
University of Pennsylvania
LoReHLT 2019 Submission

Stephen Mayhew1, Tatiana Tsygankova1, Francesca Marini1, Zihan Wang5, Jane Lee1,
Xiaodong Yu1, Xingyu Fu5, Weijia Shi2, Zian Zhao3,

Wenpeng Yin1, Karthikeyan K1,4, Jamaal Hay1,
Michael Shur1, Jennifer Sheffield1, Dan Roth1

1University of Pennsylvania, Department of Computer and Information Science, Philadelphia, Pennsylvania
2University of California, Los Angeles, Department of Computer Science, Los Angeles, California
3Columbia University, Department of Computer and Information Science, New York, New York

4Indian Institute of Technology, Kanpur, Department of Computer Science and Engineering
5University of Illinois at Urbana-Champaign, Computer Science Department, Urbana, Illinois
{mayhew, ttasya, jamaalh, xdyu, wenpeng, kkarthi, shurm, sheffiel, danroth}@seas.upenn.edu,

{janehlee, fmarini}@sas.upenn.edu, swj0419@g.ucla.edu, zhao.zian@columbia.edu, {zihanw2, xingyuf2}@illinois.edu

Abstract—This document presents the system description
of the University of Pennsylvania team’s submission to the
LoReHLT2019 task. It describes the details of our submissions
in the Entity Discovery and Linking (EDL) and Situation Frame
(SF) tasks. Our systems achieved top-ranked scores of 79.4 (IL11)
and 79.5 (IL12) for the NER task on the IL data, and top-ranked
score of 56.6 (IL11) for EDL on the IL data, and top-ranked score
of 37.80 (IL11) for SF typing on the IL data1.

Index Terms—Named Entity Recognition, Entity Discovery and
Linking, Situation Frame, Natural Language Processing, Low-
Resource Languages

I. INTRODUCTION

This document gives details on the University of Pennsyl-
vania’s participation in the Low-Resource Human Language
Technologies (LoReHLT) evaluation of 2019, put on by the
National Institute for Standards and Technology (NIST) and
supported by the Linguistic Data Consortium (LDC). This year
is the fourth and final running of the evaluation, and our fourth
year of participation (although second at the University of
Pennsylvania).

In this evaluation, participants address certain natural lan-
guage processing (NLP) tasks in the context of little or no
training data, a situation commonly referred to as low-resource
NLP. In the weeks and months leading up to the evalua-
tion, participants prepare methods and systems for rapidly
developing NLP tools for low-resource languages. When the
evaluation itself begins, participants are given unannotated data
in previously unknown “surprise” languages, and tasked with
developing tools for these languages within a short timeframe.

The first year, 2016, had a single surprise language, Uyghur,
and three tasks: Named Entity Recognition (NER), Situation
Frame (SF), and Machine Translation (MT). We participated
only in the NER and SF tasks, and documented our sub-
missions in [13]. The second year, 2017, expanded to two

1SF ranking was released after the submission of system description

surprise languages (Tigrinya and Oromo) and extended NER
to Entity Discovery and Linking (EDL) while keeping the
other tasks the same (except for some small changes to the SF
task definition). Our submissions to the EDL and SF tasks are
described in [9]. In the third year, the tasks remained mostly
the same as the prior year, and the surprise languages (or
‘Incident Languages’ or ‘ILs’) were Kinyarwanda (IL9) and
Sinhalese (IL10).

This year, the tasks remained the same, and the incident
languages (ILs) were Odia (IL11) and Ilocano (IL12).

The format of the evaluation meant that we had to pro-
vide results after 24 hours (checkpoint 1), and then after
an additional 8 days (checkpoint 2). Below we give a brief
introduction to each language.

a) Odia (IL11): Odia, formerly known as Oriya, is an
Indo-Aryan language natively spoken by 38 million people in
the Indian state of Odisha and some neighboring states.2 It is
one of the many official languages of India, and has a history
of borrowing words from Telugu and Tamil. The Odia script
is a member of the Brahmic script family, developed from the
Kalinga script, but is unique to Odia and sometimes used as
a regional writing system for Sanskrit.

b) Ilocano (IL12): Ilocano is the third most-spoken na-
tive language of the Philippines, spoken natively by 9 million
people.3 Ilocano is a regional Austronesian language spoken
in the northern part of Luzon and is sometimes referred to as
Ilokano, Iloco or Iluko, though some people consider Ilocano
as a dialect. It is written in Latin script, and resembles Tagalog.
Also like Tagalog, and because of the wide use of English,
terms with no local equivalents in Ilocano are often left in
English.

2https://en.wikipedia.org/wiki/Odia language
3https://en.wikipedia.org/wiki/Ilocano language

II. SUBMISSION HIGHLIGHTS

Before laying out full details of our submissions, we briefly
summarize our main approaches in each task.

EDL We separated EDL into NER and entity linking (EL).
As in previous years, one of our most important techniques
was manual annotation, both from Native Informants (NIs)
and also from non-speakers (NSs). One annotation strategy in
particular was important: all text that went to an NI was pre-
annotated by an NS. We also experimented with different ways
of training BERT [2], including training on target language
only, training on target language and related languages, and
continuing training from the official mBERT model.

The highlights for the EL system were Google-centered can-
didate generation and classifier plus BERT-centered candidate
ranking. Unlike past years, our system employed the Google
query log and geographical information for the candidate
generation process, while also considering transliterating low-
resource language mentions into a high-resource language. A
newly trained classifier and a BERT model were utilized for
ranking the generated candidates, and proved beneficial for
efficiently employing contextual information.

SF We approached the SF task from two angles: as
classification, and as textual entailment. In both cases, we only
trained our models on English data.

As classification, we implemented rather standard deep
neural classifiers (e.g., convolutional neural network) and
multilingual BERT. Convolutional classifiers rely on bilingual
embeddings, and multilingual BERT works on English and ILs
directly. We combined these two types of classifiers.

For the entailment approach, we converted the SF types
into hypotheses. We converted our representation learner to
an entailment architecture, and we also explored multilingual
BERT for entailment.

III. MULTILINGUAL CONTEXTUAL EMBEDDINGS

Since both EDL and SF relied on the development of multi-
lingual contextual embeddings, we describe those experiments
first in this section before outlining the tasks separately.

Following the tremendous success of contextual word em-
beddings in the NLP literature, we included several versions
of BERT [2] in our experiments. We trained BERT using the
code provided by the authors,4 and with Tensor Processing
Units (TPUs) on the Google Cloud.5

There exists a pretrained multilingual version of BERT,
trained by the authors of the original paper on 104 languages
in Wikipedia. We refer to this model as multilingual BERT,
or mBERT. As we had anticipated prior to the evaluation,
neither of the ILs is present in mBERT, although similar
languages are, such as Bengali and Hindi (similar to IL11)
and Indonesian and Tagalog (similar to IL12).

The presence of these similar languages opens an avenue
for zero-shot learning by training on related languages, but a
particular issue with IL11 is that the script of the language is

4https://github.com/google-research/bert/
5cloud.google.com

not present in the mBERT vocabulary. This means that nearly
every token in IL11 text would be treated as unknown (UNK).

We experimented with several different methods of training
BERT that ultimately coalesced into two strategies:

1) BERT trained on the ILs and some related languages,
which we refer to as few-BERT, or fBERT

2) mBERT with additional training epochs using the target
languages, which we refer to as continued-BERT, or
cBERT.

A. Few-BERT (fBERT)

For IL11, we trained from scratch a BERT model using
English, the target language (Odia), Bengali, Tamil and Hindi.
Since some of the languages, such as Bengali and English,
are much higher-resource than Odia, we had to super-sample
the low-resource languages and sub-sample the high-resource
languages. This gave a much more balanced dataset which we
then used to pretrain BERT.

For IL12, a similar method to that described above was used,
with the following language set: English, Ilocano, Tagalog,
Indonesian, and Malay.

We also trained an fBERT model containing all of the LRLP
data (approximately 20 different languages) as well as the
language data from the model described above used to train
IL11 and IL12.

B. Continued-BERT (cBERT)

Google’s mBERT was trained over a large number of
languages, and has shown strong performance in cross-lingual
tasks [16]. Given this strong performance, and the fact that nei-
ther Odia nor Ilocano was present in the pretraining, it could be
useful to use mBERT as a starting point for continuing training
in the ILs. As the existing mBERT vocabulary does not contain
proper word-pieces of Odia or Ilocano (significantly, it does
not even contain Odia characters) we can’t directly continue
pretraining mBERT. Hence, we added new word-pieces to the
vocabulary. The new vocabulary contains both Google’s vocab
and newly added word-pieces.

BERT has encoder and decoder weights whose sizes are
proportional to the size of the vocabulary. When we add new
word-pieces to the vocabulary, the size changed. As a result,
we needed to change the sizes of these matrices, so we couldn’t
initialize these matrices directly from mBERT. We initialized
all other weights directly from mBERT.

The encoder is a V × 768 dimensional matrix, where V
is the size of the vocabulary. Note that the ith row of the
encoder corresponds to the ith word-piece; hence we initialize
all the rows that correspond to an mBERT word-piece with
its corresponding mBERT weights, and for new word-pieces
we initialize randomly. Further, BERT uses weight tying; i.e.,
encoder and decoder share the same weight, but the decoder
has an extra bias term of dimension V ×1. which is initialized
similar to the encoder weights as described above.

We continued pre-training with the above initialized weights
in two ways, one with just the IL and the other with the IL and
related languages (For IL11 we used Odia, Bengali, Hindi and

English, and for IL12 we used Ilocano, Tagalog, Indonesian
and English). We found that the one that we continued training
on IL with related languages performed better in most cases.

IV. ENTITY DISCOVERY AND LINKING

We approached EDL in two stages: first doing named entity
recognition (NER) in order to find mentions, then doing entity
linking (EL) to link these mentions to a knowledge base.

A. NER

Our work in NER followed two main threads: preparation
of data in the target languages, and development of strong
cross-lingual models.

1) Data Preparation: The first step in building a low-
resource NER system is to gather data in the target language.
This process took several steps: Document Selection, Devel-
opment Sets, and Manual Annotation.

Document Selection Since the first step in the process of
NER involves the manual annotation of documents, we hoped
to select documents for both the development and training
sets which were similarly distributed to set E. We know that
for each incident language, set E contains documents about
specific incidents, so we hoped to devise a way of selecting
documents that would either be centered around the incidents
themselves or else be of a similar type, and therefore useful
to our models.

We began by constructing lists of vocabulary words in the
ILs that would be potentially relevant to the regions where
the ILs are spoken, in this case Odisha, India (where Odia
is spoken) and Northern Luzon, Philippines (where Ilocano is
spoken). These lists included the names of important geopo-
litical entities (such as countries, provinces, and cities), politi-
cians (such as the name of the president), and international
organizations (such as the UN), as well as disaster-related
words that might occur more frequently in incident-specific
documents (such as emergency, fuel, cyclone, or protest).
We could then prioritize the selection of documents which
contained at least one of the words on the vocabulary lists.

We also sought to keep our sets fairly proportional to set
E in regards to the document types included. For example, if
25% of the tokens in set E came from newswire, then we tried
to select approximately 25% of the tokens for our development
and train sets from the body of newswire documents available
to us for selection, using the vocabulary lists as the means of
selecting documents from each document type.

We evaluated this data selection method by selecting docu-
ments from the train split of the Ontonotes data set [15]. We
used the Ontonotes gold annotated data as our test set. We
compared the performance of this “proportional selection by
vocabulary list” method to both random selection and querying
for documents similar to the test set based on TF-IDF, and
we found that our method worked best. We also tested our
method using the Sinhalese and Kinyarwanda data from the
2018 LoReHLT evaluation and found similar results.

Table I
NUMBERS FOR MANUALLY ANNOTATED DATASETS IN IL11. # ENTITIES

REFERS TO THE NUMBER OF NAME PHRASES (NOT NECESSARILY UNIQUE)
IN THE DATA. FOR EXAMPLE, “BERNARD VER” IS ONE NAME PHRASE.

Dataset Source # Docs # Toks # Sents # Ents

All Sets 0/1 474 57,636 4,057 3,711

NI
Extra Sets 0/1 53 10,203 813 839
Dev0 Set 0 35 3,591 255 234
Dev1 Set 1 32 13,571 810 853

NS Extra Sets 0/1 81 26,337 1,906 1,461
Tweets Set 0 273 3,934 273 322

Building Development Sets Since our data selection
method is dictated by the ILs themselves and constrained
by the time it takes to assemble sufficient lists of important
vocabulary words in those languages, we were unable to use
this method to select documents for Development set 0 (Dev0)
and Train set 0 (Train0). For these sets, we selected the data
randomly from set 0 because we could not afford the time
between the first and second checkpoints to assemble the
vocabulary lists. For our Development and Train sets from both
set 0 and set 1, we did not select any of the RF (reference)
documents, as these did not appear within set E, and would
likely be unhelpful.

We had scheduled our first Native Informant (NI) block
for the end the first day, with the intention of having them
annotate Dev0 as fully as possible. In preparation for the
NI annotations, we annotated as much of Dev0 as we could
manually. We then provided the NI with our annotations and
instructed them to add or fix any incorrect annotations that they
saw. This process ran smoothly, and we believe that the NI
was able to annotate more efficiently because we had already
provided a rudimentary annotation of the documents.

As checkpoint 2 approached, we had already completed
constructing the vocabulary lists, so we could assemble the
next Development set (Dev1) and Train set (Train1) as soon
as we could access the post-incident set 1. Once these were
selected, we annotated as much as possible throughout the
course of the evaluation. During the NI sessions, we asked
the NIs to fix our pre-existing annotations within Dev1 (and
later within the train sets) proceeding on the assumption that
these “NI-checked” documents would be as close to gold data
as we could get.

Note that when we remark on performance in the following
sections, we are referring to performance on our noisy Devel-
opment sets, and not on gold data. As of writing, we do not
have access to any gold data in the ILs, but only results from
the evaluation submissions. In some cases, we can compare
development results against official results, but not in all.

Manual Annotation The first step of our approach was
to annotate data manually, using Native Informants as time
permitted to fix the annotations we had already made. For
IL11, we had 5 hours of NI time, with the first hour available
for checkpoint 1 and the remainder for checkpoint 2. For IL12,

Table II
NUMBERS FOR MANUALLY ANNOTATED DATASETS IN IL12.

Dataset Source # Docs # Toks # Sents # Ents

All Sets 0/1 325 98,331 5,463 4,847

NI
Extra Sets 0/1 148 45,096 2,619 2,528
Dev0 Set 0 28 24,086 1,523 575
Dev1 Set 1 75 16,452 699 1,129

NS Extra Sets 0/1 28 12,050 576 564
Tweets Set 0 46 647 46 40

we had 6 hours of NI time, with the first hour available for
checkpoint 1, and the remainder for checkpoint 2. We obtained
the 6th hour for IL12 by using one of the SF NI sessions for
NER annotation. For all annotation, we used TALEN [8], with
romanization done either with the unidecode Java library6 or
Uroman [5].

As described above, we used the checkpoint 1 hour to get
our Dev0 annotations fixed, and then the next hour to fix our
Dev1 annotations. This left the remaining NI hours for each
language for further fixing of annotations.

Before the NIs fixed our annotations of the Development
sets we had split the sets of approximately 20K tokens into
5 disjoint subgroups (we ended up splitting Dev1 of IL11
into 10 subgroups), which people could sign up to annotate.
Beyond the Development sets, our manual annotation process
was the following. For Train0 of both ILs, we had intended to
select 100K tokens from set 1 of both IL11 and IL12; however,
the entirety of set 1 for IL12 was less than 100K tokens. As
a result, we ended up selecting the rest of set 1 which had
not been used to make Dev1 as Train1. We then selectively
removed certain documents which appeared to be less relevant
(such as recipes or the table of contents for magazines). We
split this Train1 into about 20 subgroups. For IL11, we used
the document selection method described above to select a
corpus of 100K words from Set 1. We split this Train1 into
about 40 subgroups. We created a sign-up sheet for each group
so that members of our team could sign up for subgroups to
annotate when they had spare time.

We wished to include Tweets in our training data since
there are Tweets in Set E for both ILs. However, neither set
1 contained any Tweets, so we took them from set 0. We
spent some time toward the end of the evaluation manually
annotating these Tweets, and we also wrote some annotation
rules for post-processing that tag Twitter hashtags and handles
as named entities when appropriate.

In the interest of gathering the broadest variety of annota-
tions, we never duplicated annotations. As a result, we cannot
measure inter-annotator agreement or adjudicate disagree-
ments. However, we did have our most experienced annotator
review all of the non-speaker annotations before the training of
the final models to ensure that guideline interpretations were
consistent among all annotators. This proved to be very useful

6github.com/jirutka/unidecode

practice since the quality of the annotations (evaluated on our
Dev1 set) improved greatly.

As we were annotating text, certain ambiguities forced us
to interpret the annotation guidelines. We realize that our
interpretations could be incorrect, so we record here some of
the more important decisions we made.

• For both IL11 and IL12, we consistently chose
to not annotate the generic term ‘police’ unless it
was referenced in the document as an established
organization, for example, “Philippine National Police”,
as per the annotation guidelines.

• For both IL11 and IL12, we noticed that a number
of documents in set0 contained references to religious
figures (seemingly citing Bible passages), which we
refrained from tagging based on the clarifications on this
subject in the annotation guidelines.

• For both IL11 and IL12, we included the “@” sign in
the span of a Twitter handle named entity, even if there
was a space separating them, to maintain consistency
with the other, untokenized, Twitter handle examples.

• For IL11, we also found many posts by the Twitter
account “PMO India” (Office of the Prime Minister of
India, @PMOIndia), which we tagged as an ORG.

• For IL12, we noticed that many of the documents in set
1 included the same closing paragraph, most likely citing
the source of the document as “Bannawag Magazine”
and listing ways to access this content in other domains.
For the majority we chose to classify all instances of
“Bannawag” as ORG, although for one submission we
excluded all annotations of “Bannawag” since we never
noticed this entity referred to outside of the subtext at
the bottom of the documents.

• For IL12, we also chose to include the terms ‘siudad’
(city) and ‘brgy.’ (province) within the span of the GPE
entity it is referring to, based on a similar judgment call
in Tagalog annotations.

The final statistics of all annotated data can be found in
Tables I and II for IL11 and IL12 respectively. No members
of our team had any experience with either language.

Post-processing As a final step for all submissions, we
used a rule-based system to post-process predictions made by
our NER model. In general, the rules we used were either
generated from the predictions of the model (to ensure that
all instances of the same entity were recognized) or computed
manually, using popular Twitter hashtags and the respective IL
knowledge base as reference. While there was some variation
in terms of which rules were applied to which submissions, a
simple rule tagging all missed Twitter handles (tokens starting
with an ‘@’ symbol) as PER entities was used uniformly for
all of the submissions.

Table III
SCORES ON DEV1 WITH DIFFERENT EMBEDDINGS FOR IL11. BOTH

MODELS ARE TRAINED ON ALL NI ANNOTATIONS.

Method P R F1

fastText 54.0 34.3 42.0
fBERT 67.1 60.2 63.5

Table IV
SCORES ON DEV1 WITH DIFFERENT EMBEDDINGS FOR IL12. BOTH

MODELS ARE TRAINED ON ALL NI ANNOTATIONS AND NS ANNOTATIONS.

Method P R F1

fastText 78.9 77.4 78.2
fBERT 86.0 80.0 82.8

2) NER Model: We selected LSTM-CNNs-CRF [7] as our
NER model. We mainly focused on two parts, data selection
and pretrained embeddings, to improve the performance of our
NER model. We used the python library AllenNLP [4] to train
our models, using almost all parameters from the default NER
config.

Data Selection Our training data on the IL is made
up of NI and NS annotated data, introduced in Section
IV-A1. We also extended our training data by including NER
data from similar languages from the provided LORELEI
Language Resource Packs (LRLPs) [11]. For IL11 (Odia),
we chose Bengali7 and Hindi8; for IL12 (Ilocano), Tagalog9

and Indonesian10. For both languages, we also used English
NER data, including the LORELEI language pack11, and a re-
annotation of about half of the CONLL2003 English data [12]
to remove MISC tags and include GPE tags. We noticed that,
for both languages, including extra data brought improvements
on our development set. We also tried some experiments using
lemmatized versions of the text, which seemed not to improve
model performance, and therefore used the original data in
training all submitted models.

Pretrained embeddings Pretraining word embeddings
have been useful for NER. We experimented with

• Fasttext [1], a non-contextual word embedding model that
incorporates subword information when learning word
representations. We trained fastText on each IL, with the
provided IL data, and text data from Wikipedia that we
gathered before the evaluation.

• BERT [2], a language model based on based on trans-
formers (see Section III).

Experiments
The results in Tables III and IV show that fBERT outper-

forms fastText on both IL11 and IL12.

7LDC2017E60
8LDC2017E62
9LDC2017E68
10LDC2017E66
11LDC2019E01

Table V
SCORES ON DEV1 WITH FBERT FOR IL11

Data P R F1

IL (NI) 67.1 60.2 63.5
Bengali 55.5 62.9 59.0
Hindi 52.8 62.0 57.1
Bengali + Hindi 61.4 70.2 65.5
IL (NI) + Bengali + Hindi 66.0 71.8 68.8
IL (NI) + Bengali + Hindi + machine 69.0 74.2 71.5

Table VI
SCORES ON DEV1 WITH FBERT FOR IL12

Data P R F1

IL (NI+NS) 86.0 80.0 82.8
Tagalog 65.5 74.3 69.6
Indonesian 61.5 71.1 66.0
Tagalog + Indonesian 71.8 75.7 73.7
IL (NI+NS) + Tagalog + Indonesian 82.2 83.7 83.0
IL (NI+NS) + Tagalog + Indonesian + machine 80.4 83.9 82.1

We noticed that because of the multilingual effectiveness
of BERT, training on related languages and then zero-shot
transferring into IL language gave non-trivial performance, see
Tables V and VI. We also noticed that incorporating related
languages and machine annotations helped in IL11, but did
not help or even harmed in IL12. We hypothesize that this
difference may come from quality and quantity of IL training
data we have in these two languages.

From the results in Tables VII and VIII, we conclude that
cBERT performed better than fBERT trained from scratch.
Note that for these two tables, we used annotated tweets, fixed
NS annotations and English data, so the results are not directly
comparable to other tables.

Non-neural Systems In addition to the BiLSTM-CRF
models, we also used the Cogcomp NER system [6], [10],
a linear model based on averaged perceptron that has been
our default model for the past several years. We trained
Brown clusters for each language separately, using cluster
sizes of 500, 1000, and 2000. When trained on IL text,
this model produced modest performance on the dev sets.

Table VII
SCORES ON DEV1 FOR IL11

Method P R F1

fBERT 66.7 78.9 72.3
cBERT 71.2 78.2 74.5

Table VIII
SCORES ON DEV1 FOR IL12

Method P R F1

fBERT 82.6 82.7 82.7
cBERT 83.9 85.2 84.5

When adding other related languages, the performance also
increased slightly, despite having Brown clusters only in the
target language. We included Cogcomp NER results in two
of our submissions: the first as a combination with the best
performing neural model (sub6-ner, sub6-ner-fixed), and the
second as a standalone submission (sub11-ner).

B. Entity Linking

Given an IL mention w detected by the NER system, our
goal is to link it to an entity in the knowledge base provided,
or “NIL” if the corresponding entity is not in the knowledge
base. The entity linking task in general is conducted in two
main steps: candidate generation and candidate ranking. We
use K to refer to the Knowledge Base (KB) provided with
the Lorelei Incident Language pack in our description below.
The system diagram is as presented in Figure 1.

Candidate Generation The candidate generation process
aims at finding the possible entities in K for a given mention
w. Since w is given in the IL, we need to find the English
format of w, and then link back to the knowledge base. During
this process, to gain information about w, we use Wikipedia
as an intermediate transaction. Therefore, we first link w to
the Wikipedia page of its English form, then link back to K.

The whole process begins with surface normalization, since
IL mentions can have different surface names due to changes
in tenses, adding of prepositions and language habits. We then
generate the English format of the mention. One method is
utilizing Google query information and Google geographical
information in the IL to generate candidate Wikipedia pages
for the mention and get English page through links. Another
method is to use multiple transliteration models to map the
IL mention to English or higher-resource languages first, then
generate English Wikipedia pages by putting the new form into
Google query and Google map searching. Finally, the English
format of this mention is extracted from the English Wikipedia
page of the found page, and linked to K via phrase and token
level matching.

One exception from using the Wikipedia page exists in
the candidate generation part – back pointer situation. We
use Google transliteration to generate English-to-IL pairs for
entities having types of Person or Organization and for those in
Gazetteer data. Then, given an IL mention, we use a backward
pointer to directly link the mention back to the knowledge base
if the string matches exactly.

• Surface Normalization Variance in word form can make
searches based on string similarity difficult. As a result,
discovered surfaces are first normalized before candidate
generation. We normalized the surfaces using morpholog-
ical rules and spell-checking via Levenstein distance.
Each language has its own morphological rules. The
system normalizes discovered surfaces using separate
rules for IL11 and IL12. For IL12, the Ilocano language
has both suffixes and prefixes. However, most of them are
applied on verbs, having little effect on named entities
that we cared about. So, the system does not apply

morphological normalization on the Ilocano language.
On the other hand, IL11 has suffixes applied on named
entities, which will affect our generation result. A list
of suffixes is generated by comparing word forms of
discovered entities in set 0 and set 1. The entity linking
system then removes possible suffixes of the surface
according to the list.
Another source for different word forms is writing style
and spelling errors. In IL11, there exists a special charac-
ter (U+0b3C) which does not affect the meaning and does
appear on certain characters in one of the writing styles.
To cope with the issue, the system toggles the character
and searches both origin and toggled form during can-
didate generation. For spelling errors, a frequency-based
spell-checker is built on all the entities discovered in set
0 and set 1, which corrects the spelling errors in system
input.

• Transliteration Transliteration is conducted to provide
a larger search base for the surface as there are limited
resources for the IL. With the similarity of Indian lan-
guages, we use a simple character conversion method
to transliterate IL11 to Hindi, a language with richer
resources, and conduct candidate generation. In addition
to the simple method, a more advanced sequence-to-
sequence model using hard attention is used to generate
transliterations of strings in English. The training data for
such model is collected from filtered Wikipedia title pairs,
which is automatically generated using freebase database.
All the transliterated surfaces are passed to candidate
generation process along with the surfaces introduced in
previous paragraph.

Candidate Ranking

To rank the candidate entities we employed the following
techniques to assign weights for each candidate. In the system,
specific weights adjusted from those features are tuned on the
development set.

• Entity Popularity To rank which of the entities in
K obtained from candidate generation a given mention
should link to, we used entity popularity as a feature.
Entity popularity was computed using the number of
inlinks (in Wikipedia) of the corresponding Wikipedia
page, normalized by the sum of inlinks of all candidate
entities under consideration.

• Country Code and Administrative Code We hypothe-
size that candidates that are close to the location where
the incident takes place will have a higher chance of being
the correct entity. For example, Ilocano (IL12) is spoken
by people in Ilocos Norte and Ilocos Sur. The mention
with the surface form “Banna” written in Ilocano is more
likely to refer to the city “Banna” in Ilocos Sur rather
than the city in Pakistan with the same name. For every
candidate, we assign higher weights to the candidate of
which country code and administrative code match the
incident location.

Figure 1. EDL System Architecture

• fBERT To disambiguate KB entries with external links,
we apply fBERT to compute the probability of a mention
m linking to entity e using its text context vector g
and its Wikipedia context vector w. We first collect a
list of entries with the external Wikipedia links among
the candidates. Then we average the contextualized word
embeddings for the mention in the summary of this
Wikipedia page and the word embedding for the mention
in the context to compute the cosine similarity between
these two vectors. For the candidate with the highest
cosine similarity, we assign higher weight to it.

• Feature Classifier The exact same location can have dif-
ferent entities associated with the distinct location feature
code in Geonames. For example, the GPE entity of “Ki-
gali” has two entries with the feature classes “country”
and “city”. The way to resolve the ambiguity is to check
the context in which the city appears right after “Kigali”
in this example. For this issue, we train a classifier to
predict the type of the given mention. We use a local
context encoder to encode the left and the right context
of the mention into two vectors l ∈ Rh and r ∈ Rh,
which are fed into a multilayer perceptron followed by
a sigmoid function to calculate the probability of each
class.

NIL Clustering Two simple techniques are applied for
clustering NIL-linked mentions. (1) Exact Match - mentions
with identical surface forms are part of the same cluster. (2)
Fuzzy-match - We first sort mentions in the decreasing order
of the number of tokens in their surface. We cluster mentions
sequentially from longest to shortest, and add a mention to
an existing cluster if there is a > 50% token overlap between
the mention surface and the longest mention in the cluster.
Otherwise we generate a new cluster with this mention.

C. Submissions

Our best submissions for both IL11 and IL12 are seen
in Table IX, broken down by performance on all data

(IL+English), IL data alone, and English data alone. NER
scores are strong typed mention match, which corresponds to
standard F1. EDL scores are typed mention ceaf plus. This
table shows that we achieved top-scoring performance in the
evaluation on NER scores for both IL11 and IL12 at CP2, as
well as highest EDL scores for IL11 CP2. Our low English
scores reflect the small amount of attention we paid to this
task. In the following tables, we report both “All” results and
“IL-only” results, with a special focus on the “IL-only” results
as being the main goal of the evaluation.

Detailed tables showing our submissions and the resulting
scores follow: see Tables X, XI, XII, and XIII. Since the NER
results were upstream in the pipeline with regard to EDL,
we had many NER results that were never processed with
EDL. We have separated our tables to reflect this, showing
first NER+EDL results, then NER results only.

For IL11, sub9 (referring to submission 9, with name il11-
sub9-ner) shows that post-processing with self propagation
rules hurts performance significantly (up to 5 points). This
was because it damaged the precision by nearly 10 points, but
failed to improve recall much. It turns out that when the NER
team handed over sub3 results to the EL team, they forgot
to post-process the submission, and this became sub3-exp1.
Later, a post-processed version of sub3 became sub3-exp2.
Given the dramatic difference in performance, we are glad
this mistake happened.

In both languages, submissions 19-22 held out the dev1
set in order to tune the model. When comparing against
submissions 2-5 (both languages), we see that this harmed
performance. This means that the benefit that might have come
from choosing a tuned model is less than the benefit from
additional training data.

In both languages, comparing sub2 with sub3 and sub19
with sub20, we see that our hypotheses and experiments about
the superiority of cBERT over fBERT (as shown in Tables VII
and VIII) are borne out.

We experimented with getting more dense data by selecting

Table IX
OUR BEST SUBMISSIONS IL11 AND IL12. “ALL” REFERS TO THE COMBINATION OF ENGLISH AND IL RESULTS. “IL” IS RESULTS ON IL DATA ONLY.

“ENG” IS RESULTS ON ENGLISH DATA ONLY. WE CONSIDER THE “IL” SCORES MOST IMPORTANT. NER SCORES ARE strong typed mention match,
WHICH CORRESPONDS TO STANDARD F1. EDL SCORES ARE typed mention ceaf plus. IN THIS TABLE, BOLD INDICATES TOP-SCORING SUBMISSION IN

THE EVALUATION.

All IL Eng
Language CP Submission Name NER EDL NER EDL NER EDL

IL11 1 il11-exact 48.4 28.8 14.2 8.2 65.8 41.6
2 il11-sub3-exp1-exact 68.9 44.8 79.4 56.6 58.1 33.7

IL12 1 mbert eng 67.5 33.1 70.9 34.6 64.7 38.2
2 il12-sub3-exp2-exact 61.1 37.3 79.5 54.7 45.9 24.6

Table X
IL11 SUBMISSIONS WITH EDL. BOLD INDICATES HIGHEST SCORE AMONG OUR SUBMISSIONS.

CP Submission Name NER sub used EDL approach NER Score EDL Score

1 il11-exact fastText (dev0) Google search and exact matching for nil clustering 46.4 28.8
1 il11-fuzzy fastText (dev0) Google search and fuzzy matching for nil clustering 46.4 28.7

2 il11-sub3-exp1-exact sub3 Google search, transliteration, and type constraint 68.9 44.8
2 il11-724-exact1 sub3 Google search 68.9 44.7
2 il11-724-exact2 sub3 Google search 68.9 44.7
2 il11-sub3-exp2-exact sub3 Google search 66.7 43.4

Table XI
IL11 NER-ONLY SUBMISSIONS. A SMALL NUMBER OF THESE (MARKED WITH ∗ , AND PRESENT IN TABLE X) ALSO HAD EDL PREDICTIONS. ALL
TRAIN IS: ALL IL11, SELF-TRAIN 100K, BEN, HIN, ENG. RECALL THAT TWITTER RULES WERE USED AS POST-PROCESSING FOR ALL SUBMISSIONS

(UNLESS OTHERWISE NOTED).

CP Submission Name Model Data Post-processing NER NER (IL)

2 il11-sub2-ner fBERT All Train self 70.6 73.4
2 il11-sub3-exp1-exact∗ cBERT All Train – (no twitter) 68.9 79.4
2 il11-sub3-exp2-exact∗ cBERT All Train self 66.7 74.4
2 il11-sub4-ner cBERT Mixed IL data self 72.3 76.8
2 il11-sub5-ner cBERT Dense IL data self 71.0 74.2
2 il11-sub6-ner CCG+cBERT All Train self 69.7 71.6
2 il11-sub6-ner-fixed CCG+cBERT All Train self 71.0 74.1
2 il11-sub8-ner cBERT All Train entity list + self 71.0 74.2
2 il11-sub9-ner cBERT All Train – 73.5 79.4
2 il11-sub10-ner cBERT All Train entity list 73.4 79.2
2 il11-sub11-ner CCG All Train self 67.7 67.8
2 il11-sub18-ner cBERT Only IL data self 70.9 74.0
2 il11-sub19-ner fBERT All Train (no dev1) self 70.3 72.8
2 il11-sub20-ner cBERT All Train (no dev1) self 71.0 74.2
2 il11-sub21-ner cBERT Mixed IL data (no dev1) self 70.9 73.9
2 il11-sub22-ner cBERT Dense IL data (no dev1) self 71.2 74.4

Table XII
IL12 SUBMISSIONS WITH EDL

CP Submission Name NER sub used EDL approach NER Score EDL Score

1 il12-exact fastText (dev0) Google search and exact matching for nil clustering 50.5 27.9
1 il12-fuzzy fastText (dev0) Google search and fuzzy matching for nil clustering 50.5 27.2
1 mbert eng Eng+Spa+Tgl+Ind Google search 67.5 33.1
1 il12-mbert eng Eng+Spa+Tgl+Ind Google search 67.7 21.2

2 il12-sub3-exp1-exact sub3 Google search, BERT, Classifier 50.1 29.5
2 il12-sub3-exp2-exact sub3 Google search, BERT, Classifier 61.1 37.3
2 il12-sub3-exp3-exact sub3 Google search, BERT, Classifier 61.1 37.3
2 il12-sub3-exp3-fuzzy sub3 Google search, BERT 61.1 36.5
2 il12-sub5-exp1-exact sub5 Google search, BERT 60.1 37.1
2 il12-sub5-exp1-fuzzy sub5 Google search, BERT 60.1 36.2
2 il12-sub5-exp2-exact sub5 Google search, BERT, Classifier 60.1 37.0
2 il12-sub5-exp2-fuzzy sub5 Google search, Classifier 60.1 36.1
2 il12-sub5-exp3-exact sub5 Google search, BERT, Rule 60.1 36.9

Table XIII
IL12 NER-ONLY SUBMISSIONS. A SMALL NUMBER OF THESE (MARKED WITH ∗ , AND PRESENT IN TABLE XII) ALSO HAD EDL PREDICTIONS. ALL

TRAIN IS: ALL IL12, TGL, SWA, ENG. RECALL THAT TWITTER RULES WERE USED AS POST-PROCESSING FOR ALL SUBMISSIONS (UNLESS OTHERWISE
NOTED).

CP Submission Name Model Data Post-processing NER NER (IL)

2 il12-sub2-ner fBERT All Train self 71.2 77.6
2 il12-sub3-exp1-exact∗ cBERT All Train – (no twitter) 50.1 56.7
2 il12-sub3-exp2-exact∗ cBERT All Train self 61.1 79.5
2 il12-sub3-exp3-exact∗ cBERT All Train self 61.1 79.5
2 il12-sub4-ner cBERT Mixed IL data self 72.1 79.5
2 il12-sub5-ner∗ cBERT Dense IL data self 70.8 76.5
2 il12-sub6-ner CCG+cBERT All Train self 71.8 79.0
2 il12-sub6-ner-fixed CCG+cBERT All Train self 72.0 79.4
2 il12-sub7-ner cBERT All Train no-bannawag 71.9 79.4
2 il12-sub8-ner cBERT All Train entity list + self 71.9 79.2
2 il12-sub10-ner cBERT All Train entity list 72.1 79.7
2 il12-sub11-ner CCG All Train self 68.8 72.3
2 il12-sub18-ner cBERT Only IL data self 70.6 76.2
2 il12-sub19-ner fBERT All Train (no dev1) self 70.5 76.0
2 il12-sub20-ner cBERT All Train (no dev1) self 71.7 78.8
2 il12-sub21-ner cBERT Mixed IL data (no dev1) self 71.9 79.1
2 il12-sub22-ner cBERT Dense IL data (no dev1) self 71.2 77.4

all sentences with 5% of tokens being entities and discarding
all other sentences. This was our Dense IL submissions. The
Mixed IL submission just added the Dense IL data to the
original data. Examining submissions 3-5 in Table XI, we
see that the Mixed IL significantly outperforms the original.
Looking at the details of these scores, it turns out the mixed
data produced significantly higher precision while harming the
recall slightly. This contradicts our intuitions, and the reasons
are unclear.

In both languages, we can see the comparative performance
of including related languages in the training data by com-
paring sub3 (all training data) and sub18 (IL only data). For
IL11, the improvement is very small (0.4F1), suggesting that
IL11 is unique, and difficult to transfer to. Given prior work
that suggests multi-source contextual training is valuable [14],
and the large improvements we saw from related languages
on our development sets (Tables V and VI), we found this
to be a surprising result. For IL12, we see the opposite,
showing nearly 3 points improvement from using only IL data
(submission 18).

For IL12, one CP1 submission (mbert eng) used only
English, Spanish, Indonesian, and Tagalog data (and a very
small amount of IL12 data) in training, along with the original
mBERT model. This achieved the top score in the evaluation
for checkpoint 1 (All, and IL only). Surprisingly, this also
achieved an IL12 score of 70.9, only 9 points F1 lower than the
final score. This is likely a combination of similarity between
languages, ability of mBERT to generalize cross-lingually, and
shared vocabulary and capitalization conventions.

As discussed in section IV-A2, we also made submissions
using the non-neural Cogcomp NER system ensembled with
the neural method (sub6-fixed in both languages), and on it’s
own (sub11 in both languages). When ensembled with the
neural method, the performance is slightly below the neural
score (sub3), reflecting how the ensembling strategy favors

the neural method. On it’s own, we see that the performance
of the CCG model is substantially below the best neural
counterpart (see the IL only scores), a gap of 12 points
for IL11, and 6 points for IL12. This is consistent with
prior intuitions suggesting that contextual embeddings for low-
resource languages give improvements of about 10 points F1.

V. SITUATION FRAME

A. Native Informant Use

Entailment Approach: For our entailment approach, we built
hypotheses for each of the 11 Situation Frame Types. For
example, “(food): The people there are in need of food.” In our
first Native Informant (NI) slots, for each language, we then
requested that the NI translate these hypotheses, listed in XVII,
into the target languages (IL11 and IL12). The rest of this
session was used to have them translate a set of approximately
130 disaster related words we compiled.

Then, we used the translated disaster related words above
to rank the documents of set 1 by the quantity of disaster-
related words in the text and presented them to the NIs in the
remaining sessions. The NIs were asked to select the disaster
type that each document was most related to, or select None
if the document was out of domain. This data was used to
further train some of our models prior to submission.

B. Annotated Datasets

• BBN annotated data is a multi-label SF typing dataset,
with size of 4k examples. About half are “None” type.

• We also collected the gold annotated data from previous
low-resource languages, including IL3, IL5, IL9, IL10,
and Mandarin. For each IL, we use the released SF types
and the English translated text as annotated instances.

The statistics of all annotated data are listed in Table XIV.

Table XIV
COLLECTED ANNOTATED ENGLISH TRAINING DATA FOR SF

BBN IL3 IL5 IL9 IL10 Mandarin

size 4,000 586 1,088 152 226 128

Table XV
IL11 SF SUBMISSION SYSTEM DESCRIPTION AND RESULTS (IL ONLY, CHECKPOINT 2)

use
BERT?

cBERT bilingual emb version #edl test input type F1
(IL type)

F1
(type+place)

nDCG
(altref) nDCG

#0 N 1M on IL11 dictionary with pair of single words 0 il11 text 34.09 14.87 3.24 1.36
#1 N 1M on IL11 dictionary with pair of single words 0 il11 text + MT 37.35 16.82 9.66 8.38
#2 N 1M on IL11 dictionary with pair of single words 0 MT 36.14 15.10 8.64 9.47
#3 N 1M on IL11 dictionary with pair of single words 1 il11 text 34.27 14.06 2.88 0.66
#4 N 1M on IL11 dictionary with pair of single words 1 il11 text+ MT 37.80 15.88 9.44 8.72
#5 N 1M on IL11 dictionary with pair of single words 1 MT 36.30 14.21 8.82 9.22
#6 N 1M on IL11 full dictionary 0 il11 text 33.16 13.75 16.79 20.19
#7 N 1M on IL11 full dictionary 0 il11 text + MT 35.97 15.62 8.49 1.12
#8 N 1M on IL11 full dictionary 0 MT 33.77 14.66 11.63 0.0
#9 N 1M on IL11 full dictionary 1 il11 text 33.38 12.94 17.21 20.29
#10 N 1M on IL11 full dictionary 1 il11 text + MT 36.32 14.57 4.66 1.12
#11 N 1M on IL11 full dictionary 1 MT 34.12 13.58 11.63 0.0
#12 Y 1M on IL11 dictionary with pair of single words 0 il11 text+ MT 31.20 10.83 11.63 0.0
#13 Y 1M on IL11 full dictionary 0 il11 text 32.24 11.12 11.63 0.0
#14 Y 1M on IL11 dictionary with pair of single words 0 il11 text+ MT 25.78 10.38 11.63 0.0
#15 Y 1M on IL11 full dictionary 0 il11 text+ MT 32.86 11.36 11.63 0.0
#16 Y 1M on IL11 dictionary with pair of single words 0 MT 31.35 12.11 11.63 0.0
#17 Y 1M on IL11 full dictionary 0 MT 32.04 11.87 11.63 0.0

max released officially 37.80 37.09 38.16
med released officially 17.95 13.25 15.61

Figure 2. SF System Architecture

Text
(consecutive 3 segments surrounding the detected entity from EDL)

convolutional
neural networks

multi-lingual
BERT

as
classifier

as
entailment

as
classifier

as
entailment

four
probability

vectors over
SF types

overall probability
distribution

train with
"Binary Cross

Entropy"

C. System

Bilingual Embedding. To build bilingual word embeddings
for English and the ILs, we first generate monolingual word
embeddings for English and the ILs, respectively. For En-
glish, we always download the pre-trained 300d word2vec
embeddings12. For each IL, we collect all the monolingual

12https://code.google.com/archive/p/word2vec/

raw text from set 0, set 1, and set E, then train word2vec with
hyperparameters: window 10, iteration 20.

Based on the resulting monolingual embeddings, we run
BiCCA [3] along with the provided Eng-IL dictionary in set
0. BiCCA, in principle, can only use the pairs of single words
in the dictionary.

Therefore, we build two versions of the dictionaries:
one is to extract the pairs of single words from the original
dictionary; the other is to convert the pairs with phrases into
pairs of single words by picking up one word from the phrase
iteratively – this means an original phrase pair with n:m
will generate n ×m pairs of single words. This will enlarge
the resulting dictionary dramatically, and influence the final
quality of the bilingual word embeddings.

Representation Learners
We treat the SF problem as classification as well as textual

entailment. The benefit of exploring entailment is to make
use of rich entailment datasets. We convert the SF types into
hypotheses, as shown in Table XVII.

As Figure 2 shows, our SF system consists of four repre-
sentation learners:

a) Convolutional neural networks as classifiers: The sys-
tem takes the input text and outputs the probability distribution
over the 12 SF types (“None” type included). Convolutional
neural networks are well known for the keyword-based fea-
tures [17], and they can also detect global features if attention
mechanisms are incorporated [18].

Table XVI
IL12 SF SUBMISSION SYSTEM DESCRIPTION AND RESULTS (IL ONLY, CHECKPOINT 2)

use
BERT?

cBERT bilingual emb version #edl test input type F1
(IL type)

F1
(type+place)

nDCG
(altref) nDCG

#0 N 1M on IL12 dictionary with pair of single words 0 il12 text 20.79 5.34 2.99 2.35
#1 N 1M on IL12 dictionary with pair of single words 0 il12 text + MT 25.82 6.59 7.92 1.91
#2 N 1M on IL12 dictionary with pair of single words 0 MT 31.57 8.55 1.84 4.19
#3 N 1M on IL12 full dictionary 0 il12 text 27.24 6.78 6.91 4.33
#4 N 1M on IL12 full dictionary 0 il12 text + MT 30.82 7.73 5.90 7.28
#5 N 1M on IL12 full dictionary 0 MT 20.89 6.57 3.62 3.18
#6 Y 1M on IL12 dictionary with pair of single words 0 il12 text 15.35 4.20 5.49 5.16
#7 Y 1M on IL12 dictionary with pair of single words 0 il12 text + MT 22.94 5.12 5.67 8.21
#8 Y 1M on IL12 dictionary with pair of single words 0 MT 24.23 5.84 22.18 21.23
#9 Y 1M on IL12 full dictionary 0 il12 text 0.0 0.0 5.99 5.74
#10 Y 1M on IL12 full dictionary 0 il12 text + MT 23.83 5.26 23.88 21.23
#11 Y 1M on {Eng, IL12 and simi-lang} dictionary with pair of single words 0 il12 text 23.43 5.66 22.18 21.23
#12 Y 1M on IL12 full dictionary 0 MT 25.57 6.45 22.18 21.23
#13 Y 1M on {Eng, IL12 and simi-lang} dictionary with pair of single words 0 il12 text+ MT 22.85 5.20 22.18 25.65
#14 Y 1M on {Eng, IL12 and simi-lang} full dictionary 0 il12 text 18.81 5.58 22.18 21.23
#15 Y 1M on {Eng, IL12 and simi-lang} dictionary with pair of single words 0 MT 24.53 5.90 22.18 21.23
#16 Y 1M on {Eng, IL12 and simi-lang} full dictionary 0 il12 text + MT 24.87 6.08 22.18 21.23
#17 Y 1M on {Eng, IL12 and simi-lang} full dictionary 0 MT 30.07 7.66 22.18 24.63
#18 N 1M on IL12 dictionary with pair of single words 1 il12 text 22.92 6.13 8.40 0.0
#19 N 1M on IL12 dictionary with pair of single words 1 il12 text + MT 29.31 8.14 22.18 0.0
#20 N 1M on IL12 dictionary with pair of single words 1 MT 33.53 9.73 5.18 1.34
#21 N 1M on IL12 full dictionary 1 il12 text 31.42 8.76 8.08 5.88
#22 N 1M on IL12 full dictionary 1 il12 text + MT 33.57 9.50 8.83 3.40
#23 N 1M on IL12 full dictionary 1 MT 34.13 9.25 22.18 21.23
#24 Y 1M on IL12 dictionary with pair of single words 1 il12 text 20.71 4.59 9.56 9.16
#25 Y 1M on IL12 full dictionary 1 il12 text 21.16 4.75 10.39 12.79
#26 Y 1M on {Eng, IL12 and simi-lang} dictionary with pair of single words 1 il12 text 0.0 0.0 12.78 13.44
#27 Y 1M on {Eng, IL12 and simi-lang} dictionary with pair of single words 1 il12 text + MT 24.80 5.98 7.84 12.47
#28 Y 1M on {Eng, IL12 and simi-lang} dictionary with pair of single words 1 MT 27.04 6.86 11.03 9.82
#29 Y 1M on IL12 full dictionary 1 il12 text + MT 24.29 5.59 16.20 12.54
#30 Y 1M on IL12 dictionary with pair of single words 1 il12 text + MT 22.93 5.17 15.35 12.56
#31 Y 1M on IL12 full dictionary 1 MT 26.83 6.78 16.17 14.31
#32 Y 1M on IL12 dictionary with pair of single words 1 MT 25.58 6.39 14.22 13.81

max released officially 38.97 39.05 25.65
med released officially 22.77 9.02 9.82

Table XVII
CONVERTING SF TYPES TO HYPOTHESES

type premise example

need

med people need medical assistance
search some people are missing or buried, we need to provide search and rescue
food people are in shortage of food
infra the infrastructures are destroyed, we need to build new
water people are in the shortage of water
shelter Many houses collapsed and people are in desperate need of new places to live
utils The water supply and power supply system is broken, and basic living supply is urgently needed.
evac This place is very dangerous, and it is urgent to evacuate people to safety.

issue
terrorism There was a terrorist activity in that place, such as an explosion, shooting
regime change Regime change happened in this country
crime violence There was violent criminal activity in that place

Table XVIII
SF SYSTEM PERFORMANCE ON IL9 AND IL10

system IL9 IL10
F1 weighted F1 F1 weighted F1

top record 31.03 – 24.09 –

Attentive Convolution 32.30 46.71 28.60 45.44

cBERT
1M on IL 29.44 44.60 14.11 29.86
1M on {IL, En, sim-L} 24.32 38.14 16.95 33.18

Attentive Conv. & cBERT
1M on IL 39.10 53.34 25.79 42.17
1M on {IL, En, sim-L} 35.94 50.43 27.01 43.41

+SF gold data from {il9, il10, il5, il3, Mandarin} 48.32 60.78 40.44 55.51

b) Convolutional neural networks for entailment: Con-
volutional neural networks can also work for entailment if
phrase-level reasoning plays a role [19]. We have two copies
of the same convolutional component, one working on the
premise, the other working on the hypothesis. It is trained
for “yes or no” for each premise-hypothesis pair. We use the
probabilities of entailment as the output probability vector.

c) cBERT as classifier: We treat (multi-lingual) BERT
as a new classifier – it takes text as input, then outputs a
representation. On the top of cBERT, we stack a classifier.

d) cBERT for entailment: Similar to attentive convolu-
tion [18], BERT originally works on local regions (i.e., single
tokens), but the attention mechanisms enable it to encode
global information. BERT can work on single sentences as
well as a pair of sentences. For entailment, we apply cBERT
on the premise-hypothesis pairs and get the resulting rep-
resentation. The remaining parts are the same as the above
“convolution for entailment”.

In total, our SF approach includes four subsystems, each
providing one probability vector. We do an element-wise
average to get the overall probability vector. The whole system
is optimized by minimizing the binary cross-entropy.

D. Submissions and Results on IL11 & IL12

Our submissions take the outputs of EDL and MT as
inputs. EDL provides the information of detected entities,
and MT provides the English translation of the original IL
text. TIn total, we tried two EDL outputs and three ways of
incorporating MT and IL text: IL text only, concatenating IL
text with MT, MT only.

Table XV lists all 18 submitted systems with their respective
setups for the IL11 language. Table XVI lists all 33 submitted
systems with their respective setups for the IL12 language.

Only checkpoint 2 results of on low-resource text (IL) are
reported since this is our target.

In both IL11 and IL12, the best typing performance always
comes from “full dictionary” in which we split phrase pairs
into single-word pairs. These results show its effectiveness in
learning higher-quality bilingual word embeddings.

In most cases of IL11, combining IL and MT as input
improves the tying performance. However, in IL12, using only
MT seems better than IL and their combination.

E. Experiments on IL9 and IL10

Due to lack of time for testing all of our setups in IL11
and IL12, especially those using BERT, we also test our
setups on IL9 and IL10. In Table XVIII, we notice that
attentive convolution works consistently well in both IL9
and IL10, but the cBERT performed poorly in IL10. The
results show that the combination of attentive convolution and
cBERT may be less promising than just attentive convolution.
However, the same combination promotes the performance in
IL9 dramatically, especially when cBERT is trained on the
IL with 1M iterations. In both languages, we achieved big
improvements by collecting the SF gold data on translated IL
text from prior ILs including Mandarin, IL3, IL5, IL9, and
IL10.

VI. CONCLUSION

We have described details for high-performing systems for
named entity recognition, entity linking, and situation frame
tasks developed as part of the LoReHLT 2019 evaluation. One
innovation over prior years is that each of these tasks took
advantage of cross-lingual contextual embeddings for strong
performance. We hope that the innovations and procedures
outlined in this report can be used by others to help the
rapid development of low-resource NLP systems in surprise
languages.

VII. ACKNOWLEDGEMENTS

Many thanks to Jordan Kodner at the University of Penn-
sylvania for help with various tasks including language facts,
morphology, and rescripting. Also many thanks to Chris
Callison-Burch and several of his summer interns for their help
in annotation. This work was supported by Contracts HR0011-
15-C-0113 and HR0011-18-2-0052 with the US Defense Ad-
vanced Research Projects Agency (DARPA) and by a Focused
Award from Google. This project is also supported with Cloud
TPUs from Google’s TensorFlow Research Cloud (TFRC).

REFERENCES

[1] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. Transactions of the
Association for Computational Linguistics, 5:135–146, 2017.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[3] Manaal Faruqui and Chris Dyer. Improving vector space word represen-
tations using multilingual correlation. In Proceedings of EACL, pages
462–471, 2014.

[4] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep
Dasigi, Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke S.
Zettlemoyer. Allennlp: A deep semantic natural language processing
platform. 2017.

[5] Ulf Hermjakob, Jonathan May, and Kevin Knight. Out-of-the-box
universal romanization tool uroman. In Proceedings of ACL 2018,
System Demonstrations, pages 13–18, 2018.

[6] Daniel Khashabi, Mark Sammons, Ben Zhou, Tom Redman, Christos
Christodoulopoulos, Vivek Srikumar, Nicholas Rizzolo, Lev Ratinov,
Guanheng Luo, Quang Do, Chen-Tse Tsai, Subhro Roy, Stephen May-
hew, Zhili Feng, John Wieting, Xiaodong Yu, Yangqiu Song, Shashank
Gupta, Shyam Upadhyay, Naveen Arivazhagan, Qiang Ning, Shaoshi
Ling, and Dan Roth. Cogcompnlp: Your swiss army knife for nlp. In
11th Language Resources and Evaluation Conference, 2018.

[7] Xuezhe Ma and Eduard H. Hovy. End-to-end sequence labeling via bi-
directional lstm-cnns-crf. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers, 2016.

[8] Stephen Mayhew. TALEN: Tool for Annotation of Low-resource
ENtities. In ACL Demonstrations, 2018.

[9] Stephen Mayhew, Chase Duncan, Mark Sammons, Chen-Tse Tsai, Xin
Li, Haojie Pan, Sheng Zhou, Jennifer Zou, and Yangqiu Song. University
of Illinois LoReHLT17 Submission.

[10] Lev Ratinov and Dan Roth. Design challenges and misconceptions in
named entity recognition. In Proceedings of CoNLL-09, pages 147–155,
2009.

[11] Stephanie Strassel and Jennifer Tracey. Lorelei language packs: Data,
tools, and resources for technology development in low resource lan-
guages. In Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC 2016), pages 3273–3280,
2016.

[12] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the
conll-2003 shared task: Language-independent named entity recogni-
tion. In Walter Daelemans and Miles Osborne, editors, Proceedings of
the Annual Conference on Computational Natural Language Learning
(CoNLL), pages 142–147. Edmonton, Canada, 2003.

[13] Chen-Tse Tsai, Stephen Mayhew, Yangqiu Song, Mark Sammons, and
Dan Roth. Illinois CCG LoReHLT 2016 Named Entity Recognition and
Situation Frame Systems. Machine Translation, 2018.

[14] Tatiana Tsygankova, Stephen Mayhew, and Dan Roth. BSNLP2019
shared task submission: Multisource neural NER transfer. In Proceed-
ings of the 7th Workshop on Balto-Slavic Natural Language Processing,
pages 75–82, 2019.

[15] Ralph Weischedel, Sameer Pradhan, Lance Ramshaw, Martha Palmer,
Nianwen Xue, Mitchell Marcus, Ann Taylor, Craig Greenberg, Eduard
Hovy, Robert Belvin, et al. Ontonotes release 4.0. LDC2011T03,
Philadelphia, Penn.: Linguistic Data Consortium, 2011.

[16] Shijie Wu and Mark Dredze. Beto, bentz, becas: The surprising cross-
lingual effectiveness of bert. ArXiv, abs/1904.09077, 2019.

[17] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Compar-
ative study of CNN and RNN for natural language processing. CoRR,
abs/1702.01923, 2017.

[18] Wenpeng Yin and Hinrich Schütze. Attentive convolution: Equipping
cnns with rnn-style attention mechanisms. TACL, 6:687–702, 2018.

[19] Wenpeng Yin, Hinrich Schütze, and Dan Roth. End-task oriented
textual entailment via deep explorations of inter-sentence interactions.
In Proceedings of ACL, pages 540–545, 2018.

