data integration methods. In Proceedings of international conference on knowledge dis-
covery and data mining (KDD) (pp. 89–98).

Collins, M. (2000). Discriminative reranking for natural language parsing. In Proceedings of the 17th inter-
national conference on machine learning (pp. 175–182). San Francisco: Morgan Kaufmann.

Collins, M. (2002). Discriminative training methods for hidden Markov models: theory and experiments with
perceptron algorithms. In Proceedings of the conference on empirical methods for natural language
processing (EMNLP).

Collins, M., & Singer, Y. (1999). Unsupervised models for named entity classification. In Proceedings of the
conference on empirical methods for natural language processing (EMNLP).

Collins-Thompson, K. (2009). Reducing the risk of query expansion via robust constrained optimization. In
Proceedings of ACM conference on information and knowledge management (CIKM) (pp. 837–846).

Cozman, F. G., Cohen, I., & Cirelo, M. C. (2003). Semi-supervised learning of mixture models. In Proceed-
ings of the international conference on machine learning (ICML) (pp. 99–106).

Daumé, H., & Marcu, D. (2005). Learning as search optimization: approximate large margin methods for
structured prediction. In Proceedings of the international conference on machine learning (ICML),
Bonn, Germany, 2005.

Dechter, R., & Mateescu, R. (2004). Mixtures of deterministic-probabilistic networks and their AND/OR
search space. In Proceedings of AUAI, Arlington, VA, USA, 2004 (pp. 120–129). New York: AUAI
Press.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, 39, 1–38.

Mach Learn

Denis, P., & Baldridge, J. (2007). Joint determination of anaphoricity and coreference resolution using integer
programming. In Proceedings of the annual meeting of the North American association of computational
linguistics (NAACL).

Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporating non-local information into information
extraction systems by Gibbs sampling. In Proceedings of the annual meeting of the association for
computational linguistics (ACL), Morristown, NJ, USA, 2005 (pp. 363–370). New York: Association
for Computational Linguistics.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational models. In Pro-
ceedings of the international joint conference on artificial intelligence (IJCAI) (pp. 1300–1309).

Ganchev, K., Graça, J., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured latent
variable models. Journal of Machine Learning Research.

Graca, J. V., Ganchev, K., & Taskar, B. (2007). Expectation maximization and posterior constraints. In NIPS
(Vol. 20).

Grenager, T., Klein, D., & Manning, C. (2005). Unsupervised learning of field segmentation models for infor-
mation extraction. In Proceedings of the annual meeting of the association for computational linguistics.
New York: ACL.

Haghighi, A., & Klein, D. (2006). Prototype-driven learning for sequence models. In Proceedings of HTL-
NAACL.

Hinton, G. (1999). Products of experts. In Proceedings of the 9th international conference on artificial neural
networks (ICANN99) (pp. 1–6).

Huang, L. (2008). Forest reranking: discriminative parsing with non-local features. In Proceedings of the
annual meeting of the association for computational linguistics (ACL).

Jaeger, M. (1997). Relational Bayesian networks. In M. Kaufmann (Ed.), Proceedings of the 13th conference
on uncertainty in artificial intelligence (pp. 266–273).

Kazama, J., & Torisawa, K. (2007). A new perceptron algorithm for sequence labeling with non-local features.
In Proceedings of the 2007 joint conference of EMNLP-CoNLL (pp. 315–324).

Kersting, K., & Raedt, L. D. (2000). Bayesian logic programs. In J. Cussens & A. Frisch (Eds.), Proceed-
ings of the work-in-progress track at the 10th international conference on inductive logic programming
(pp. 138–155).

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: probabilistic models for seg-
menting and labeling sequence data. In Proceedings of the international conference on machine learning
(ICML).

Liang, P., Jordan, M. I., & Klein, D. (2009). Learning from measurements in exponential families. In Pro-
ceedings of the international conference on machine learning (ICML).

Liang, P., & Klein, D. (2008). Analyzing the errors of unsupervised learning. In Proceedings of the annual
meeting of the association for computational linguistics (ACL).

Mann, G., & McCallum, A. (2008). Generalized expectation criteria for semi-supervised learning of condi-
tional random fields. In Proceedings of the annual meeting of the association for computational linguis-
tics (ACL) (pp. 870–878).

Marciniak, T., & Strube, M. (2005). Beyond the pipeline: discrete optimization in NLP. In Proceedings of the
annual conference on computational natural language learning (CoNLL), Ann Arbor, MI, June 2005
(pp. 136–143). New York: Association for Computational Linguistics.

McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum entropy Markov models for information extraction
and segmentation. In Proceedings of the international conference on machine learning (ICML).

Merialdo, B. (1991). Tagging text with a probabilistic model. In Proceedings of the international conference
on acoustics, speech, and signal processing.

Ng, A. Y., & Jordan, M. I. (2001). On discriminative vs. generative classifiers: a comparison of logistic
regression and naive Bayes. In The conference on advances in neural information processing systems
(NIPS) (pp. 841–848).

Ngo, L., & Haddawy, P. (1995). Probabilistic logic programming and Bayesian networks. In Asian computing
science conference (pp. 286–300).

Nigam, K., Mccallum, A., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled
documents using EM. Machine Learning, 39(2/3), 103–134.

Punyakanok, V., Roth, D., & Yih, W. (2005a). The necessity of syntactic parsing for semantic role labeling.
In Proceedings of the international joint conference on artificial intelligence (IJCAI) (pp. 1117–1123).

Punyakanok, V., Roth, D., Yih, W., & Zimak, D. (2005b). Learning and inference over constrained output. In
Proceedings of the international joint conference on artificial intelligence (IJCAI) (pp. 1124–1129).

Punyakanok, V., Roth, D., & Yih, W. (2008). The importance of syntactic parsing and inference in semantic
role labeling. Computational Linguistics, 34(2), 257–287.

Rabiner, L. R., & Juang, B. H. (1986). An introduction to hidden Markov models. IEEE ASSP Magazine,
3(1), 4–16.

Mach Learn

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning Journal, 62(1–2), 107–
136.

Rizzolo, N., & Roth, D. (2007). Modeling Discriminative Global Inference. In Proceedings of the first inter-
national conference on semantic computing (ICSC), Irvine, CA, September 2007 (pp. 597–604). New
York: IEEE.

Roth, D. (1999). Learning in natural language. In Proceedings of the international joint conference on artifi-
cial intelligence (IJCAI) (pp. 898–904).

Roth, D., & Yih, W. (2004). A linear programming formulation for global inference in natural language tasks.
In H. T. Ng & E. Riloff (Eds.), Proceedings of the annual conference on computational natural language
learning (CoNLL) (pp. 1–8). New York: Association for Computational Linguistics.

Roth, D., & Yih, W. (2005). Integer linear programming inference for conditional random fields. In Proceed-
ings of the international conference on machine learning (ICML) (pp. 737–744).

Roth, D., & Yih, W. (2007). Global inference for entity and relation identification via a linear programming
formulation. In L. Getoor & B. Taskar (Eds.), Introduction to statistical relational learning. Cambridge:
MIT Press.

Sarawagi, S., & Cohen, W. (2004). Semi-Markov conditional random fields for information extraction. In The
conference on advances in neural information processing systems (NIPS) (pp. 1185–1192).

Thelen, M., & Riloff, E. (2002). A bootstrapping method for learning semantic lexicons using extraction
pattern contexts. In Proceedings of the conference on empirical methods for natural language processing
(EMNLP).

Toutanova, K., Haghighi, A., & Manning, C. D. (2005). Joint learning improves semantic role labeling. In
Proceedings of ACL 2005.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervied methods. In Proceedings
of the annual meeting of the association for computational linguistics (ACL).

Zhu, X. (2006). Semi-supervised learning literature survey.

	Structured learning with constrained conditional models
	Abstract
	Introduction
	Constrained conditional model
	The benefits of distinguishing between constraints and features
	Inference with constraints
	Integer linear programming
	A* search
	Approximate search

	Learning constrained conditional models based on HMM
	Hidden Markov models: a review
	HMMCCM: supervised training
	HMMCCM: semi-supervised learning
	HMMCCM versus HMMCCMinfty

	Tasks and data
	Experimental results
	How does HMMCCM perform compared to the original HMM?
	How efficient is it to use constraints as a supervision resource?
	Is it beneficial to use the CoDL algorithm with the hard-EM approach, which finds the best assignment of the hidden variables, as opposed to EM, which calculates the full posterior distribution?
	How is the CCM approach compared to other approaches?
	Comparison with CRF and semi-CRF
	Comparison with expectation constraints approaches

	In HMMCCM, do we need to learn the penalty vector rho?
	What is the utility of each constraint in our experiments?
	How important is it to tune gamma in CoDL?

	CCM-infused Structured Perceptron (SPCCM)
	Related work
	Capturing long distance relationships
	Expectation-maximization framework and posterior regularization
	Injecting knowledge into graphic models

	Conclusions
	Acknowledgements
	References

