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Abstract

Large, pre-trained transformer language mod-
els, which are pervasive in natural language
processing tasks, are notoriously expensive to
train. To reduce the cost of training such large
models, prior work has developed smaller,
more compact models which achieves a signif-
icant speedup in training time while maintain-
ing competitive accuracy to the original model
on downstream tasks. Though these smaller
pre-trained models have been widely adopted
by the community, it is not known how well
are they calibrated compared to their larger
counterparts. In this paper, focusing on a wide
range of tasks, we thoroughly investigate the
calibration properties of pre-trained transform-
ers, as a function of their size. We demonstrate
that when evaluated in-domain, smaller mod-
els are able to achieve competitive, and often
better, calibration compared to larger models,
while achieving significant speedup in train-
ing time. Post-hoc calibration techniques fur-
ther reduce calibration error for all models
in-domain. However, when evaluated out-of-
domain, larger models tend to be better cali-
brated, and label-smoothing instead is an effec-
tive strategy to calibrate models in this setting.
.

1 Introduction

Large pre-trained transformer language models like
BERT (Devlin et al., 2019; Liu et al., 2019) have
revolutionized natural language processing, achiev-
ing state-of-the-art results in several tasks. The pro-
cess of applying these models on a downstream task
consists of two components: (1) Self-supervised
pre-training on a large amount of text corpora and
(2) Supervised fine-tuning on the downstream task.
Due to the very large number of parameters of such
transformer based architectures, the high down-
stream accuracies comes at a large computational
cost (Sharir et al., 2020; Bender et al., 2021) during
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the pre-training stage and also to a lesser extent,
while fine-tuning. To alleviate this computational
cost, several models with fewer parameters have
been proposed that significantly speed-up both the
pre-training and the fine-tuning stages (Turc et al.,
2019; Lan et al., 2020; Sanh et al., 2019; Sun et al.,
2020). For example, the smallest model in (Turc
et al., 2019) consists of only 4 million parameters
compared to BERT-base which has 110 million
parameters; this leads to a 65x speedup for pre-
training time. It has been widely observed (Turc
et al., 2019; Lan et al., 2020) that smaller models
achieve comparable downstream task performance
with a very significant speedup in training time.

A second issue with pre-trained models with a
massive number of parameters, is their lack of cali-
bration, which measures how well the model con-
fidences (posterior probabilities) are aligned with
the empirical likelihoods. In other words, for a cal-
ibrated model the probability associated with the
predicted class label should reflect its ground truth
correctness likelihood. Importantly, in the seminal
work of (Guo et al., 2017), the authors demonstrate
that for deep neural architectures increasing model
size negatively affects its calibration, even though
classification accuracy increases. In this paper, we
extend this to investigate the dependence of cali-
bration on model size for pre-trained transformer
models. Since miscalibrated models can make very
confident predictions even when they make errors,
especially on out-of-distribution data (Gupta et al.),
it is crucial to carefully study model calibration.

Recently, there has been some progress on study-
ing the calibration of deep neural networks and
specifically, pre-trained transformers (Guo et al.,
2017; Desai and Durrett, 2020; Kong et al., 2020;
Jagannatha et al., 2020). However, a careful study
of how the size of the pre-trained model influences
calibration is lacking. With the computational con-
straints of training large transformers like BERT
and the increasingly wide adoption of smaller mod-
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els, it becomes essential to study the calibration
of these variants. In this work, we make a thor-
ough empirical study of the calibration properties
of smaller transformer architectures of the BERT
family, for a wide set of classification tasks. The
set of models have rich variations over number of
layers, number of hidden neurons and embedding
representation. Additionally, we analyze the effects
of techniques designed to help calibrate models:
during training (eg: label smoothing) and post-hoc
(eg: temperature scaling), on the smaller models,
for both in- and out-of-domain datasets.
We establish the following results in this paper:
1. When evaluated in-domain, smaller models are
as well calibrated as BERT-base, both with and
without temperature scaling.
2. When evaluated out-of-domain, smaller models
are worse calibrated than BERT-base. This persists,
to a lesser extent, even after temperature scaling.
3. Label Smoothing, on the other hand, is not ef-
fective in-domain, but helps smaller models attain
better calibration than BERT-base out-of-domain.
It also helps improve accuracy as compared to the
non-smoothed models, on out-of-domain data.

2 Background

In this section, we describe how we measure cali-
bration and two techniques that help calibrate mod-
els: Temperature Scaling and Label Smoothing.
Calibration Metric: Let us define the following
notation: K is the number of classes, zi denotes the
raw logits from the model for the ith example and
σ(k) denotes the kth value of the softmax layer σ,
corresponding to the probability for the kth class
(for k ∈ [1, ...,K]). Then, the confidence on the
ith example is pi = maxkσ(zi)

(k).
A model is well calibrated if the confidence on
a prediction is aligned with the accuracy on that
prediction, in expectation. The widely adopted
Expected Calibration Error (ECE) metric (Guo
et al., 2017) measures exactly this: difference in
expectation between confidence and accuracy. Em-
pirically this is approximated by dividing the data
intoM confidence based bins, i.e.,Bm (wherem ∈
{1, 2, ...,M}) contains all datapoints i for which
pi lies in (m−1

M , mM ]. If acc(Bm) and conf(Bm)
denotes the average accuracy and prediction confi-
dence for the points in Bm, ECE is defined as:

ECE =
M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|,

where, |Bm| denotes the number of datapoints
in Bm and n is the total number of samples
(
∑M
m=1Bm). In our experiments we set M = 10.

Reliability diagrams are a popular graphical rep-
resentation of calibration. It plots the bucket-
wise accuracies acc(Bm) versus the confidences
conf(Bm). The identity line denotes perfect cali-
bration. The greater the deviation from the identity
line, higher is the mis-calibration of the model.
Post-hoc calibration: The calibration properties
of a model can be evaluated directly out-of-box
(OOB) based on the softmax scores of the model’s
predictions. Temperature scaling is designed to
improve the calibration of a model after training.
It rescales the logits zi by a factor of T , before
applying softmax σ. On the ith example, the new
confidence prediction is qi = maxk σ(

zi
T )

(k) Thus,
as T → ∞, qi → 1

K , ∀i, which is the uniform
distribution with maximum uncertainty. As T → 0,
the probability collapses to a point mass (qi = 1)
and if T = 1, pi = qi. The optimal temperature T
is tuned on the dev-set by a line search algorithm.
Label Smoothing (Szegedy et al., 2016) leads to a
modified fine-tuning procedure to address overcon-
fident predictions. While Maximum Likelihood Es-
timation (MLE), sharpens the model’s posterior dis-
tribution around the target labels, label smoothing
introduces uncertainty to smoothen the posterior
over the labels. Label smoothing constructs a new
target vector from the one-hot target vector, with a
probability of 1−α on the target label and α

K−1 on
all the other labels. Then, in the standard manner,
the cross entropy loss is minimized between the
model predictions and the modified target vectors.
Label smoothing has been shown to implicitly cal-
ibrate neural networks (Müller et al., 2019) and
(Desai and Durrett, 2020) have shown it is effective
for calibrating models on out-of-distribution data.

3 Experiments

3.1 Models

We consider a family of smaller pre-trained
transformer models from (Turc et al., 2019) with
the number of layers (L) ranging from 2 to 12 and
the number of hidden neurons (H) ranging from
128 to 768. This family of models allows us to
carefully study calibration as a function of L and
H, since the other parameters like training data
and architecture type are constant across them.
We focus on 5 models: Tiny (L=2, H=128), Mini
(L=4, H=256), Small (L=4, H=512), Medium



Model SNLI MNLI COLA
(L/H) Acc.(↑) OOB (↓) TS(↓) Acc.(↑) OOB(↓) TS (↓) Acc.(↑) OOB(↓) TS (↓)
2/128 82.05 2.61 1.14 69.72 3.61 1.80 69.39 2.25 0.95
4/256 86.67 3.64 1.23 76.05 4.75 1.95 70.54 4.25 2.37
4/512 87.24 3.63 0.80 78.01 4.28 0.95 74.38 7.42 2.06
8/512 88.72 4.46 1.41 80.15 4.79 1.35 76.58 4.78 3.03
Albert 89.07 0.86 0.91 83.62 3.29 0.94 79.08 4.90 2.47

BERTbase 89.29 2.70 1.30 84.02 4.72 0.82 80.80 4.31 2.08
Model SST-2 QQP TwitterPPDB
(L/H) Acc.(↑) OOB (↓) TS(↓) Acc.(↑) OOB(↓) TS (↓) Acc.(↑) OOB(↓) TS (↓)
2/128 80.04 4.49 2.46 84.21 3.06 1.44 84.62 6.27 3.99
4/256 85.55 7.07 1.67 88.28 2.79 1.47 88.99 5.06 2.29
4/512 88.53 7.64 4.61 88.56 3.87 0.68 88.36 5.74 2.73
8/512 89.22 7.83 4.14 89.51 3.08 1.14 87.85 6.66 3.14
Albert 91.97 4.73 1.49 89.03 1.03 0.70 90.21 3.17 2.14

BERTbase 90.60 8.07 4.45 89.47 1.54 0.74 88.77 5.73 3.40

Table 1: Variation of Acc. (Accuracy) and ECE (defined in Sec. 2) as a function of model size (L/H denotes the
number of layers/number of hidden neurons) across 6 different tasks. Acc. is in % (↑ denotes higher is better ) and
OOB, TS are in ECE (↓ denotes lower is better). The results are average over 5 iterations with random initialization.
The best results in each column are bolded. BERTbase and Albert (uses parameter-sharing) have L=12 and H=768.

(L=8, H=512), and Base (L=12, H=768). Note that
the first 4 models have far fewer parameters than
BERT; the Tiny model has only 4m parameters
compared to the 110m parameters in BERT-Base.
To investigate the effect of other types of parameter
reduction techniques beyond reducing the number
of neurons or layers, we also experiment with
Albert (Lan et al., 2020). Albert uses factorized
embeddings and cross layer parameter sharing
to reduce the number of parameters to only 12
million. We use the 12 layer Albert Base model
which is architecturally comparable to BERT Base.
For all models, we experiment with three settings:
Out-of-box (OOB) Calibration: We directly use
the confidences pi (on the ith example) from the
model to compute ECE. No specialized techniques
are used to explicitly calibrate the model.
Temperature Scaling (TS) (Guo et al., 2017):
We use this post-hoc (does not require model-
retraining) calibration technique that finds the
optimal temperature T as that which achieves the
lowest ECE on the dev-set, using line-search.
Label Smoothing (LS): We train a label-smoothed
model with hyper-parameter α = 0.1. This model
can be used out-of-box or with temperature scaling.

3.2 Tasks

We perform experiments on various NLP tasks:
Natural Language Inference: The Stanford Nat-
ural Language Inference (SNLI) (Bowman et al.,

2015) and the Multi-Genre Natural Language In-
ference (MNLI) (Williams et al., 2017) datasets are
used. Each of them have three classes correspond-
ing to the relations between the hypothesis and the
premise: entailment, contradiction and neutral.
Paraphrase Detection: The Quora Question Pairs
(QQP) (Iyer et al., 2017) and the TwitterPPDB (Lan
et al., 2017) datasets are used, where the former
contains semantically equivalent questions from
Quora and the latter contains semantically equiva-
lent tweets from Twitter. Both datasets have two
classes corresponding to similar/ dis-similar pairs.
Grammaticality Detection: The Corpus of Lin-
guistic Acceptability (COLA) (Warstadt et al.,
2018) is used. It contains two classes correspond-
ing to whether sentences are grammatical or not.
Sentiment Analysis: The Stanford Sentiment
Treebank (SST-2) (Socher et al., 2013) is used in
the binary classification setting, where movie re-
views are assigned positive or negative labels.
For details on the datasets, refer to Appendix A.

3.3 In Domain Calibration

For each of the different datasets, we fine-tune 1 the
various models on the train-set and evaluate their
calibration error on the test-set. Additionally, we
calibrate the model in-domain through temperature
scaling, where the optimal T is tuned on the dev-

1Refer to Appendix B for details on hyper-parameter
choices: fine-tuning epochs, learning rate and batch size.



Figure 1: Reliability Diagram for In-Domain MNLI
test-set, evaluated out-of-box. The closer the lines are
to the identity line, better is the calibration. Note the
first 3 bins with confidences from [0.0-0.3] do not con-
tain any points and thus, we start from the 4th bin.

set. 2 Table 1 shows the accuracies and the ECE
for the various models on the different datasets.
We see that models with far fewer parameters than
BERT-base, have competitive accuracy as well as
competitive (and sometimes better) calibration as
compared to BERT-base. This holds even after
temperature scaling, which reduces the ECE for all
the models. Fig. 1 shows the reliability diagram
for MNLI, where we see that the different smaller
models are as well calibrated as BERT-base.

3.4 Out-of-domain calibration

We further investigate the effect of model size on
calibration for out-of-domain data. For Natural
Language Inference, all models are fine-tuned on
the SNLI train-set and evaluated on the MNLI test-
set. For Paraphrase Detection, all models are fine-
tuned on the QQP train-set and evaluated on the
TwitterPPDB test-set. We also investigate the ef-
fect of (1) Temperature Scaling (where the optimal
temperature is chosen based on performance on the
dev-set for the source domain: SNLI or QQP) and
(2) Label Smoothing with α = 0.1, on calibration.

In the reliability diagram in Fig. 2 and in Table 2,
we see that smaller models suffer from higher cali-
bration error (ECE) on out-of-domain data, when
evaluated out-of-box (OOB) or with temperature
scaling (TS). The gap in ECE between smaller mod-
els and BERT-base is more severe for the SNLI
to MNLI transfer. However, Label Smoothing is
very effective in the out-of-domain setting. It sig-
nificantly reduces calibration error of all models

2We also try label-smoothing, but it gives worse results
than temperature scaling for in-domain data, across all models.

Model SNLI→MNLI
(L/H) Acc. OOB TS Acc. LS
2/128 47.73 19.64 18.34 56.57 3.65
4/256 56.57 15.61 12.92 61.83 6.17
4/512 57.61 14.55 11.16 63.91 6.82
8/512 63.13 15.43 9.38 66.76 6.91
Albert 67.09 8.36 8.13 68.59 4.18

BERTbase 69.88 7.25 4.06 71.35 4.98
Model QQP→ TwitterPPDB
(L/H) Acc. OOB TS Acc. LS
2/128 85.95 8.89 7.70 85.57 5.07
4/256 86.34 10.03 8.07 88.08 5.28
4/512 86.94 9.013 7.50 88.32 6.32
8/512 86.58 8.84 7.62 89.24 5.37
Albert 86.86 8.05 7.69 87.97 6.78

BERTbase 87.35 7.59 7.09 90.22 7.06

Table 2: Variation of accuracy and ECE as a function
of model size for the domain shift from SNLI to MNLI
(above) and from QQP to TwitterPPDB (below). Acc.
(Accuracy) is in % (higher is better) and OOB,TS,LS
are in ECE (lower is better).

Figure 2: Reliability Diagram for Out-of-Domain
MNLI test-set, evaluated out-of-box.

in general, but helps more for smaller models, as
seen in both the transfer tasks. Additionally, label
smoothing helps improve accuracy for all models
when compared to their OOB counterparts.

4 Conclusion

We presented a thorough empirical study of the ef-
fects of model size (number of parameters) on cali-
bration. Through experiments on a number of tasks,
we demonstrated that smaller transformer models
are as well, and sometimes better, calibrated com-
pared to BERT-Base, when evaluated in-domain.
On out-of-domain evaluation, larger models are bet-
ter calibrated, out-of-box. Label-smoothed models
are better calibrated and more accurate, on out-of-



domain data, with smaller models benefiting more
from Label Smoothing.
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A Dataset Details

Since the GLUE tasks (Wang et al., 2018) do not
have an annotated public test-set, we split the dev-
set equally such that one half forms the new dev-set
and the other half forms the test-set. The dev-set is
used for hyper-parameter selection. Table 3 shows
the details for each of the datasets considered.

B Hyper-parameter Selection

All models are used from the HuggingFace Trans-
formers Library (Wolf et al., 2019). All models are
fine-tuned for 2 to 4 epochs with the best value cho-
sen on the basis of the accuracy on the dev set. We
set the batch size as 16 with a learning rate of 2e-5,
gradient clip of 1.0, and no weight decay. All mod-
els are optimized using AdamW (Loshchilov and
Hutter, 2018). All the experiments are performed
on NVIDIA 24GB GPUs (although most models
can be run on 11GB GPUs).

Dataset Train Dev Test

SNLI 549,368 4,922 4,923

MNLI 392,702 4907 4908

SST-2 67,349 910 911

QQP 363,871 20,216 20,217

TwitterPPDB 46,667 5,060 5,060

COLA 8,551 531 532

Table 3: Number of training, development and test ex-
amples for the various datasets we experiment with.


