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Abstract

Determining whether two terms have an ancestor relation (e.g. Toyota Camry and car) or
a sibling relation (e.g. Toyota and Honda) is an essential component of textual inference in
Natural Language Processing applications such as Question Answering, Summarization,
and Textual Entailment. Significant work has been done on developing knowledge sources
that could support these tasks, but these resources usually suffer from low coverage, noise,
and are inflexible when dealing with ambiguous and general terms, that may not appear
in any stationary resource, making their use as general purpose background knowledge
resources difficult. In this paper, rather than building a hierarchical structure of concepts
and relations, we describe an algorithmic approach that, given two terms, determines the
taxonomic relation between them using a machine learning-based approach that makes
use of existing resources. Moreover, we develop a global constraint-based inference pro-
cess that leverages an existing knowledge base to enforce relational constraints among
terms and thus improves the classifier predictions. Our experimental evaluation shows
that our approach significantly outperforms other systems built upon existing well-known
knowledge sources.

1 Introduction

Fundamental taxonomic relations such as ancestor-descendant (e.g. actor and Mel
Gibson) and siblings (e.g. Mel Gibson and Tom Cruise) have been shown to hold
important roles in many computational linguistics tasks, such as document clus-
tering (Hotho et al., 2003), navigating text databases (Chakrabarti et al., 1997),
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Question Answering (QA) (Saxena et al., 2007) and Summarization (Vikas et al.,
2008). Recently, it has been shown that recognition of taxonomic relations between
terms is essential to support textual inference tasks such as Textual Entailment
(TE) (Dagan et al., 2006). For example, it may be important to know that a blue
Toyota Prius is neither a white Toyota Prius nor a blue Toyota Camry, and that
all are compact cars. Work in TE has argued quite convincingly (MacCartney
and Manning, 2008) that many such textual inferences are largely compositional
and depend on the ability to recognize fundamental taxonomic relations, such as
the ancestor or sibling relations, between terms. Furthermore, several TE studies
(Abad et al., 2010; Sammons et al., 2010) suggest isolating TE phenomena, in-
cluding recognizing taxonomic relations, and studying them separately. They also
discuss characteristics of several phenomena (e.g. contradiction) from a perspective
similar to ours, but do not provide a solution.

Motivated by the needs of natural language processing tasks, and the composi-
tionality argument alluded to above, this paper addresses the problem of classifying
fundamental taxonomic relations between terms: given two well-segmented terms,
the system predicts the taxonomic relation between them – ancestor-descendant,
siblings or no relation. In this work, the context where the terms come from is not
given. We leave the idea of leveraging the context of the input terms and how to
use the taxonomic relations in applications to a future extension of this work.

An input term could be any well-segmented span of words that refers to a concept.
Moreover, input terms may include common nouns or proper nouns from open or
closed concept classes. Some examples of input terms include mountain, George
W. Bush, battle of Normandy, table, US Today, NATO, and chemical elements. In
this paper, we use term and concept interchangeably, even though concept is usually
used to refer to nodes in hierarchical resources. For taxonomic relations, we consider
that two terms hold an ancestor-descendant relation if one term is subsumed by the
other w.r.t. a taxonomic structure, whereas two terms are siblings if they share a
common subsumer.

An ancestor-descendant relation and its directionality can help us infer that a
text snippet mentioning a descendant term (e.g. cannabis) entails a hypothesis men-
tioning an ancestor term (e.g. drugs) in a similar way as in the following example,
taken from a TE challenge data set.

Text: Nigeria’s NDLEA has seized 80 metric tons of cannabis in one of its largest ever
hauls, officials say.

Hypothesis: Nigeria seizes 80 tons of drugs.

Similarly, it is important to know of a sibling relation to infer that a statement
about Taiwan (without additional information) is not likely to entail a hypothesis
about Japan since they are different countries, as in the following example:

Text: A strong earthquake struck off the southern tip of Taiwan at 12:26 UTC, trig-
gering a warning from Japan’s Meteorological Agency that a 3.3 foot tsunami could be
heading towards Basco, in the Philippines.

Hypothesis: An earthquake struck Japan.
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Naturally, these taxonomic relations can be read off from manually generated
resources such as Wordnet that explicitly represent these relations. However, it is
clear that these resources have limited coverage. For example, Wordnet 3.0 (Fell-
baum, 1998) consists of only around 118,000 nominal concepts, which is obviously
much smaller than the number of concepts in English. In addition, very few entities
and multiword concepts are covered in WordNet.

There has also been work on extending the manually built resources using au-
tomatic acquisition methods resulting in structured knowledge bases such as the
Extended WordNet (Snow et al., 2006) and the YAGO ontology (Suchanek et al.,
2007). These knowledge sources only partially alleviate the coverage problem, and
could be potentially impaired by noise introduced when they were compiled.

One of the well-known approaches to building offline resources is using relational
patterns (e.g. X such as Y, Z) to extract related terms from text (Hearst, 1992;
Snow et al., 2006). Unfortunately, this approach is usually brittle. Infrequent terms
are less likely to be covered, and may not be effectively extracted since they do
not usually appear in close proximity with other terms (e.g. Israeli tennis player
Dudi Sela and Swiss tennis champion Roger Federrer rarely appear together in
news text). On the other hand, knowledge sources derived by using bootstrapping
algorithms and distributional semantic models (Pantel and Pennacchiotti, 2006;
Kozareva et al., 2008; Baroni and Lenci, 2010) typically suffer from a trade-off
between precision and recall, resulting either in a relatively accurate resource with
low coverage or a noisy resource with broader coverage.

Another limitation of structured resources, as we observe, is their inflexibility in
dealing with terms which cannot be exactly mapped to existing concepts in the
resources. This problem usually occurs when a resource actually contains a concept
corresponding to an input term, but the concept and the term are written with
different surface strings. For example, one may not be able to map the input term
Chelsea to concept Chelsea, London (an area of West London) in the Extended
WordNet using an exact string-matching operation because their surface strings
are not the same. Even worse, if the Extended Wordnet also maintains the con-
cept Chelsea F.C. (an English football club based in West London) in addition to
Chelsea, London, then there is no clear mechanism to map the input term Chelsea
to the concept Chelsea, London or Chelsea F.C.1

In this paper, we present a novel approach to identifying the taxonomic rela-
tion between two input terms by exploiting the rich structure and information of
Wikipedia,2 a free and collaboratively updated encyclopedia of concepts. It is im-
portant to emphasize that our work focuses on directly classifying relations that
hold between input terms rather than building a resource of relational information
among concepts. In this respect, we are distinct from Open Information Extraction
(Banko et al., 2007), on-demand Information Extraction (Sekine, 2006), and other

1 One may write a better coreference/ambiguity resolver to deal with ambiguous terms.
However, it is not feasible when the context of the input terms is not given as in this
work.

2 http://wikipedia.org/
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efforts to recognize facts in a given corpus (Davidov and Rappoport, 2008; Paşca
and Van Durme, 2008), which capitalize on local co-occurrence of terms to gener-
ate databases of open-ended facts. Our work is also different from the supervised
relation extraction effort (Roth and Yih, 2004) that requires full text or sentences,
where the two terms appear, to infer their relation.

In our work, we use Wikipedia as a background knowledge source. This resource
has been shown to be very useful and powerful for many tasks in knowledge ex-
traction (Suchanek et al., 2007; Ponzetto and Strube, 2007), information retrieval
(Milne and Witten, 2008; Mihalcea and Csomai, 2007; Ratinov et al., 2011), and
computing semantic relatedness (Gabrilovich and Markovitch, 2007). One of the
most important advantages of Wikipedia is that it allows volunteers to contribute
their knowledge collaboratively. Wikipedia, therefore, keeps growing over time with
millions of relations and concepts, including common nouns and proper nouns (e.g.
chicken, blue, Everest, US Today) and open and closed concept classes (e.g. country,
foods, chemical elements). Specifically, Wikipedia was chosen for our work for the
following reasons:

• Wikipedia consists of millions of pages providing rich information about con-
cepts. The pages in Wikipedia are well organized in an informative structure.
This allows us to easily leverage the information in Wikipedia to support
classification decisions.

• The information in Wikipedia is collaboratively generated, modified and up-
dated. Volunteers around the world contribute to Wikipedia everyday, guar-
anteeing that Wikipedia is up to date with new concept pages and improving
old concept pages over time. Using Wikipedia as the background knowledge
is semi-dynamic in the sense that Wikipedia is continuously growing and we
can easily use the latest Wikipedia version into our classification framework.

• Wikipedia provides a complex system of redirect and disambiguation pages,
which could be leveraged to overcome the problems of limited coverage and
lack of surface matching.

• Each content page in Wikipedia contains, in addition to the concept descrip-
tion, also semantic categories of the concept. We take advantage of both the
text and the categories in supporting taxonomic relation classification.

Our algorithmic approach takes two well-segmented terms as input and outputs
the predicted taxonomic relation between them, focusing on ancestor-descendant
and sibling relations. We first exploit the Wikipedia structure to build semantic
representation of each input term. Next, learning features are extracted from the
semantic representations of the terms. A learned multi-class classifier is then applied
to the extracted features to predict a probability distribution over the relations. In
addition, we present an inference model that makes use of relational constraints and
the aforementioned probability distribution over the taxonomic relations of the two
input terms and additional related terms to enforce a coherent structure of terms
and predicted relations that support the final taxonomic relation prediction.

In the rest of this paper, we present the overview of our algorithmic approach
in Section 2. The learning component and the inference model of our approach are
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Table 1. 4 taxonomic relations and some examples of each relation. Note that Lon-
don is an ambiguous concept. It can be a city, thus a sibling of Paris, but can also
refer to Jack London, thus a sibling of Hemingway

.

Examples
Label Relation Term x Term y

x← y x is an ancestor of y actor Mel Gibson
food rice
wine Champagne

x→ y x is a descendant of y Makalu mountain
Monopoly game

krooni currency

x↔ y x and y are siblings Paris London
copper oxygen

London Hemingway

x = y x and y have no relation Roja C++
egg Vega

HotBot autism

described in Sections 3 and 4. Experimental results showing the advantages of our
system are described in Section 5. We briefly discuss related work in Section 6, and
conclude the paper in Section 7.

2 Algorithmic Approach

2.1 Preliminaries

The basic problem that we address in this work is the identification of fundamen-
tal taxonomic relations between any two well-segmented terms. Instead of building
structured resources that record taxonomic relations among concepts as in previous
work, our system focuses on directly classifying any two input terms into funda-
mental taxonomic relations including ancestor-descendant, siblings or no relation.

The main component of our system is a taxonomic relation classifier that is
trained on supervised data consisting of pairs of terms and their taxonomic rela-
tions. In order to directly identify the directionality of the relations between input
terms, we explicitly train and evaluate the classifier on four relation labels — an-
cestor, descendant, sibling and no relation . Some examples in the training data
which consists of pairs of terms with four labels are shown in Table 1.

It is worth noting that it is a pragmatic decision to determine whether two
terms hold a taxonomic relation. For example, according to the Wikipedia category
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TAREC (Training)
Input: Supervised data D = {(x, y, rel)}

Wikipedia W
Algorithm:
1. D′ = ∅
2. For each (x, y, rel) ∈ D
3. Rx ←WikiRepresentation(x,W)
4. Ry ←WikiRepresentation(y,W)
5. D′ = D′ ∪ (Rx,Ry, rel)
6. C ← ExtractFeaturesAndTrainClasifier(D′)
Return: C

Fig. 1. The TAREC training algorithm.

system, George W. Bush is a descendant of Presidents of the United States and
also a descendant of people, mammals, and organisms. Without any constraint,
the term George W. Bush, therefore, could be considered as a sibling of the term
oak (tree) because they share organisms as a common subsumer. Obviously, we do
not want to predict that George W. Bush and oak are siblings. In this work, we
make use of Wikipedia structure as a source of background knowledge and use it
to infer taxonomic relations between terms. Our taxonomic relation identifier uses
a constant K – the maximum level to recursively climb up the Wikipedia category
structure from a given concept – as a way to control determining of taxonomic
relations between terms. Note that K is fixed for all relations and concepts

2.2 Overview

In this section, we present the overview of our TAxonomic RElation Classification
(TAREC) system. The system consists of a training and an evaluation algorithm.
Briefly, the training algorithm learns from a supervised training data set a local
classifier that is used evaluation time in a constraint-based inference model to make
the final prediction. We describe the algorithms below.

2.2.1 TAREC Training Algorithm

The training algorithm of TAREC is shown in Fig. 1. The input to the algorithm
includes supervised training data D and Wikipedia data W. The training data
consists of examples in the form of triples (x, y, rel), where x and y are two terms
and rel is their taxonomic relation. The relation rel denotes the taxonomic relation
from x to y. For example, triple (newspaper, New York Times, ←) denotes that
newspaper is an ancestor of New York Times, while (Canada, country, →) denotes
that Canada is a descendant of country. Wikipedia data W is a local database
constructed to allow access to necessary information in Wikipedia. We will discuss
this background knowledge source in more details in Section 3.

To identify taxonomic relations between two single terms, we first map the terms
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TAREC (Evaluation)
Input: A pair of terms (x, y)

Wikipedia W
Taxonomic relation classifier C

Algorithm:
1. Rx ←WikiRepresentation(x,W)
2. Ry ←WikiRepresentation(y,W)
3. Px,y ← Classify(Rx,Ry, C)
4. Zx,y ← ExtractRelatedTerms(x, y)
5. rel← ConstraintBasedInference(Px,y,Zx,y, C)
Return: rel

Fig. 2. The TAREC evaluation algorithm.

to some informative representations from which we could extract useful features.
The function WikiRepresentation(term,W) constructs a Wikipedia-based semantic
representation for the input term. A new learning example is formed from the
Wikipedia representation of the two input terms and their gold taxonomic relation.
The new data is then used to train a local multi-class classifier (C) to predict
relations. Note that beside predicting relations, the learned classifier can also predict
relation directionality due to the fact that we explicitly have four relation labels
in the training data — x is an ancestor of y, x is a descendant of y, x and y are
siblings, and x and y have no relation. We consider the classifier returned from
the TAREC training algorithm as a local classifier to distinguish it from the global
inference process employed in the TAREC evaluation algorithm.

2.2.2 TAREC Evaluation Algorithm

Given two terms (x, y), we apply the TAREC evaluation algorithm to predict their
taxonomic relation. The evaluation algorithm uses the local classifier C learned
using the TAREC training algorithm to predict the probability distribution over
four taxonomic relation labels of (x, y) with background knowledge source W. As
we do when training, the two input terms are first mapped to a Wikipedia-based
representation. The representations of x and y are then classified by C to get the
probability distribution, Px,y, over the relation classes. Following that, the predicted
probability distribution is used in a relational constraint-based inference model that
takes advantage of other related concepts, Zx,y, of (x, y) to enforce a final coherent
prediction on the taxonomic relation between x and y. In the inference model,
we present a novel approach that leverages related concepts of two input terms,
extracted from an existing knowledge source, to form a coherent relational structure
that supports an accurate global prediction of taxonomic relations between input
terms. The TAREC evaluation algorithm is summarized in Fig. 2.
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3 Learning Local Taxonomic Relation Classifier

The TAREC training algorithm focuses on learning to predict the probability distri-
bution over the possible taxonomic relations between two terms. It is clear that two
single terms do not provide informative features to predict a relation between them.
Our key idea is that we first map input terms to a more expressive representation
space that allows us to extract rich features. To accommodate this idea, we take
advantage of the structure of Wikipedia pages to map input terms to corresponding
pages in Wikipedia.

Conceptually, Wikipedia provides a category structure. Thus, it may help us
directly read off the taxonomic relations between terms. However, since terms could
be ambiguous, this could lead to uncertain situations when they are mapped to
Wikipedia pages (e.g. the term Ford could be mapped to both Ford Motor Company
and president Gerald Ford.) Furthermore, even if a term is mapped to a Wikipedia
page correctly, it is not easy to directly use the Wikipedia category system to infer
its relation to another term due to the fact that the taxonomic relation information
may be hidden in the text of their Wikipedia pages, not simply in the categories.
For example, Bill Clinton is a descendant of American, but there is no explicit
Wikipedia category American in the Wikipedia page of Bill Clinton. Nevertheless,
the fact that there are indeed categories American health activists and American
humanitarians on the Bill Clinton Wikipedia page would be very helpful to inferring
its taxonomic relation to the term American.

In this section, we first briefly describe the structure of Wikipedia pages, then
we introduce two mapping procedures that produce different behaviors in our final
systems, and finally, we present the learning features.

3.1 The Structure of Wikipedia Pages

The majority of Wikipedia pages provide information about concepts (or entities).
Typically, each concept page consists of three important pieces of information: a
title (usually identical to the concept surface form), a body text which describes the
concept, and the categories to which the concept belongs. The upper part of Table
2 shows snippets of some regular pages exemplifying the information of concepts
President of the United States, George W. Bush and Gerald Ford.

In addition, it is common for a concept to be referred to in multiple ways. For
example, Gerald Ford can also be referred to as Gerald R. Ford, Gerald Rudolph
Ford, Jr. or President Ford. Fixed resources, such as WordNet and the Extended
WordNet, are not able to deal with this issue, whereas the Wikipedia page structure
provides an excellent resource to address this problem. The reason is that Wikipedia
maintains a huge system of redirect pages that redirects uncanonical concepts to
their canonical form. The middle part of Table 2 illustrates some redirect pages
and their references. Redirect pages usually do not have categories because the
categories are maintained on corresponding canonical pages.

Furthermore, a term may be ambiguous and could refer to multiple concepts.
Fortunately, Wikipedia provides a clear organization of ambiguous concepts in a
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Table 2. An excerpt of the structure of Wikipedia pages

Page
Title

Text Categories

Regular (Non-Redirection) pages

President
of the
United
States

The President of the United States is the head
of state and head of government of the United
States and is the highest political official in
the United States by influence and recognition.
The President leads the executive branch of
the federal government and is one of only two
elected members of the executive branch...

Presidents of the United
States, Presidency of the
United States

George
W. Bush

George Walker Bush; born July 6, 1946) served
as the 43rd President of the United States from
2001 to 2009. He was the 46th Governor of
Texas from 1995 to 2000 before being sworn
in as President on January 20, 2001...

Children of Presidents of
the United States, Gover-
nors of Texas, Presidents
of the United States, Texas
Republicans...

Gerald
Ford

Gerald Rudolff Ford (born Leslie Lynch King,
Jr.) (July 14, 1913 December 26, 2006) was
the 38th President of the United States, serving
from 1974 to 1977, and the 40th Vice President
of the United States serving from 1973 to 1974.

Presidents of the United
States, Vice Presidents of
the United States, Repub-
lican Party (United States)
presidential nominees...

Redirect pages

US Pres-
ident

#Redirect [[President of the United States]] (N/A)

Gerald
R. Ford

#Redirect [[Gerald Ford]] (N/A)

Disambiguation pages

Ford #Refer [[Ford Motor Company]] Disambiguation page,
#Refer [[Gerald R. Ford]] Surnames
#Refer [[Henry Ford]]
#Refer [[Ford’s Theatre]]

table #Refer [[Table (furniture)]] Disambiguation page
#Refer [[Table (information)]]
#Refer [[Table (database)]]

special page structure which consists of disambiguation pages. Each disambiguation
page contains several concepts that an ambiguous term may refer to. The last part
of Table 2 shows the disambiguation pages of two terms, Ford and table, and the
concepts they refer to. Note that it is possible for a referred concept to be linked to
a redirect page. For instance, Ford may refer to Gerald R. Ford which is, in turn,
redirected to canonical the concept Gerald Ford.

Together, all these pieces of information make Wikipedia page structure a valu-
able resource when building a semantic representation for input terms.
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3.2 Wikipedia-based Semantic Representaiton

In this section, we present two approaches to constructing Wikipedia-based seman-
tic representations for input terms. Both approaches are motivated by the intuition
that real-world applications are usually interested in identifying relation between
related terms rather than arbitrary ones. For example, it is more likely that the
term Ford in the pair (George W. Bush, Ford) refers to the former president of the
United States, Gerald Ford, than to the car manufacturer Ford Motor Company
or its founder Henry Ford. Our approaches below take this intuition into account
when constructing the term’s Wikipedia semantic representation.

In the following section, we use Wikipedia concept and Wikipedia page inter-
changeably to refer to the Wikipedia page associated with a concept expressed by
the page title. For example, the Wikipedia page Gerald Ford is associated with the
Wikipedia concept Gerald Ford.

3.2.1 Matching-based Approach

Intuitively, given a term, this approach looks for the most appropriate Wikipedia
page that best matches (i.e. best describes) the term. To this end, the matching-
based approach maps the term to Wikipedia pages by directly looking it up and
matching it with Wikipedia pages’ title. Beside regular pages, we make use of
both redirect and disambiguation pages. Given a pair of terms, the output of this
procedure includes two Wikipedia pages that provide the best description of the
two input terms, respectively.

In this approach, each Wikipedia concept page, px (where x is a Wikipedia con-
cept), is represented by a set of keywords, KWx. The keywords are extracted by
selecting the top tokens in the body text and the categories of the page ranked by
their TF-IDF scores. In this work, for each Wikipedia page, we use the first para-
graph of the body text as an approximation for the whole text. We use the Porter
stemmer to normalize the tokens.3 For example, Wikipedia page Gerald Ford is
represented by the following list of normalized tokens {ford, presid, amend, gerald,
vice, fifth, serv, fortieth, state, rudolph, nixon, unit, resign, eighth, thirti, constitut,
twenti, term, person, bachil, episcopalian, adopte, waterg, wolverin, cardiovascu-
lar, nomine, recipi, communist, lawyer, rapid, omaha, scout, death, descend, yale,
alumni, eagl}. In our experiments, we used a maximum of top 40 keywords of KWx,
including the top 20 keywords of the text and the top 20 keywords from the cate-
gories of x.

Furthermore, each Wikipedia concept x is characterized by an absolute promi-
nence score, αx, which is defined as the number of times it is hyperlinked in the
whole Wikipedia corpus. Intuitively, the prominence notion of a concept encodes
its popularity by measuring how often it is linked to from other Wikipedia pages.
Given a pair of unambiguous concepts (x, y), we define their similarity as follows:

3 http://tartarus.org/∼martin/PorterStemmer/
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sim(x, y) = αx × αy × |KWx ∩KWy|

For a disambiguation page DPx of term x (e.g. x = Ford as shown in Table
2), each referred concept u ∈ DPx is assigned a relative prominence score αxu =

αu

maxu′∈DPx
αu′

, where αu is the absolute prominence scores of u. Given a concept
u ∈ DPx and a concept v ∈ DPy, we define the similarity score of pair (u, v) as
follows: sim(u, v) = αxu×αyv×|KWu∩KWv|. In general, if x is unambiguous (i.e. x
matches a normal page or a redirected page in Wikipedia), its absolute prominence
score is used. Otherwise, relative prominence score is used in the similarity metric.

Let WDP be the list of Wikipedia disambiguation pages, WR be the list of redi-
rect pages, andWNR be the list of regular (non-redirection) pages. We useWDP (x),
WR(x) and WNR(x) to denote the functions that map term x to the best corre-
sponding Wikipedia page in WDP , WR and WNR, respectively. A term is mapped
to a Wikipedia page via an exact string matching operation between the term and
the title of the page.

Given input pair (x, y), the matching-based approach follows the procedure
sketched below to select the best Wikipedia page for each input term.

1. Input: A pair of well-segmented terms (x, y).
2. Poolx = ∅; Pooly = ∅
3. if x in WDP // x is an ambiguous concept
4. DPx =WDP (x)
5. Poolx ← {the concepts in DPx}
6. else if x in WR // x is an unambiguous concept, but redirected
7. Rx =WR(x)
8. Poolx ← {the redirected concept in Rx}
9. else if x in WNR // x is an unambiguous (non-redirection) concept

10. NRx =WNR(x)
11. Poolx ← {NRx}
12. Similarly, extract Pooly for y as from step 2 to 10.
13. Find the best pair of pages (u∗, v∗) = argmaxu∈Poolx,v∈Poolysim(u, v)
14. Return: Rx = {u∗} and Ry = {v∗}.

Note that if x is unambiguous, x is mapped to a single Wikipedia page, and
Poolx, therefore, has only one single member. In this case, the absolute prominence
score αx is used in the similarity scoring function. This is similar for y and Pooly.

3.2.2 Search-based Approach

The key idea in our second approach is that we look for a set of relevant pages
in the Wikipedia corpus to be used as a representation of a term, rather than a
single page as in the matching-based approach. This approach requires information
retrieval techniques to search and retrieve relevant Wikipedia pages. In this work, we
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use the local search engine Lucene.4 The main procedure of this approach proceeds
as follows:

1. Input: A pair of well-segmented terms (x, y).
2. Create a unified query by concatenating x AND y. For example, for pair

(George W. Bush, Gerald Ford), the unified query is George W. Bush AND
Gerald Ford.

3. Search the complete Wikipedia corpus text using the unified query to retrieve
a list of relevant pages, Lx,y.

4. Extract the top important keywords from the categories of the pages in Lx,y
by ranking them using TF-IDF scores. Intuitively, this search will retrieve
relevant pages for both input terms, so the top extracted keywords will tie
the semantic meaning of the two input terms to each other. For example, the
unified query in step (1) will retrieve relevant pages of both George W. Bush
and Gerald Ford. From the retrieved pages, extracted keywords may include:
president, politician, united, state, etc..

5. Concatenate each input term with the list of keywords extracted in step 4.
For instance, George Bush will be augmented to make a conjunctive query:
George W. Bush AND president AND politician AND united AND state.

6. Search for the top relevant pages, Rx and Ry of x and y using their new
queries from step 5.

7. Return: Rx and Ry as the Wikipedia representations of x and y, respectively.

In our experiments, we use the top 10 keywords in step 4, and 10 Wikipedia
pages as the maximum number of pages in the Wikipedia representation of each
term returned in step 7.

3.3 Feature Extraction

The features of a pair of terms are extracted from their Wikipedia representations.
As discussed earlier (Section 3.1), a regular Wikipedia page of a Wikipedia concept
usually consists of a title, a body text, and a list of categories to which the concept
belongs. For convenience, for a term x, we use the titles of x, the text of x, and
the categories of x to refer to the titles, text, and categories of the associated
pages in the representation of x. Table 3 shows a short version of the Wikipedia
representation of two input terms Gerald Ford and Bush extracted by the search-
based approach. Note that the pages in the Wikipedia representation of Bush are
mostly about presidency because the term is influenced by the other term Gerald
Ford, as expected in the search-based approach. In this context, the titles of Gerald
Ford, the text of Gerald Ford and the categories of Gerald Ford consist of all the
titles, the body text and the categories of the Wikipedia pages in the Wikipedia
representation of Gerald Ford, respectively. Similar notions apply to the term Bush.

In addition to the direct categories of a Wikipedia page of a term, we also collect

4 E.g. http://lucene.apache.org/
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Table 3. A short version of the Wikipedia representation of input pair (Bush, Gerald
Ford). Note that page Presidency of Gerald Ford is redirected to page Gerald Ford;
they, therefore, get the same text and category list.

Term Page Title Text Category

Gerald
Ford

Gerald Ford Gerald Rudolff Ford (born Leslie
Lynch King, Jr.) (July 14, 1913 De-
cember 26, 2006) was the 38th Pres-
ident of the United States, serving
from 1974 to 1977, and the 40th Vice
President of the United States serving
from 1973 to 1974...

Presidents of the
United States, Vice
Presidents of the
United States, Re-
publican Party
(United States) pres-
idential nominees...

Presidency of
Gerald Ford

Gerald Rudolff Ford (born Leslie
Lynch King, Jr.) (July 14, 1913 De-
cember 26, 2006) was the 38th Pres-
ident of the United States, serving
from 1974 to 1977, and the 40th Vice
President of the United States serving
from 1973 to 1974...

Presidents of the
United States, Vice
Presidents of the
United States, Re-
publican Party
(United States) pres-
idential nominees...

Electoral his-
tory of Gerald
Ford

Electoral history of Gerald Ford, 38th
President of the United States and
40th Vice President of the United
States...

Gerald Ford, Elec-
toral history of Amer-
ican politicians...

Bush George W.
Bush

George Walker Bush; born July 6,
1946) served as the 43rd President of
the United States from 2001 to 2009.
He was the 46th Governor of Texas
from 1995 to 2000 before being sworn
in as President on January 20, 2001...

Children of Presi-
dents of the United
States, Governors of
Texas, Presidents of
the United States,
Texas Republicans...

George H. W.
Bush

George Herbert Walker Bush (born
June 12, 1924) is an American politi-
cian who served as the 41st President
of the United States (198993)...

Parents of Presidents
of the United States,
Presidents of the
United States, Texas
Republicans...

Presidency of
George W.
Bush

The presidency of George W. Bush be-
gan on January 20, 2001, when he was
inaugurated as the 43rd President of
the United States of America...

Presidencies of the
United States, Presi-
dency of George W.
Bush...

its higher level categories: we start from the categories of the page in its represen-
tation and recursively go up K levels on the Wikipedia category system as before.
The categories of a term are the union of its direct categories and all the categories
of the upper level pages.

Below we present the features extracted for an input pair of terms, (x, y), that
will be used in learning the relations classifier. All features are real value.

Bag-of-words Similarity: We define four bag-of-words features as the degree
of similarity among the texts and categories of x and y. The features are shown in
Table 4. We use the cosine similarity metric to measure the value of these features.
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Table 4. Bag-of-word similarity features of (x,y), where texts(term) and cate-
gories(term) are the functions that extract associated texts and categories from the
semantic representation of term.

Bag-of-words similarity features

text(x) vs. categories(y)
categories(x) vs. text(y)

text(x) vs. text(y)
categories(x) vs. categories(y)

Let vtx =< w1, w2, · · · > be the bag-of-words feature vector of the texts of term
x, where wi is the indicator variable that indicates whether a particular word at
position i is present in the text of x. Let vcy =< w1, w2, · · · > be the bag-of-words
feature vector of the category of y. The similarity strength between the text of x
and the categories of y is measured as in Equation (1).

sim(vtx, v
c
y) =

−→
vtx •
−→
vcy

‖
−→
vtx‖‖
−→
vcy‖

(1)

For the other three bag-of-words features, we use similar notions and formulas.

Association Information: This feature measures the association information
between terms by considering their information overlap over the whole Wikipedia
data. We capture this feature using pointwise mutual information (PMI) which
quantifies the discrepancy between the probability of two terms appearing together
versus the probability of each term appearing independently.5 The PMI of two
terms x and y is estimated as in Equation (2):

PMI(x, y) = log
p(x, y)
p(x)p(y)

= log
Nf(x, y)
f(x)f(y)

(2)

where N is the total number of Wikipedia pages, and f is a counting function that
returns the number of times its argument(s) appear(s) (together) in Wikipedia.

Overlap Ratios: The overlap ratio features capture the fact that the titles of
an ancestor term usually overlap with the categories of its descendants. Similarly,
the categories of two sibling terms are also usually highly overlapping. For example,
Wikipedia page Presidents of the United States, as shown in Table 2, has a title that
overlaps with one of the categories of the Wikipedia page George W. Bush. This
evidence strongly supports the conclusion that the term Presidents of the United

5 PMI is different than mutual information. The former applies to specific outcomes, while
the latter is used to measure the mutual dependence of two random variables.
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Table 5. Overlap ratio features of (x,y), where titles(term) is a function that returns
the titles of the Wikipedia pages in the Wikipedia representation of term; function
categories(term) was defined in Table 4

Overlap ratio features

titles(x) vs. categories(y)
categories(x) vs. titles(y)

categories(x) vs. categories(y)

States is an ancestor of the term George W. Bush. On the other hand, the categories
of George W. Bush and Gerald Ford overlap with each other in several categories,
such as Presidents of the United States. In general, a higher overlap ratio indicates
a better chance for two terms to hold a taxonomic relation. We use three overlap
ratio features as shown in Table 5.

We measure the overlap ratios by the ratios of the numbers of key phrases in the
titles and categories of the input terms. In our context, a phrase is considered to
be a key phrase if it belongs to one of the following types:

• the whole string of a title or category
• the lemma of the head a category
• the post-modifier of a category

We use the Noun Group Parser (Suchanek et al., 2007) to extract the head and
post-modifier of a category. For example, the category Cities in Illinois of Wikipedia
page Chicago could be parsed into a head in its root form, City, and a post-modifier,
Illinois. Therefore, in the pair of terms (City, Chicago), the term City overlaps with
the head, City, of the category Cities in Illinois of the Wikipedia page Chicago. This
is a strong feature indicating that Chicago is a descendant of City.

Let two input terms be x and y. Let utx = (t1x, t
2
x, · · · ) denote the set of titles of

term x in its Wikipedia representation. Also, let ucy = (c1y, c
2
y, · · · ) be the set of the

key phrases of the categories of term y in its Wikipedia representation. The overlap
ratio feature between the titles of term x and the categories of term y is computed
using the Jaccard similarity coefficient metric as shown in Equation (3).

overlap(x, y) =
|utx

⋂
ucy|

|utx
⋃
ucy|

(3)

For the other two overlap ratio features, we use similar notions and formulas. In
addition, to measure the overlap ratio feature between the categories of the two
input terms, the post-modifiers of the categories are not used because when the
categories of the terms are compared together, the overlap of the post-modifiers of
the categories is not useful (e.g. categories Actors of America and Companies of
America overlap in their post-modifiers America, but this overlap does not help to
recognize taxonomic relations).
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Overall, we use eight feature types for the local classifier including: bag-of-words
features (4), association information (1), and overlap ratio features (3).

3.4 Non-Wikipedia Terms

Although most commonly used terms have corresponding Wikipedia pages, new
entities and concepts always come up and there are still many terms that do not have
Wikipedia pages. We call these terms non-Wikipedia terms. In order to handle these
terms, we propose to use a normalization procedure to find approximate Wikipedia
pages for non-Wikipedia terms. The basic idea of the normalization procedure is to
find a replacement for a non-Wikipedia term which, ideally, keeps the underlying
taxonomic relation unchanged, by using Web search. For example, given input pair
(Lojze Kovačič, Rudi Šeligo), there is no English Wikipedia page for Lojze Kovačič,
who is a writer, but if we can find another writer, such as Marjan Rožanc, and use it
as a replacement of Lojze Kovačič, then we can continue classifying the taxonomic
relation of pair (Marjan Rožanc, Rudi Šeligo).

Our Wikipedia normalization procedure follows (Sarmento et al., 2007). We first
compose a query concatenating the two input terms (e.g. Lojze Kovačič AND Rudi
Šeligo) and use Web search6 to retrieve list-structure snippets with the following
pattern: “... 〈del〉 ca 〈del〉 cb 〈del〉 cc 〈del〉 ...” (the two input terms must be among
ca, cb, cc, ...). In the pattern, del is a delimiter and could be commas, periods, or
asterisks.7 Using the snippets that contain the patterns of interest, we extract ca,
cb, cc etc. as replacement candidates. To reduce noise, we empirically constrain the
list to contain at least 4 terms that are no longer than 20 characters each.8 The
candidates are ranked based on their occurrence frequency. The top candidate for
which we can construct a Wikipedia representation, is used as a replacement.

4 Global Inference with Relational Constraints

In this section, we present a novel inference model which relies on the structure of
pair-wise mutual taxonomic relations among two input terms and some additional
related terms to enforce final coherent prediction. The main idea of our inference
model is that logical constraints on relations among terms may prevent predicting
illegitimate structures. Our global objective, therefore, focuses on selecting the best
taxonomic relation between two input terms that allows legitimate structures to be
formed when additional terms are taken into account. For example, given two target
terms George W. Bush and president, we add an additional related term, such as
Bill Clinton; if we can identify, with some degree of confidence, that (i) president
is an ancestor of Bill Clinton, and (ii) Bill Clinton is a sibling of George W. Bush,
then due to the transitivity property of taxonomic relations, the term George W.

6 http://developer.yahoo.com/search/web/
7 Periods and asterisks capture enumerations.
8 We believe that a list with less than 4 terms may not be a good list. Furthermore, we

require that a candidate term has no more than 20 characters to prevent noisy terms.
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Bush is likely to be a descendant of the term president since other relations will
create illegitimate structures.

The two input terms along with some additional related terms and the taxonomic
relations among them form a structure that we call a term network (or network for
short). Fig. 3 shows some n-term networks consisting of two input terms (x, y),
and additional terms v, w, z. Note that the arrows in the figures follow the notions
in Table 1.

The aforementioned observations suggest that if we can get additional terms that
are related to the two input terms, we can enforce coherent structures and eliminate
illegitimate combinations of terms and relations via relational constraints. This
would help the system improve the predictions of taxonomic relations of input pairs.
In this work, we formalize our inference model using constraint-based formulations
that were introduced to the NLP community in (Roth and Yih, 2004) and were
shown to be very effective in exploiting declarative background knowledge (Denis
and Baldridge, 2007; Punyakanok et al., 2008; Chang et al., 2008).

4.1 Enforcing Relational Constraints through Global Inference

The main goal of our inference model is to eliminate illegitimate term networks
and select the best taxonomic relation of two input terms, embedded in legitimate
structures. Below, we formalize our inference model with the following notation:

• (x, y) : two input terms.
• Zx,y = {z1, z2, ..., zm} : a set of additional terms.
• Z ⊆ Zx,y : a subset of terms in Zx,y.
• e : an edge imposing a relation between two terms; e can be one of four

relations.
• w(e) : the weight of e, given by local classifier C (see Fig. 1). Recall that C

predicts a probability distribution over four taxonomic relations between x

and y.

Each network is formed by x, y and the terms in Z. Let l = |Z|, then there are
n = 2 + l terms in each network, and 4[ 1

2n(n−1)] networks can be constructed.
We define a relational constraint as a network that imposes an illegitimate struc-

ture on its edges. That is, a constraint is unlexicalized in the sense that we only
consider the edge structure of the network, regardless of the specific terms. In
this work, we focus on 3-term networks (i.e. l = 1). For example, given input
pair (red, green) and Z = {blue, yellow}, we can construct 64 networks for triple
〈red, green, Z = {blue}〉 and 64 networks for 〈red, green, Z = {yellow}〉 by trying
all possible relations between the terms.

Fig. 3(c) shows a relational constraint where the term red is a sibling of both
green and blue, but green is an ancestor of blue; this structure is illegitimate because
of the transitivity property. The relational constraints in this work are manually
constructed. In the case of 3-term networks, constraints are written in a clockwise
direction, starting from the two input terms, (x, y). For instance, the illegitimate
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George W.
Bush

President

Bill Clinton

x y

z

Red Green

Blue

x y

z

(a) (c)

Honda Toyota

car
manufacturer

x y

z w
BMW

(b)

Fig. 3. Examples of n-term networks with input pair (x, y). (a) and (b) show two valid

structures, whereas (c) illustrates a relational constraints with an illegitimate structure.

structure in Fig. 3(c) forms the following relational constraint: 〈↔,↔,→〉, where
the arrows follow the notation in Table 1.

We solve this constraint optimization problem by a 2-stage greedy approach which
is integrated into the Constrained Conditional Model (CCM) (Chang et al., 2008).
We first check and eliminate all term networks that are illegitimate, then greedily
select the best taxonomic relation that allows legitimate networks.9

Let RC be a list of relational constraints. Network t can be assigned a score using
the network scoring function defined in Eq. (4). This scoring function is a linear
combination of the edge weights, w(e), of the edges in t and the penalties, ρk, that
penalize if the edge structure of t belongs to RC.

score(t) =
∑
e∈t

w(e)−
|RC|∑
k=1

ρkdRCk
(t) (4)

where, function dRCk
(t) indicates whether t matches RCk.

We can define relational constraints as either hard or soft constraints. In the cur-
rent work, we consider illegitimate networks as hard constraints: all term networks
that belong to the list of relational constraints are simply discarded. To do this, we
set penalty factor ρk to ∞, for all RCk.

Now, among the set of networks formed by 〈x, y, Z〉, we select the best network,
t∗Z = argmaxtscore(t).

Let t∗∩ = ∩Zt∗Z , Z ⊆ Z; we then partition t∗∩ into four groups according to the
relation, denoted by rel, between x and y in each network. Let us denote each group
by Trel. To choose the best taxonomic relation, rel∗, between x and y, we pick the
relation which maximizes the average score of the whole group as in Eq. (5).

rel∗ = argmaxrel
1
|Trel|

∑
t∗∈Trel

λt∗score(t∗) (5)

where λt is the weight of the unlexicalized term network t, defined as the occur-
rence probability of t in an augmented version of the training data. To augment the

9 We do not use an exact inference approach (e.g. Integer Linear Programming (ILP))
to solve the problem because the optimization problem here with 3-term networks is
small and can be effectively solved by a greedy approach. However, ILP and other
optimization approaches could be used as the alternatives to our greedy approach.
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Yago Query Patterns
Input: term x

Output: lists of ancestors, siblings, and children of x

Pattern 1 Pattern 2 Pattern 3

x means ?A x means ?A x means ?D

?A subclassof ?B ?A type ?B ?E type ?D

?C subclassof ?B ?C type ?B

Return: ?B, ?C, ?E as
lists of ancestors, siblings (extracted by Patterns 1 and 2),
and children (extracted by Pattern 3), respectively.

Fig. 4. Our Yago query patterns used to obtain related terms for x.

training data, we first extract additional terms for each pair of terms in the training
data, and then apply our local classifier to identify the taxonomic relation between
the terms. The weight of a network t is computed as the number of time t occurs
in the augmented training data divides by the total number of term networks.

4.2 Extracting Related Terms

In the inference model, we need to obtain additional terms, Zx,y, that are related
to x and y. Hereafter, we refer to additional terms as related terms. The related
term space is composed of the direct ancestors, siblings and direct children of the
input terms, obtained from some knowledge source.

We propose to extract related terms from the Yago ontology (Suchanek et al.,
2007). Yago is chosen over the Wikipedia category system used in our work because
Yago is a clean ontology built by carefully combining Wikipedia and WordNet.10

In the Yago model, all objects (e.g. cities, people, etc.) are represented as entities.
To map our input terms to entities in Yago, we use the means relation defined
in the Yago ontology. Furthermore, similar entities are grouped into classes. This
allows us to obtain direct ancestors of an entity by using the type relation which
gives the entity’s classes. Furthermore, we can get ancestors of a class with the
subclassof relation.11 By using three relations, means, type and subclassof,
in the Yago model, we can obtain direct ancestors, siblings, and direct children,
if any, for input terms. In the case that the two input terms are not contained in
Yago, the inference model is simply ignored. Fig. 4 presents three patterns that

10 However, Yago by itself is weaker than our system in identifying taxonomic relations
(see Section 5).

11 These relations are defined in the Yago ontology.
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we use to query related terms from Yago. For more details on Yago relations, we
refer readers to (Suchanek et al., 2007).

5 Experimental Study

In this section, we evaluate TAREC against other systems built upon existing
well-known knowledge sources. The resources are either hierarchical structures or
extracted by using distributional semantic models. We also provide experimental
analyses on the compared systems.

5.1 Comparison to Hierarchical Structures

5.1.1 Data Preparation

We create and use two main data sets in these experiments.
Dataset-I is generated from 40 semantic classes of about 11,000 instances. The

original semantic classes and instances were manually constructed with a limited
amount of manual post-filtering and were used to evaluate information extraction
tasks in (Paşca, 2007; Paşca and Van Durme, 2008) (we denote this original data
as OrgData-I). This data set contains both terms with Wikipedia pages (e.g.
George W. Bush) and non-Wikipedia terms (e.g. hindu mysticism). Pairs of terms
are generated by randomly pairing semantic class names and instances. We generate
disjoint training and test sets of 8,000 and 12,000 pairs of terms, respectively. We
call the test set of this data set Test-I.

Dataset-II is generated from 44 semantic classes of more than 10,000 instances
used in (Vyas and Pantel, 2009).12 The original semantic classes and instances were
extracted from Wikipedia lists. This data therefore contains only terms that have
Wikipedia pages. We also generate disjoint training and test sets of 8,000 and 12,000
pairs of terms, respectively, and call the test set of this data set Test-II.

Both data sets contain both types of closed semantic classes (e.g. chemical el-
ement, country) and open semantic classes (e.g. basic food, hurricane). Moreover,
there are classes with proper nouns (e.g. actor with Mel Gibson) and classes with
common nouns (e.g. basic food with rice, milk).

Many semantic class names in the original data sets are written in short forms.
We expand these names to meaningful names that are used by all systems in our
experiments. For example, terroristgroup is expanded to terrorist group, terrorism,
chemicalelem to chemical element, proglanguage to programing language. Some ex-
amples are shown in Table 1. Four types of taxonomic relations are covered with
balanced number of examples in all data sets.13

To evaluate our systems, we used a snapshot of Wikipedia from July, 2008. After
cleaning and removing articles without categories (except redirect pages), 5,503,763

12 There were 50 semantic classes in the original data set. We grouped some semantically
similar classes for the purpose of classifying taxonomic relations.

13 Published at http://cogcomp.cs.illinois.edu/page/resources/TaxonomicRelationData.
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articles remained. We indexed these articles by their body texts using Lucene.14 In
practice, we only indexed the abstract (usually the first paragraph) of the Wikipedia
pages. All characters were lower-cased and all punctuations were removed. We also
removed stop words.15 Furthermore, when performing search on the Wikipedia
index, we did not normalize the search similarity score to the length of an article.
Specifically, we overwrote the lengthNorm function in Lucene to always return value
1. All query tokens must occur in a Wikipedia page for it to be returned in the
search result list.

As a learning algorithm, we used the Regularized Averaged Perceptron (Freund
and Schapire, 1999) within the LBJ modeling language (Rizzolo and Roth, 2010).16

The learning algorithm used the one-vs-all scheme to transform a set of binary
classifiers into a multi-class classifier. The raw activation scores were converted into
probability distribution with the softmax function (Bishop, 1996). If there are n
classes and the raw score of class i is acti, the posterior estimation for class i is:

Prob(i) =
eacti∑

1≤j≤n e
acti

5.1.2 Compared Systems

Beside TAREC, we developed three other systems built upon well-known large-scale
hierarchical structures.

Strube07 is built on the latest version of a taxonomy, TStrube, which was derived
from Wikipedia (Ponzetto and Strube, 2007). It is worth noting that the structure of
TStrube is similar to the page structure of Wikipedia. For a fair comparison, we first
generate a Wikipedia representation for each input term by following search-based
approach in Section 3.2.2. The titles and categories of the articles in the represen-
tation of each input term are then extracted. Only titles and their corresponding
categories that are in TStrube are considered. A term is an ancestor of another one
if at least one of its titles is in the categories of the other term. If two terms share
a common category, they are considered siblings, otherwise they are considered to
have no relation. The ancestor relation is checked first, then the sibling, and finally
no relation.

Snow06 uses the Extended WordNet (Snow et al., 2006). Words in the Extended
WordNet can be common nouns or proper nouns. Given two input terms, we first
map them onto the hierarchical structure of the extended WordNet by exact string
matching. A term is an ancestor of another one if it can be found as a subsumer
after recursively going up K levels in the hierarchical tree of the Extended WordNet
from the other term. If two terms share a common subsumer within K levels on the

14 http://lucene.apache.org, version 2.3.2
15 We used the following stop word list: a, about, an, are, as, at, be, by, com, de, en, for,

from, how, i, in, is, it, la, of, on, or, that, the, this, to, was, what, when, where, who,
will, with, und, the, www.

16 http://cogcomp.cs.illinois.edu/page/software view/11
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Table 6. Performance, in accuracy, of the systems on Test-I and Test-II. TAREC
systems with local models simply use the local classifier to classify taxonomic rela-
tions by choosing the relation having highest confidence.

System Test-I Test-II

Strube07 24.32 25.63
Snow06 41.97 36.26
Yago07 65.93 70.63

Local
TARECMATCH 79.64 77.56
TARECSEARCH 81.89 84.7

Inference
TARECSEARCH 85.34 86.98

tree, they are classified as siblings. Otherwise, there is no relation between them.
Similar to Strube07, we first check ancestor, then sibling, and finally no relation.

Yago07 uses the Yago ontology (Suchanek et al., 2007) as its main source of
background knowledge. Because the Yago ontology is a combination of Wikipedia
and WordNet, this system is expected to perform well in identifying taxonomic
relations. To access term’s ancestors and siblings, we use patterns 1 and 2 in Fig. 4 to
map a term to the ontology and move up on the ontology. The relation identification
process is then similar to those of Snow06 and Strube07. If an input term is not
recognized by these systems, they are considered to have no relation.

Our TAREC evaluation algorithm is described in Fig. 2 and is evaluated in two
settings: TARECMATCH , which employs the matching-based approach (Section
3.2.1), and TARECSEARCH , which uses the search-based approach (Section 3.2.2).

We evaluate each setting with the Local model which does classification on term
pairs by directly selecting the highest-probability relation returned by the local
classifier C. For the Inference model, we manually construct a pre-defined list of
35 relational constraints.

5.1.3 Results

In all systems compared, we vary the value of K from 1 to 4. The best results of
the systems are reported.

Table 6 shows the comparison of all systems evaluated on both Test-I and Test-II.
Our TAREC (Local) systems, as shown, significantly outperform the other systems.
The results show that our machine learning-based classifier is very flexible in ex-
tracting features of the two input terms and is thus much better at predicting
their taxonomic relation. In contrast, because other systems rely heavily on string
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matching techniques to map input terms to their respective ontologies, they are
very inflexible and brittle. This clearly shows the limitations of using structured
resources to classify taxonomic relations.

Between the local systems, the search-based approach is better than the
matching-based approach. This can be explained by the fact that the matching-
based approach is still not flexible enough in mapping input terms to Wikipedia
representation.

We apply the inference model on top of TARECSEARCH (Local) and further
achieve remarkable improvement. The improvement of TARECSEARCH (Inference)
over TARECSEARCH (local) on Test-I shows the contribution of both the normal-
ization procedure (see Section 3.4) and the global inference model to the classi-
fication decisions, whereas the improvement on Test-II emphasizes only the con-
tribution of the inference model, because Test-II only contains terms that have
corresponding Wikipedia pages. This improvement also suggests that relational
constraints help improve the local classifier by enforcing coherent decisions over
underlying structures of terms and relations.

Furthermore, it is also interesting to see that between Test-I and Test-II test
sets, TARECMATCH (Local) performs better on Test-I. Our analysis shows that
this is because there are more ambiguous terms (i.e. requiring more mappings to
concepts in disambiguation pages) in Test-II than Test-I, therefore, Test-II is more
difficult than Test-I for the matching-based approach. Specifically, 36.23% of terms
in Test-II are ambiguous, while that number in Test-I is 31.71%.

For the value of K, the best results of the systems on Test-I are achieved
with: K = 4 for Strube07, K = 2 for Snow06, K = 1 for Yago07, K = 3 for
TARECMATCH , andK = 2 for both local and inference models of TARECSEARCH .
These values of K are the same on Test-II.17 This shows that while the best value of
K may vary with different systems, it is consistent across the data sets. Hence, we
use K = 2 for further experiments with TARECSEARCH , unless specified otherwise.

We do not use special tactics to handle polysemous terms. However, our ap-
proaches to building Wikipedia representations for input terms described in Section
3 tie the senses of the two input terms together, thus, implicitly, tend to capture
the potential meanings of the terms. We do not use this procedure in Snow06 be-
cause WordNet and Wikipedia are different in their structures. We also do not use
this procedure in Yago07 because in Yago, a term is mapped onto the ontology by
using the means operator (in Pattern 1, Fig. 4). This cannot follow our procedure.

5.2 Comparison to Harvested Knowledge

As we have discussed earlier, the outputs of bootstrapping-based algorithms is usu-
ally limited to a small number of high-quality terms while sacrificing coverage (or
vice versa). For example, the full Espresso algorithm (Pantel and Pennacchiotti,
2006) extracted 69,156 instances of is-a relation with 36.2% of precision. Similarly,

17 The best results on Test-II with K = 2 and K = 3 are similar.
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(Kozareva et al., 2008) evaluated only a small number (a few hundreds) of har-
vested instances. Recently, (Baroni and Lenci, 2010) proposed a general framework
for extracting properties of input terms. Their TypeDM model harvested 5,000
significant properties for each term out of 20,410 noun mentions. For example, the
properties of marine include 〈own, bomb〉, 〈use, gun〉. Using vector space models we
could measure the similarity between terms using their property vectors. However,
since the information available in TypeDM does not directly support predicting an-
cestor relation between terms, we only evaluate TypeDM in classifying sibling vs.
no relation. To accommodate this experiment, we develop the following procedure,
giving a list of semantic classes.

• For each semantic class, use some seeds to compute a centroid vector from
the seeds’ vectors in TypeDM.

• Each term in an input pair is classified into its best semantic class based on
the cosine similarity between its vector and the centroid vector of the semantic
classes.

• Two terms are siblings if they are classified into the same semantic class; and
have no relation, otherwise.

Out of the terms in OrgData-I, only 345 terms are covered by the noun men-
tions in TypeDM. These terms belong to 10 significant semantic classes. For each
semantic class, we randomly pick 5 instances as its seeds to compute its single cen-
troid vector. The rest of the overlapping instances are randomly paired to make a
data set of 4,000 pairs of terms balanced in the number of sibling and no relation
pairs. On this data set, TypeDM achieves an accuracy of 79.75%. TARECSEARCH

(Local), with the local classifier trained on the training set (with 4 taxonomic
relation classes) of Dataset-I, gives 78.35% of accuracy. TARECSEARCH (Infer-
ence) system achieves 82.65%. We also re-train and evaluate the local classifier of
TARECSEARCH (Local) on the same training set but without ancestor-relation
examples. This local classifier achieves an accuracy of 81.08%.

These results show that although the full system, TARECSEARCH (Inference),
achieves better performance, TypeDM is very competitive in recognizing sibling vs.
no relation. It has not been straightforward to apply the TypeDM model to ancestor
relations between terms. As a result we only tested it in the limited setting where
semantic classes are given in advance.

5.3 Experimental Analysis

In this section, we discuss some experimental analyses to better understand our
systems. In all these experiments, TAREC uses the search-based approach to build
Wikipedia representation.

Precision and Recall: We study TAREC on individual taxonomic relations
using Precision and Recall. Table 7 shows that TAREC (Inference) performs very
well on ancestor relations. Sibling and no relation are the most difficult relations to
classify. In the same experimental setting on Test-I, Yago07 achieves 79.34% and
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Table 7. Performance of TAREC (Inference) on individual taxonomic relation.

Test-I Test-II
Prec Rec Prec Rec

x← y 95.82 88.01 96.46 88.48
x→ y 94.61 89.29 96.15 88.86
x↔ y 79.23 84.01 83.15 81.87
x = y 73.94 79.9 75.54 88.27

Average 85.9 85.3 87.83 86.87

Table 8. Performance of the systems on special data sets, in accuracy. On the
non-Wikipedia test set, TAREC (Local) simply returns sibling relation. Note that
TAREC uses search-based approach to build Wikipedia representation for input
terms.

System Wiki WordNet non-Wiki

Strube07 24.59 24.13 21.18
Snow06 41.23 46.91 34.46
Yago07 69.95 70.42 34.26

TAREC (Local) 89.37 89.72 31.22
TAREC (Inference) 91.03 91.2 45.21

66.03% of average Precision and Recall, respectively. These numbers on Test-II are
81.33% and 70.44%.

Special Data Sets: We evaluate all systems that use hierarchical structures as
background knowledge on three special data sets derived from Test-I. From 12,000
pairs in Test-I, we created a test set, Wiki, consisting of 10, 456 pairs with all terms
in Wikipedia. We use the rest of 1, 544 pairs with at least one non-Wikipedia term
to build a non-Wiki test set. The third data set, WordNet, contains 8, 625 pairs
with all terms in WordNet and Wikipedia. Table 8 shows the performance of the
systems on these data sets. Unsurprisingly, Yago07 gets better results on Wiki than
on Test-I. Snow06, as expected, gives better performance on the WordNet test set.
TAREC (Inference) still significantly outperforms these systems. The improvement
of TAREC (Inference) over TAREC (local) on the Wiki and WordNet test sets
emphasizes the contribution of the inference model, whereas the improvement on
the non-Wikipedia test set shows the contribution of the normalization procedure
described in Section 3.4.
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Table 9. TAREC with different sources providing related terms for inference.

System K=1 K=2 K=3 K=4

TAREC (Inference) 82.93 85.34 85.23 83.95
TAREC (Gold Inference) 83.46 86.18 85.9 84.93

Contribution of Related Terms in Inference: We evaluate TAREC (Infer-
ence) when the inference procedure is fed by related terms that are generated using
a “gold standard” source instead of Yago. To do this, we use the original data
which was used to generate Test-I. For each term in the examples of Test-I, we get
its ancestors, siblings, and children, if any, from the original data and use them
as related terms in the inference model. This system is referred to as TAREC
(Gold Inference). Table 9 shows the results of the two systems on different K
as the number of levels to go up on the Wikipedia category system. We see that
TAREC gets better results when doing inference with better related terms. In this
experiment, the two systems use the same number of related terms.

6 Related Work

There are several works that aim at building taxonomies and ontologies which or-
ganize concepts and their taxonomic relations into hierarchical structures. (Snow
et al., 2005; Snow et al., 2006) constructed classifiers to identify hypernym rela-
tionship between mentions from dependency trees of large corpora. Mentions with
recognized hypernym relation are extracted and incorporated into a manually con-
structed lexical database, WordNet (Fellbaum, 1998), resulting in the Extended
WordNet, which has been augmented this way with more than 400, 000 synsets.
(Ponzetto and Strube, 2007) and (Suchanek et al., 2007) both mined Wikipedia to
construct hierarchical structures of concepts and relations. While the former ex-
ploited the Wikipedia category system as a conceptual network and extracted a
taxonomy consisting of subsumption relations, the latter presented the Yago on-
tology, which was automatically constructed by mining and combining Wikipedia
structure and information with WordNet. A natural way to use these hierarchical
structures to support taxonomic relation classification is to map targeted terms onto
the hierarchies and check if they subsume each other or share a common subsumer.
However, this approach is limited because constructed hierarchies may suffer from
noise and inflexibility in dealing with ambiguous terms.

On the other hand, information extraction bootstrapping algorithms, such as
(Pantel and Pennacchiotti, 2006; Kozareva et al., 2008), automatically harvest re-
lated terms on large corpora by starting with a few seeds of pre-specified relations
(e.g. is-a, part-of). Bootstrapping algorithms rely on some scoring function to as-
sess the quality of terms and additional patterns extracted during bootstrapping
iterations. Similarly, but with a different focus, Open IE, (Banko and Etzioni, 2008;
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Davidov and Rappoport, 2008), deals with a large number of relations which are
not pre-specified. Either way, the output of these algorithms is usually limited to a
small number of high-quality terms while sacrificing coverage (or vice versa). More-
over, an Open IE system cannot control the extracted relations and this is essential
when identifying taxonomic relations. Recently, there has been much work on dis-
tributional semantic models (DSMs) that leverage the context a word appears in to
harvest words based on their semantic similarity in vector spaces (Padó and Lapata,
2007; Turney and Pantel, 2010; Baroni and Lenci, 2010). Especially, (Baroni and
Lenci, 2010) described a general framework of DSMs that extracts significant con-
texts of given terms from large corpora. Consequently, a term can be represented by
a vector of contexts in which it frequently appears. Any vector space model could
then use the terms’ vectors to cluster terms into semantic classes. Sibling terms
(e.g. Honda, Toyota), therefore, have very high chance to be clustered together.
Nevertheless, this approach cannot recognize ancestor relations. In this paper, we
compare TAREC with this framework only on recognizing sibling vs. no relation,
in a strict experimental setting which pre-specifies the semantic classes to which
the terms belong.

7 Conclusions

We studied an important component of many computational linguistics tasks: de-
termining taxonomic relations between terms. We have argued that simply looking
up the relation of input terms in structured resources cannot support this task well
enough, and provided empirical support for this claim. We presented TAREC, a
novel algorithmic approach that leverages information from the Wikipedia struc-
ture and uses machine learning and a constraint-based inference model to mitigate
the noise and the level of uncertainty inherent in these resources. Our experimental
study showed that both the local and the global models of TAREC significantly
outperform other systems built upon existing well-known knowledge sources. More-
over, our algorithmic approach generalizes and handles well non-Wikipedia terms
across semantic classes. Our future work will include an evaluation of TAREC in
the context of textual inference applications.
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Padó, Sebastian, and Lapata, Mirella. 2007. Dependency-Based Construction of Semantic
Space Models. Computational Linguistics, 33(June), 161–199.

Pantel, P., and Pennacchiotti, M. 2006. Espresso: Leveraging Generic Patterns for Auto-
matically Harvesting Semantic Relations. Pages 113–120 of: Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL).

Ponzetto, Simone Paolo, and Strube, Michael. 2007. Deriving a large scale taxonomy
from Wikipedia. Pages 1440–1445 of: Proceedings of the 22nd national conference on
Artificial intelligence - Volume 2. AAAI Press.

Punyakanok, V., Roth, D., and Yih, W. 2008. The Importance of Syntactic Parsing and
Inference in Semantic Role Labeling. Computational Linguistics, 34(2), 257–287.

Ratinov, L., Downey, D., Anderson, M., and Roth, D. 2011. Local and Global Algo-
rithms for Disambiguation to Wikipedia. In: Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

Rizzolo, N., and Roth, D. 2010 (May). Learning Based Java for Rapid Development of
NLP Systems. In: Proceedings of the International Conference on Language Resources
and Evaluation.

Roth, D., and Yih, W. 2004. A Linear Programming Formulation for Global Inference
in Natural Language Tasks. Pages 1–8 of: Ng, Hwee Tou, and Riloff, Ellen (eds),
Proceedings of the Annual Conference on Computational Natural Language Learning
(CoNLL). Association for Computational Linguistics.

Sammons, Mark, Vydiswaran, V. G. Vinod, and Roth, Dan. 2010. ”Ask not what tex-
tual entailment can do for you...”. Pages 1199–1208 of: Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: As-
sociation for Computational Linguistics.

Sarmento, L., Jijkuon, V., de Rijke, M., and Oliveira, E. 2007. ”More like these”: grow-
ing entity classes from seeds. Pages 959–962 of: Proceedings of ACM Conference on
Information and Knowledge Management (CIKM).

Saxena, Ashish Kumar, Sambhu, Ganesh Viswanath, Kaushik, Saroj, and Subramaniam,
L. Venkata. 2007. IITD-IBMIRL System for Question Answering Using Pattern Match-
ing, Semantic Type and Semantic Category Recognition. In: TREC.

Sekine, S. 2006. On-Demand Information Extraction. Pages 731–738 of: Proceedings of
the Annual Meeting of the Association for Computational Linguistics (ACL).

Snow, R., Jurafsky, D., and Ng, A.Y. 2005. Learning syntactic patterns for automatic
hypernym discovery. Advances in Neural Information Processing Systems, 17, 1297–
1304.

Snow, Rion, Jurafsky, Daniel, and Ng, Andrew Y. 2006. Semantic taxonomy induction
from heterogenous evidence. Pages 801–808 of: Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting of the Associa-
tion for Computational Linguistics. ACL-44. Stroudsburg, PA, USA: Association for
Computational Linguistics.

Suchanek, Fabian M., Kasneci, Gjergji, and Weikum, Gerhard. 2007. Yago: a core of
semantic knowledge. Pages 697–706 of: Proceedings of the 16th international conference
on World Wide Web. WWW ’07. New York, NY, USA: ACM.

Turney, Peter D., and Pantel, Patrick. 2010. From Frequency to Meaning: Vector Space
Models of Semantics. Journal of AI Research, 37, 141.

Vikas, O., Meshram, A. K., Meena, G., and Gupta, A. 2008 (June). Multiple Document
Summarization Using Principal Component Analysis Incorporating Semantic Vector
Space Model. Pages 141–156 of: Computational Linguistics and Chinese Language
Processing, vol. 13.

Vyas, Vishnu, and Pantel, Patrick. 2009. Semi-automatic entity set refinement. Pages 290–
298 of: Proceedings of Human Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Computational Linguistics. NAACL
’09. Stroudsburg, PA, USA: Association for Computational Linguistics.


