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Abstract

Understanding temporal and causal rela-
tions between events is a fundamental nat-
ural language understanding task. Be-
cause a cause must occur earlier than its
effect, temporal and causal relations are
closely related and one relation often dic-
tates the value of the other. However,
limited attention has been paid to study-
ing these two relations jointly. This paper
presents a joint inference framework for
them using constrained conditional mod-
els (CCMs). Specifically, we formulate the
joint problem as an integer linear program-
ming (ILP) problem, enforcing constraints
that are inherent in the nature of time and
causality. We show that the joint inference
framework results in statistically signifi-
cant improvement in the extraction of both
temporal and causal relations from text.1

1 Introduction

Understanding events is an important component
of natural language understanding. An essential
step in this process is identifying relations between
events, which are needed in order to support appli-
cations such as story completion, summarization,
and timeline construction.

Among the many relation types that could exist
between events, this paper focuses on the joint ex-
traction of temporal and causal relations. It is well
known that temporal and causal relations interact
with each other and in many cases, the decision of
one relation is made primarily based on evidence
from the other. In Example 1, identifying the tem-
poral relation between e1:died and e2:exploded is

1The dataset and code used in this paper are available
at http://cogcomp.org/page/publication_
view/835

in fact a very hard case: There are no explicit tem-
poral markers (e.g., “before”, “after”, or “since”);
the events are in separate sentences so their syn-
tactic connection is weak; although the occurrence
time of e2:exploded is given (i.e., Friday) in text,
it is not given for e1:died. However, given the
causal relation, e2:exploded caused e1:died,it is
clear that e2:exploded happened before e1:died.
The temporal relation is dictated by the causal re-
lation.

Ex 1: Temporal relation dictated by causal relation.
More than 10 people (e1:died) on their way to the
nearest hospital, police said. A suicide car bomb
(e2:exploded) on Friday in the middle of a group of men
playing volleyball in northwest Pakistan.
Since e2:exploded is the reason of e1:died, the temporal
relation is thus e2 being before e1.
Ex 2: Causal relation dictated by temporal relation.
Mir-Hossein Moussavi (e3:raged) after government’s
efforts to (e4:stifle) protesters.
Since e3:raged is temporally after e4:stifle, e4 should
be the cause of e3.

On the other hand, causal relation extraction
can also benefit from knowing temporal relations.
In Example 2, it is unclear whether the govern-
ment stifled people because people raged, or peo-
ple raged because the government stifled people:
both situations are logically reasonable. However,
if we account for the temporal relation (that is,
e4:stifle happened before e3:raged), it is clear that
e4:stifle is the cause and e3:raged is the effect. In
this case, the causal relation is dictated by the tem-
poral relation.

The first contribution of this work is propos-
ing a joint framework for Temporal and Causal
Reasoning (TCR), inspired by these examples.
Assuming the availability of a temporal extraction
system and a causal extraction system, the pro-
posed joint framework combines these two using
a constrained conditional model (CCM) (Chang
et al., 2012) framework, with an integer linear pro-

http://cogcomp.org/page/publication_view/835
http://cogcomp.org/page/publication_view/835


gramming (ILP) objective (Roth and Yih, 2004)
that enforces declarative constraints during the in-
ference phase. Specifically, these constraints in-
clude: (1) A cause must temporally precede its ef-
fect. (2) Symmetry constraints, i.e., when a pair
of events, (A,B), has a temporal relation r (e.g.,
before), then (B,A) must have the reverse relation
of r (e.g., after). (3) Transitivity constraints, i.e.,
the relation between (A,C) must be temporally
consistent with the relation derived from (A,B)
and (B,C). These constraints originate from the
one-dimensional nature of time and the physical
nature of causality and build connections between
temporal and causal relations, making CCM a nat-
ural choice for this problem. As far as we know,
very limited work has been done in joint extraction
of both relations. Formulating the joint problem
in the CCM framework is novel and thus the first
contribution of this work.

A key obstacle in jointly studying temporal and
causal relations lies in the absence of jointly anno-
tated data. The second contribution of this work
is the development of such a jointly annotated
dataset which we did by augmenting the Event-
Causality dataset (Do et al., 2011) with dense tem-
poral annotations. This dataset allows us to show
statistically significant improvements on both re-
lations via the proposed joint framework.

This paper also presents an empirical result
of improving the temporal extraction compo-
nent. Specifically, we incorporate explicit time
expressions present in the text and high-precision
knowledge-based rules into the ILP objective.
These sources of information have been success-
fully adopted by existing methods (Chambers
et al., 2014; Mirza and Tonelli, 2016), but were
never used within a global ILP-based inference
method. Results on TimeBank-Dense (Cassidy
et al., 2014), a benchmark dataset with temporal
relations only, show that these modifications can
also be helpful within ILP-based methods.

2 Related Work

Temporal and causal relations can both be repre-
sented by directed acyclic graphs, where the nodes
are events and the edges are labeled with either
before, after, etc. (in temporal graphs), or causes
and caused by (in causal graphs). Existing work
on temporal relation extraction was initiated by
(Mani et al., 2006; Chambers et al., 2007; Bethard
et al., 2007; Verhagen and Pustejovsky, 2008),

Ex 3: Global considerations are needed when mak-
ing local decisions.
The FAA on Friday (e5:announced) it will close
149 regional airport control towers because of forced
spending cuts. Before Friday’s (e6:announcement), it
(e7:said) it would consider keeping a tower open if the
airport convinces the agency it is in the ”national inter-
est” to do so.

which formulated the problem as that of learning
a classification model for determining the label of
each edge locally (i.e., local methods). A disad-
vantage of these early methods is that the result-
ing graph may break the symmetric and transitive
constraints. There are conceptually two ways to
enforce such graph constraints (i.e., global rea-
soning). CAEVO (Chambers et al., 2014) grows
the temporal graph in a multi-sieve manner, where
predictions are added sieve-by-sieve. A graph clo-
sure operation had to be performed after each sieve
to enforce constraints. This is solving the global
inference problem greedily. A second way is to
perform exact inference via ILP and the symme-
try and transitivity requirements can be enforced
as ILP constraints (Bramsen et al., 2006; Cham-
bers and Jurafsky, 2008; Denis and Muller, 2011;
Do et al., 2012; Ning et al., 2017).

We adopt the ILP approach in the temporal
component of this work for two reasons. First,
as we show later, it is straightforward to build a
joint framework with both temporal and causal re-
lations as an extension of it. Second, the rela-
tion between a pair of events is often determined
by the relations among other events. In Ex 3, if
a system is unaware of (e5, e6)=simultaneously
when trying to make a decision for (e5, e7), it
is likely to predict that e5 is before e72; but, in
fact, (e5, e7)=after given the existence of e6. Us-
ing global considerations is thus beneficial in this
context not only for generating globally consistent
temporal graphs, but also for making more reliable
pairwise decisions.

Prior work on causal relations in natural lan-
guage text was relatively sparse. Many causal ex-
traction work in other domains assumes the exis-
tence of ground truth timestamps (e.g., (Sun et al.,
2007; Güler et al., 2016)), but gold timestamps
rarely exist in natural language text. In NLP, peo-
ple have focused on causal relation identification
using lexical features or discourse relations. For

2Consider the case that “The FAA e5:announced. . . it
e7:said it would. . . ”. Even humans may predict that e5 is
before e7.



example, based on a set of explicit causal dis-
course markers (e.g., “because”, “due to”, and “as
a result”), Hidey and McKeown (2016) built par-
allel Wikipedia articles and constructed an open
set of implicit markers called AltLex. A classi-
fier was then applied to identify causality. Duni-
etz et al. (2017) used the concept of construction
grammar to tag causally related clauses or phrases.
Do et al. (2011) considered global statistics over a
large corpora, the cause-effect association (CEA)
scores, and combined it with discourse relations
using ILP to identify causal relations. These work
only focused on the causality task and did not ad-
dress the temporal aspect.

However, as illustrated by Examples 1-2, tem-
poral and causal relations are closely related, as
assumed by many existing works (Bethard and
Martin, 2008; Rink et al., 2010). Here we ar-
gue that being able to capture both aspects in a
joint framework provides a more complete under-
standing of events in natural language documents.
Researchers have started paying attention to this
direction recently. For example, Mostafazadeh
et al. (2016b) proposed an annotation framework,
CaTeRs, which captured both temporal and causal
aspects of event relations in common sense stories.
CATENA (Mirza and Tonelli, 2016) extended the
multi-sieve framework of CAEVO to extracting
both temporal and causal relations and exploited
their interaction through post-editing temporal re-
lations based on causal predictions. In this paper,
we push this idea forward and tackle the problem
in a joint and more principled way, as shown next.

3 Temporal and Causal Reasoning

In this section, we explain the proposed joint infer-
ence framework, Temporal and Causal Reasoning
(TCR). To start with, we focus on introducing
the temporal component, and clarify how to de-
sign the transitivity constraints and how to enforce
other readily available prior knowledge to improve
its performance. With this temporal component
already explained, we further incorporate causal
relations and complete the TCR joint inference
framework. Finally, we transform the joint prob-
lem into an ILP so that it can be solved using off-
the-shelf packages.

3.1 Temporal Component

Let RT be the label set of temporal relations and
E and T be the set of all events and the set of all

time expressions (a.k.a. timex) in a document. For
notation convenience, we use EE to represent the
set of all event-event pairs; then ET and T T have
obvious definitions. Given a pair in EE or ET , as-
sume for now that we have corresponding classi-
fiers producing confidence scores for every tempo-
ral relation in RT . Let them be see(·) and set(·),
respectively. Then the inference formulation for
all the temporal relations within this document is:

Ŷ = argmax
Y ∈Y

∑
i∈EE

see{i 7→ Yi}+
∑
j∈ET

set{j 7→ Yj} (1)

where Yk ∈ RT is the temporal label of pair
k ∈ MM (Let M = E ∪ T be the set of all tem-
poral nodes), “k 7→ Yk” represents the case where
the label of pair k is predicted to be Yk, Y is a vec-
torization of all these Yk’s in one document, and Y
is the constrained space that Y lies in.

We do not include the scores for T T because
the temporal relationship between timexes can be
trivially determined using the normalized dates of
these timexes, as was done in (Do et al., 2012;
Chambers et al., 2014; Mirza and Tonelli, 2016).
We impose these relations via equality constraints
denoted as Y0. In addition, we add symmetry
and transitivity constraints dictated by the nature
of time (denoted by Y1), and other prior knowl-
edge derived from linguistic rules (denoted by Y2),
which will be explained subsequently. Finally, we
set Y = ∩2

i=0Yi in Eq. (1).
Transitivity Constraints. Let the dimension

of Y be n. Then a standard way to construct
the symmetry and transitivity constraints is shown
in (Bramsen et al., 2006; Chambers and Jurafsky,
2008; Denis and Muller, 2011; Do et al., 2012;
Ning et al., 2017)

Y1 =
{
Y ∈ Rn

T |∀m1,2,3 ∈ M, Y(m1,m2) = Ȳ(m2,m1),

Y(m1,m3) ∈ Trans(Y(m1,m2), Y(m2,m3))
}

where the bar sign is used to represent the reverse
relation hereafter, and Trans(r1, r2) is a set com-
prised of all the temporal relations from RT that
do not conflict with r1 and r2.

The construction of Trans(r1, r2) necessitates a
clearer definition of RT , the importance of which
is often overlooked by existing methods. Existing
approaches all followed the interval representation
of events (Allen, 1984), which yields 13 tempo-
ral relations (denoted by R̃T here) as shown in
Fig. 1. Most systems used a reduced set, for ex-



beforebefore
before

before

x

x

includesx

includesincludes
is included

simultaneous

x

simultaneous

includesx

is includedis included
is included

after

x

x

afterx

afterafter

Scheme 1 Scheme 2B
A

A

A
A

A
A

A

A

A

A

A

A

A

time

Figure 1: Two possible interpretations to the label
set of RT = {b, a, i, ii, s, v} for the temporal relations
between (A, B). “x” means that the label is ignored.
Brackets represent time intervals along the time axis.
Scheme 2 is adopted consistently in this work.

ample, {before, after, includes, is included, simul-
taneously, vague}. For notation convenience, we
denote them RT = {b, a, i, ii, s, v}. Using a re-
duced set is more convenient in data annotation
and leads to better performance in practice.

However, there has been limited discussion in
the literature on how to interpret the reduced re-
lation types. For example, is the “before” in RT

exactly the same as the “before” in the original set
(R̃T ) (as shown on the left-hand-side of Fig. 1),
or is it a combination of multiple relations in R̃T

(the right-hand-side of Fig. 1)? We compare two
reduction schemes in Fig. 1, where scheme 1 ig-
nores low frequency labels directly and scheme
2 absorbs low frequency ones into their tempo-
rally closest labels. The two schemes barely have
differences when a system only looks at a single
pair of mentions at a time (this might explain the
lack of discussion over this issue in the literature),
but they lead to different Trans(r1, r2) sets and
this difference can be magnified when the prob-
lem is solved jointly and when the label distribu-
tion changes across domains. To completely cover
the 13 relations, we adopt scheme 2 in this work.

The resulting transitivity relations are shown
in Table 1. The top part of Table 1 is a com-
pact representation of three generic rules; for in-
stance, Line 1 means that the labels themselves
are transitive. Note that during human annotation,
if an annotator looks at a pair of events and de-
cides that multiple well-defined relations can ex-
ist, he/she labels it vague; also, when aggregating
the labels from multiple annotators, a label will be

No. r1 r2 Trans(r1, r2)
1 r r r
2 r s r

3 r1 r2 Trans(r̄2, r̄1)
4 b i b, i, v
5 b ii b, ii, v
6 b v b, i, ii, v
7 a i a, i, v
8 a ii a, ii, v
9 a v a, i, ii ,v
10 i v b, a, i, v
11 ii v b, a, ii, v

Table 1: Transitivity relations based on the label set
reduction scheme 2 in Fig. 1. If (m1,m2) 7→ r1 and
(m2,m3) 7→ r2, then the relation of (m1,m3) must be
chosen from Trans(r1, r2), ∀m1, m2, m3 ∈ M. The
top part of the table uses r to represent generic rules
compactly. Notations: before (b), after (a), includes
(i), is included (ii), simultaneously (s), vague (v), and r̄
represents the reverse relation of r.

changed to vague if the annotators disagree with
each other. In either case, vague is chosen to be
the label when a single well-defined relation can-
not be uniquely determined by the contextual in-
formation. This explains why a vague relation (v)
is always added in Table 1 if more than one label
in Trans(r1, r2) is possible. As for Lines 6, 9-11 in
Table 1 (where vague appears in Column r2), Col-
umn Trans(r1,r2) was designed in such a way that
r2 cannot be uniquely determined through r1 and
Trans(r1,r2). For instance, r1 is after on Line 9,
if we further put before into Trans(r1,r2), then r2
would be uniquely determined to be before, con-
flicting with r2 being vague, so before should not
be in Trans(r1,r2).

Enforcing Linguistic Rules. Besides the tran-
sitivity constraints represented by Y1 above, we
also propose to enforce prior knowledge to fur-
ther constrain the search space for Y . Specifically,
linguistic insight has resulted in rules for predict-
ing the temporal relations with special syntactic
or semantic patterns, as was done in CAEVO (a
state-of-the-art method). Since these rule predic-
tions often have high-precision, it is worthwhile
incorporating them in global reasoning methods as
well.

In the CCM framework, these rules can be rep-
resented as hard constraints in the search space for
Y . Specifically,

Y2 =
{
Yj = rule(j), ∀j ∈ J (rule)

}
, (2)

where J (rule) ⊆ MM is the set of pairs that can
be determined by linguistic rules, and rule(j) ∈



RT is the corresponding decision for pair j ac-
cording to these rules. In this work, we used the
same set of rules designed by CAEVO for fair
comparison.

3.2 Full Model with Causal Relations

Now we have presented the joint inference frame-
work for temporal relations in Eq. (1). It is easier
to explain our complete TCR framework on top of
it. Let W be the vectorization of all causal rela-
tions and add the scores from the scoring function
for causality sc(·) to Eq. (1). Specifically, the full
inference formulation is now:

Ŷ , Ŵ = arg max
Y ∈Y,W∈WY

∑
i∈EE

see{i 7→ Yi} (3)

+
∑
j∈ET

set{j 7→ Yj}+
∑
k∈EE

sc{k 7→ Wk}

where WY is the search space for W . WY depends
on the temporal labels Y in the sense that

WY = {W ∈ Rm
C |∀i, j ∈ E , if W(i,j) = c, (4)

then W(j,i) = c̄, and Y(i,j) = b}

where m is the dimension of W (i.e., the total
number of causal pairs), RC = {c, c̄, null} is
the label set for causal relations (i.e., “causes”,
“caused by”, and “no relation”), and W(i,j) is the
causal label for pair (i, j). The constraint repre-
sented by WY means that if a pair of events i and j
are labeled to be “causes”, then the causal relation
between j and i must be “caused by”, and the tem-
poral relation between i and j must be “before”.

3.3 Scoring Functions

In the above, we have built the joint framework
on top of scoring functions see(·), set(·) and sc(·).
To get see(·) and set(·), we trained classifiers us-
ing the averaged perceptron algorithm (Freund and
Schapire, 1998) and the same set of features used
in (Do et al., 2012; Ning et al., 2017), and then
used the soft-max scores in those scoring func-
tions. For example, that means

see{i 7→ r} =
wT

r ϕ(i)∑
r′∈RT

wT
r′ϕ(i)

, i ∈ EE , r ∈ RT ,

where {wr} is the learned weight vector for rela-
tion r ∈ RT and ϕ(i) is the feature vector for pair
i ∈ EE .

Given a pair of ordered events, we need sc(·)
to estimate the scores of them being “causes” or

“caused by”. Since this scoring function has the
same nature as see(·), we can reuse the features
from see(·) and learn an averaged perceptron for
sc(·). In addition to these existing features, we
also use prior statistics retrieved using our tem-
poral system from a large corpus3, so as to know
probabilistically which event happens before an-
other event. For example, in Example 1, we have a
pair of events, e1:died and e2:exploded. The prior
knowledge we retrieved from that large corpus is
that die happens before explode with probability
15% and happens after explode with probability
85%. We think this prior distribution is correlated
with causal directionality, so it was also added as
features when training sc(·).

Note that the scoring functions here are imple-
mentation choice. The TCR joint framework is
fully extensible to other scoring functions.

3.4 Convert the Joint Inference into an ILP
Conveniently, the joint inference formulation in
Eq. (3) can be rewritten into an ILP and solved
using off-the-shelf optimization packages, e.g.,
(Gurobi Optimization, Inc., 2012). First, we de-
fine indicator variables yri = I{Yi = r}, where
I{·} is the indicator function, ∀i ∈ MM, ∀r ∈
RT . Then let pri = see{i 7→ r} if i ∈ EE ,
or pri = set{i 7→ r} if i ∈ ET ; similarly, let
wr
j = I{Wi = r} be the indicator variables for Wj

and qrj be the score for Wj = r ∈ RC . Therefore,
without constraints Y and WY for now, Eq. (3) can
be written as:

ŷ, ŵ = argmax
∑

i∈EE∪ET

∑
r∈RT

pri y
r
i +

∑
j∈EE

∑
r∈RC

qrjw
r
j

s.t. yr
i , w

r
j ∈ {0, 1},

∑
r∈RT

yr
i =

∑
r∈RC

wr
j = 1

The prior knowledge represented as Y and WY

can be conveniently converted into constraints for
this optimization problem. Specifically, Y1 has
two components, symmetry and transitivity:

Y1 : ∀i, j, k ∈ M, yr
i,j = yr̄

j,i, (symmetry)

yr1
i,j + yr2

j,k −
∑

r3∈Trans(r1,r2)

yr3
i,k ≤ 1 (transitivity)

where r̄ is the reverse relation of r (i.e., b̄ = a,
ī = ii, s̄ = s, and v̄ = v), and Trans(r1, r2) is de-
fined in Table 1. As for the transitivity constraints,

3https://catalog.ldc.upenn.edu/
LDC2008T19, which is disjoint to the test set used
here. Please refer to (Ning et al., 2018a) for more analysis
on using this corpus to acquire prior knowledge that aids
temporal relation classification.

https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2008T19


if both yr1i,j and yr2j,k are 1, then the constraint re-
quires at least one of yr3i,k, r3 ∈ Trans(r1, r2) to be
1, which means the relation between i and k has
to be chosen from Trans(r1, r2), which is exactly
what Y1 is intended to do.

The rules in Y2 is written as

Y2 : y
r
j = I{rule(j)=r}, ∀j ∈ J (rule) (linguistic rules)

where rule(j) and J (rule) have been defined in
Eq. (2). Converting the T T constraints, i.e., Y0,
into constraints is as straightforward as Y2, so we
omit it due to limited space.

Last, converting the constraints WY defined in
Eq. (4) can be done as following:

WY : wc
i,j = wc̄

j,i ≤ ybi,j , ∀i, j ∈ E .

The equality part, wc
i,j = wc̄

j,i represents the sym-
metry constraint of causal relations; the inequality
part, wc

i,j ≤ ybi,j represents that if event i causes
event j, then i must be before j.

4 Experiments

In this section, we first show on TimeBank-Dense
(TB-Dense) (Cassidy et al., 2014), that the pro-
posed framework improves temporal relation iden-
tification. We then explain how our new dataset
with both temporal and causal relations was col-
lected, based on which the proposed method im-
proves for both relations.

4.1 Temporal Performance on TB-Dense

Multiple datasets with temporal annotations are
available thanks to the TempEval (TE) workshops
(Verhagen et al., 2007, 2010; UzZaman et al.,
2013). The dataset we used here to demonstrate
our improved temporal component was TB-Dense,
which was annotated on top of 36 documents
out of the classic TimeBank dataset (Pustejovsky
et al., 2003). The main purpose of TB-Dense was
to alleviate the known issue of sparse annotations
in the evaluation dataset provided with TE3 (Uz-
Zaman et al., 2013), as pointed out in many previ-
ous work (Chambers, 2013; Cassidy et al., 2014;
Chambers et al., 2014; Ning et al., 2017). Anno-
tators of TB-Dense were forced to look at each
pair of events or timexes within the same sen-
tence or contiguous sentences, so that much fewer
links were missed. Since causal link annotation
is not available on TB-Dense, we only show our
improvement in terms of temporal performance on

# System P R F1

Ablation Study
1 Baseline 39.1 56.8 46.3
2 +Transitivity† 42.9 54.9 48.2
3 +ET 44.3 54.8 49.0
4 +Rules 45.4 58.7 51.2
5 +Causal 45.8 60.5 52.1

Existing Systems‡

6 ClearTK 53.0 26.4 35.2
7 CAEVO 56.0 41.6 47.8
8 Ning et al. (2017) 47.1 53.3 50.0

†This is technically the same with Do et al. (2012), or Ning
et al. (2017) without its structured learning component.
‡We added gold T T to both gold and system prediction.
Without this, Systems 6-8 had F1=28.7, 45.7, and 48.5,
respectively, same with the reported values in Ning et al.
(2017).

Table 2: Ablation study of the proposed system in
terms of the standard temporal awareness metric.
The baseline system is to make inference locally for
each event pair without looking at the decisions from
others. The “+” signs on lines 2-5 refer to adding a new
source of information on top of its preceding system,
with which the inference has to be global and done via
ILP. All systems are significantly different to its pre-
ceding one with p<0.05 (McNemar’s test).

TB-Dense. The standard train/dev/test split of TB-
Dense was used and parameters were tuned to op-
timize the F1 performance on dev. Gold events
and time expressions were also used as in existing
systems.

The contributions of each proposed information
sources are analyzed in the ablation study shown
in Table 2, where we can see the F1 score was
improved step-by-step as new sources of informa-
tion were added. Recall that Y1 represents tran-
sitivity constraints, ET represents taking event-
timex pairs into consideration, and Y2 represents
rules from CAEVO (Chambers et al., 2014). Sys-
tem 1 is the baseline we are comparing to, which
is a local method predicting temporal relations
one at a time. System 2 only applied Y1 via
ILP on top of all EE pairs by removing the 2nd
term in Eq. (1); for fair comparison with System
1, we added the same ET predictions from Sys-
tem 1. System 3 incorporated ET into the ILP
and mainly contributed to an increase in precision
(from 42.9 to 44.3); we think that there could be
more gain if more time expressions existed in the
testset. With the help of additional high-precision
rules (Y2), the temporal performance can further
be improved, as shown by System 4. Finally, us-
ing the causal extraction obtained via (Do et al.,
2011) in the joint framework, the proposed method



achieved the best precision, recall, and F1 scores
in our ablation study (Systems 1-5). According
to the McNemar’s test (Everitt, 1992; Dietterich,
1998), all Systems 2-5 were significantly different
to its preceding system with p<0.05.

The second part of Table 2 compares sev-
eral state-of-the-art systems on the same test set.
ClearTK (Bethard, 2013) was the top perform-
ing system in TE3 in temporal relation extraction.
Since it was designed for TE3 (not TB-Dense), it
expectedly achieved a moderate recall on the test
set of TB-Dense. CAEVO (Chambers et al., 2014)
and Ning et al. (2017) were more recent methods
and achieved better scores on TB-Dense. Com-
pared with these state-of-the-art methods, the pro-
posed joint system (System 5) achieved the best
F1 score with a major improvement in recall. We
think the low precision compared to System 8 is
due to the lack of structured learning, and the
low precision compared to System 7 is propagated
from the baseline (System 1), which was tuned to
maximize its F1 score. However, the effectiveness
of the proposed information sources is already jus-
tified in Systems 1-5.

4.2 Joint Performance on Our New Dataset

4.2.1 Data Preparation

TB-Dense only has temporal relation annotations,
so in the evaluations above, we only evaluated
our temporal performance. One existing dataset
with both temporal and causal annotations avail-
able is the Causal-TimeBank dataset (Causal-TB)
(Mirza and Tonelli, 2014). However, Causal-TB is
sparse in temporal annotations and is even sparser
in causal annotations: In Table 3, we can see that
with four times more documents, Causal-TB still
has fewer temporal relations (denoted as T-Links
therein), compared to TB-Dense; as for causal re-
lations (C-Links), it has less than two causal re-
lations in each document on average. Note that
the T-Link sparsity of Causal-TB originates from
TimeBank, which is known to have missing links
(Cassidy et al., 2014; Ning et al., 2017). The C-
Link sparsity was a design choice of Causal-TB in
which C-Links were annotated based on only ex-
plicit causal markers (e.g., “A happened because
of B”).

Another dataset with parallel annotations is
CaTeRs (Mostafazadeh et al., 2016b), which
was primarily designed for the Story Cloze Test
(Mostafazadeh et al., 2016a) based on common

Doc Event T-Link C-Link
TB-Dense 36 1.6k 5.7k -

EventCausality 25 0.8k - 580
Causal-TB 183 6.8k 5.1k 318

New Dataset 25 1.3k 3.4k 172

Table 3: Statistics of our new dataset with both tem-
poral and causal relations annotated, compared with
existing datasets. T-Link: Temporal relation. C-Link:
Causal relation. The new dataset is much denser than
Causal-TB in both T-Links and C-Links.

sense stories. It is different to the newswire do-
main that we are working on. Therefore, we de-
cided to augment the EventCausality dataset pro-
vided in Do et al. (2011) with a modified version
of the dense temporal annotation scheme proposed
in Cassidy et al. (2014) and use this new dataset to
showcase the proposed joint approach.

The EventCausality dataset provides relatively
dense causal annotations on 25 newswire articles
collected from CNN in 2010. As shown in Table 3,
it has more than 20 C-Links annotated per doc-
ument on average (10 times denser than Causal-
TB). However, one issue is that its notion for
events is slightly different to that in the temporal
relation extraction regime. To construct parallel
annotations of both temporal and causal relations,
we preprocessed all the articles in EventCausal-
ity using ClearTK to extract events and then man-
ually removed some obvious errors in them. To
annotate temporal relations among these events,
we adopted the annotation scheme from TB-Dense
given its success in mitigating the issue of miss-
ing annotations with the following modifications.
First, we used a crowdsourcing platform, Crowd-
Flower, to collect temporal relation annotations.
For each decision of temporal relation, we asked
5 workers to annotate and chose the majority la-
bel as our final annotation. Second, we discov-
ered that comparisons involving ending points of
events tend to be ambiguous and suffer from low
inter-annotator agreement (IAA), so we asked the
annotators to label relations based on the starting
points of each event. This simplification does not
change the nature of temporal relation extraction
but leads to better annotation quality. For more
details about this data collection scheme, please
refer to (Ning et al., 2018b) for more details.

4.2.2 Results

Result on our new dataset jointly annotated with
both temporal and causal relations is shown in Ta-



Temporal Causal
P R F1 Accuracy

1. Temporal Only 67.2 72.3 69.7 -
2. Causal Only - - - 70.5
3. Joint System 68.6 73.8 71.1 77.3

Enforcing Gold Relations in Joint System
4. Gold Temporal 100 100 100 91.9
5. Gold Causal 69.3 74.4 71.8 100

Table 4: Comparison between the proposed method
and existing ones, in terms of both temporal and
causal performances. See Sec. 4.2.1 for description
of our new dataset. Per the McNemar’s test, the joint
system is significantly better than both baselines with
p<0.05. Lines 4-5 provide the best possible perfor-
mance the joint system could achieve if gold tempo-
ral/causal relations were given.

ble 4. We split the new dataset into 20 documents
for training and 5 documents for testing. In the
training phase, the training parameters were tuned
via 5-fold cross validation on the training set.

Table 4 demonstrates the improvement of the
joint framework over individual components. The
“temporal only” baseline is the improved tempo-
ral extraction system for which the joint inference
with causal links has NOT been applied. The
“causal only” baseline is to use sc(·) alone for
the prediction of each pair. That is, for a pair i,
if sc{i 7→ causes} > sc{i 7→ caused by}, we
then assign “causes” to pair i; otherwise, we as-
sign “caused by” to pair i. Note that the “causal
accuracy” column in Table 4 was evaluated only
on gold causal pairs.

In the proposed joint system, the temporal and
causal scores were added up for all event pairs.
The temporal performance got strictly better in
precision, recall, and F1, and the causal perfor-
mance also got improved by a large margin from
70.5% to 77.3%, indicating that temporal signals
and causal signals are helpful to each other. Ac-
cording to the McNemar’s test, both improve-
ments are significant with p<0.05.

The second part of Table 4 shows that if
gold relations were used, how well each compo-
nent would possibly perform. Technically, these
gold temporal/causal relations were enforced via
adding extra constraints to ILP in Eq. (3) (imagine
these gold relations as a special rule, and convert
them into constraints like what we did in Eq. (2)).
When using gold temporal relations, causal accu-
racy went up to 91.9%. That is, 91.9% of the
C-Links satisfied the assumption that the cause is
temporally before the effect. First, this number is

much higher than the 77.3% on line 3, so there
is still room for improvement. Second, it means
in this dataset, there were 8.1% of the C-Links in
which the cause is temporally after its effect. We
will discuss this seemingly counter-intuitive phe-
nomenon in the Discussion section. When gold
causal relations were used (line 5), the tempo-
ral performance was slightly better than line 3 in
terms of both precision and recall. The small dif-
ference means that the temporal performance on
line 3 was already very close to its best. Compared
with the first line, we can see that gold causal
relations led to approximately 2% improvement
in precision and recall in temporal performance,
which is a reasonable margin given the fact that
C-Links are often much sparser than T-Links in
practice.

Note that the temporal performance in Table 4
is consistently better than those in Table 2 because
of the higher IAA in the new dataset. However,
the improvement brought by joint reasoning with
causal relations is the same, which further con-
firms the capability of the proposed approach.

5 Discussion

We have consistently observed that on the TB-
Dense dataset, if automatically tuned to optimize
its F1 score, a system is very likely to have low
precisions and high recall (e.g., Table 2). We no-
tice that our system often predicts non-vague rela-
tions when the TB-Dense gold is vague, resulting
in lower precision. However, on our new dataset,
the same algorithm can achieve a more balanced
precision and recall. This is an interesting phe-
nomenon, possibly due to the annotation scheme
difference which needs further investigation.

The temporal improvements in both Table 2 and
Table 4 are relatively small (although statistically
significant). This is actually not surprising be-
cause C-Links are much fewer than T-Links in
newswires which focus more on the temporal de-
velopment of stories. As a result, many T-Links
are not accompanied with C-Links and the im-
provements are diluted. But for those event pairs
having both T-Links and C-Links, the proposed
joint framework is an important scheme to syn-
thesize both signals and improve both. The com-
parison between Line 5 and Line 3 in Table 4 is
a showcase of the effectiveness. We think that a
deeper reason for the improvement achieved via
a joint framework is that causality often encodes



Ex 4: Cause happened after effect.
The shares fell to a record low of ¥60 and (e8:finished)
at ¥67 before the market (e9:closed) for the New Year
holidays.
As she (e10:prepares) to (e11:host) her first show,
Crowley writes on what viewers should expect.

humans prior knowledge as global information
(e.g., “death” is caused by “explosion” rather than
causes “explosion”, regardless of the local con-
text), while temporality often focuses more on the
local context. From this standpoint, temporal in-
formation and causal information are complemen-
tary and helpful to each other.

When doing error analysis for the fourth line
of Table 4, we noticed some examples that break
the commonly accepted temporal precedence as-
sumption. It turns out that they are not annotation
mistakes: In Example 4, e8:finished is obviously
before e9:closed, but e9 is a cause of e8 since if
the market did not close, the shares would not fin-
ish. In the other sentence of Example 4, she pre-
pares before hosting her show, but e11:host is the
cause of e10:prepares since if not for hosting, no
preparation would be needed. In both cases, the
cause is temporally after the effect because people
are inclined to make projections for the future and
change their behaviors before the future comes.
The proposed system is currently unable to handle
these examples and we believe that a better defini-
tion of what can be considered as events is needed,
as part of further investigating how causality is ex-
pressed in natural language.

Finally, the constraints connecting causal rela-
tions to temporal relations are designed in this pa-
per as “if A is the cause of B, then A must be be-
fore B”. People have suggested other possibilities
that involve the includes and simultaneously rela-
tions. While these other relations are simply dif-
ferent interpretations of temporal precedence (and
can be easily incorporated in our framework), we
find that they rarely happen in our dataset.

6 Conclusion

We presented a novel joint framework, Temporal
and Causal Reasoning (TCR), using CCMs and
ILP to the extraction problem of temporal and
causal relations between events. To show the ben-
efit of TCR, we have developed a new dataset that
jointly annotates temporal and causal annotations,
and then exhibited that TCR can improve both
temporal and causal components. We hope that

this notable improvement can foster more interest
in jointly studying multiple aspects of events (e.g.,
event sequencing, coreference, parent-child rela-
tions) towards the goal of understanding events in
natural language.

Acknowledgements

We thank all the reviewers for providing insight-
ful comments and critiques. This research is sup-
ported in part by a grant from the Allen Insti-
tute for Artificial Intelligence (allenai.org); the
IBM-ILLINOIS Center for Cognitive Computing
Systems Research (C3SR) - a research collabo-
ration as part of the IBM AI Horizons Network;
by DARPA under agreement number FA8750-13-
2-0008; and by the Army Research Laboratory
(ARL) under agreement W911NF-09-2-0053 (the
ARL Network Science CTA).

The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental
purposes notwithstanding any copyright notation
thereon. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies or endorsements, either expressed or im-
plied, of DARPA, of the Army Research Labora-
tory or the U.S. Government. Any opinions, find-
ings, conclusions or recommendations are those of
the authors and do not necessarily reflect the view
of the ARL.

References
James F Allen. 1984. Towards a general theory of ac-

tion and time. Artificial intelligence 23(2):123–154.

Steven Bethard. 2013. ClearTK-TimeML: A minimal-
ist approach to TempEval 2013. In SemEval. vol-
ume 2, pages 10–14.

Steven Bethard and James H Martin. 2008. Learn-
ing semantic links from a corpus of parallel tem-
poral and causal relations. In Proceedings of the
46th Annual Meeting of the Association for Compu-
tational Linguistics on Human Language Technolo-
gies: Short Papers. Association for Computational
Linguistics, pages 177–180.

Steven Bethard, James H Martin, and Sara Klingen-
stein. 2007. Timelines from text: Identification of
syntactic temporal relations. In IEEE International
Conference on Semantic Computing (ICSC). pages
11–18.

Philip Bramsen, Pawan Deshpande, Yoong Keok Lee,
and Regina Barzilay. 2006. Inducing temporal



graphs. In Proceedings of the Conference on Em-
pirical Methods for Natural Language Processing
(EMNLP). pages 189–198.

Taylor Cassidy, Bill McDowell, Nathanel Chambers,
and Steven Bethard. 2014. An annotation frame-
work for dense event ordering. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics (ACL). pages 501–506.

Nathanael Chambers. 2013. NavyTime: Event and
time ordering from raw text. In SemEval. volume 2,
pages 73–77.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. Transactions of the
Association for Computational Linguistics 2:273–
284.

Nathanael Chambers and Dan Jurafsky. 2008. Jointly
combining implicit constraints improves temporal
ordering. In Proceedings of the Conference on Em-
pirical Methods for Natural Language Processing
(EMNLP).

Nathanael Chambers, Shan Wang, and Dan Juraf-
sky. 2007. Classifying temporal relations between
events. In Proceedings of the 45th Annual Meeting
of the ACL on Interactive Poster and Demonstration
Sessions. pages 173–176.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2012.
Structured learning with constrained conditional
models. Machine Learning 88(3):399–431.

Pascal Denis and Philippe Muller. 2011. Predicting
globally-coherent temporal structures from texts via
endpoint inference and graph decomposition. In
Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI). volume 22, page
1788.

Thomas G Dietterich. 1998. Approximate statistical
tests for comparing supervised classification learn-
ing algorithms. Neural computation 10(7):1895–
1923.

Quang Xuan Do, Yee Seng Chan, and Dan Roth. 2011.
Minimally supervised event causality identification.
In Proc. of the Conference on Empirical Methods
in Natural Language Processing (EMNLP). Edin-
burgh, Scotland.

Quang Xuan Do, Wei Lu, and Dan Roth. 2012. Joint
inference for event timeline construction. In Proc.
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Jesse Dunietz, Lori Levin, and Jaime Carbonell. 2017.
Automatically tagging constructions of causation
and their slot-fillers. Transactions of the Association
for Computational Linguistics 5:117–133.

Brian S Everitt. 1992. The analysis of contingency ta-
bles. CRC Press.

Yoav Freund and Robert E. Schapire. 1998. Large mar-
gin classification using the Perceptron algorithm. In
Proceedings of the Annual ACM Workshop on Com-
putational Learning Theory (COLT). pages 209–
217.
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Appendix

For the crowdsourcing task described in Sec. 4.2.1, we have a gold set annotated by experts, based on
which CrowdFlower has two types of quality controls: First, each crowdsourcer has to pass a qualifying
test, which is randomly picked from the gold set, with accuracy higher than 70% before the crowdsourcer
is allowed on a job; one is also tested on the gold set randomly throughout the process without notice
and once the accuracy drops below 70%, the crowdsourcer is kicked out automatically and his or her an-
notations are all considered tainted and not used. Finally kept are those annotations from crowdsourcers
who survive in the end (so called Trusted Contributors). In our case, trusted contributors had 87%
accuracy on our gold set, as reported by CrowdFlower.

Accuracy on the gold set reflects the crowdsourcers’ level of understanding of the job owner’s in-
tent. Another quality metric is the level of agreement among themselves. Since more than two anno-
tators are involved in crowdsourcing, Cohen’s Kappa cannot be applied to crowdsourced data. Instead,
CrowdFlower adopts a default IAA metric called WAWA (Worker Agreement with Aggregate). WAWA
indicates the average number of crowdsourcers’ responses agreed with the aggregate answer for each
question. For example, if N individual responses were obtained in total, and n of them were correct
when compared to the aggregate answer, then WAWA is simply n/N . The WAWA score of the pro-
posed new dataset was 78%.

In terms of the cost of the crowdsourcing job, we paid $0.01 for every individual response and the
total cost was approximately $500 (including overhead fees). The actual annotation time was about 15
hours for the entire dataset to be finished.


