
The Importance of Syntactic Parsing and

Inference in Semantic Role Labeling

Vasin Punyakanok∗

BBN Technologies

Dan Roth
Department of Computer Science
University of Illinois at Urbana-Champaign

Wen-tau Yih∗

Microsoft Research

We present a general framework for semantic role labeling. The framework combines a machine

learning technique with an integer linear programming based inference procedure, which incor-

porates linguistic and structural constraints into a global decision process. Within this frame-

work, we study the role of syntactic parsing information in semantic role labeling. We show

that full syntactic parsing information is, by far, most relevant in identifying the argument,

especially, in the very first stage—the pruning stage. Surprisingly, the quality of the pruning

stage cannot be solely determined based on its recall and precision. Instead, it depends on the

characteristics of the output candidates that determine the difficulty of the downstream prob-

lems. Motivated by this observation, we propose an effective and simple approach of combining

different semantic role labeling systems through joint inference, which significantly improves its

performance.

Our system has been evaluated in the CoNLL-2005 shared task on semantic role labeling,

and achieves the highest F1 score among 19 participants.

1. Introduction

Semantic parsing of sentences is believed to be an important task on the road to natural
language understanding, and has immediate applications in tasks such as information
extraction and question answering. Semantic Role Labeling (SRL) is a shallow seman-
tic parsing task, in which for each predicate in a sentence, the goal is to identify all
constituents that fill a semantic role, and to determine their roles (Agent, Patient, In-
strument, etc.) and their adjuncts (Locative, Temporal, Manner etc.).

The PropBank project (Kingsbury and Palmer, 2002; Palmer et al., 2005), which pro-
vides a large human-annotated corpus of verb predicates and their arguments, has en-
abled researchers to apply machine learning techniques to develop SRL systems (Gildea
and Palmer, 2002; Chen and Rambow, 2003; Gildea and Hockenmaier, 2003; Pradhan et
al., 2003; Surdeanu et al., 2003; Pradhan et al., 2004; Xue and Palmer, 2004; Koomen et
al., 2005). However, most systems heavily rely on the full syntactic parse trees. There-
fore, the overall performance of the system is largely determined by the quality of the
automatic syntactic parsers of which the state of the art (Collins, 1999; Charniak, 2001)
is still far from perfect.

Alternatively, shallow syntactic parsers (i.e., chunkers and clausers), although not
providing as much information as a full syntactic parser, have been shown to be more

∗ Most of the work was done when these authors were at the University of Illinois at Urbana-Champaign.

c© Association for Computational Linguistics

Computational Linguistics Volume 6, Number 9

robust in their specific tasks (Li and Roth, 2001). This raises the very natural and inter-
esting question of quantifying the importance of the full parsing information to seman-
tic parsing and whether it is possible to use only shallow syntactic information to build
an outstanding SRL system.

Although PropBank is built by adding semantic annotations to the constituents in
the Penn Treebank syntactic parse trees, it is not clear how important syntactic parsing
is for an SRL system. To the best of our knowledge, this problem was first addressed
by Gildea and Palmer (2002). In their attempt to use limited syntactic information, the
parser they used was very shallow—clauses were not available and only chunks were
used. Moreover, the pruning stage in (Gildea and Palmer, 2002) was very strict—only
chunks were considered as argument candidates. This results in over 60% of the actual
arguments being ignored. Consequently, the overall recall in their approach was very
low.

The use of only shallow parsing information in an SRL system has largely been
ignored until the recent CoNLL-2004 shared task competition (Carreras and Màrquez,
2004). In that competition, participants were restricted to using only shallow parsing
information, which included part-of-speech tags, chunks, and clauses (the definitions of
chunks and clauses can be found in (Tjong Kim Sang and Buchholz, 2000) and (Carreras
et al., 2002) respectively). As a result, the performance of the best shallow parsing based
system (Hacioglu et al., 2004) in the competition is about 10 points in F1 below the best
system that uses full parsing information (Koomen et al., 2005). However, this is not
the outcome of a true and fair quantitative comparison. The CoNLL-2004 shared task
used only a subset of the data for training which potentially makes the problem harder.
Furthermore, an SRL system is usually complicated and consists of several stages. It
was still unclear how much the syntactic information helps and precisely where it helps
the most.

The goal of this paper is threefold. First, we describe an architecture for an SRL
system that incorporates a level of global inference on top of the relatively common
processing step. This inference step allows us to incorporate structural and linguistic
constraints over the possible outcomes of the argument classifier in an easy way. The
inference procedure is formalized via an Integer Linear Programming framework and
is shown to yield state-of-the-art results on this task. Second, we provide a fair compar-
ison between SRL systems that use full parse trees and systems that only use shallow
syntactic information. As with our full syntactic parse based SRL system (Koomen et
al., 2005), our shallow parsing based SRL system is based on the system that achieves
very competitive results and was one of the top systems in the CoNLL-2004 shared task
competition (Carreras and Màrquez, 2004). This comparison brings forward a careful
analysis of the significance of the full parsing information in the SRL task, and provides
an understanding of the stages in the process in which this information is making the
most difference. Finally, to relieve the dependency of the SRL system on the quality of
automatic parsers, we suggest a way to improve semantic role labeling significantly by
developing a global inference algorithm, which is used to combine several SRL systems
based on different state-of-art full parsers. The combination process is done through
a joint inference stage, which takes the output of each individual system as input and
generates the best predictions, subject to various structural and linguistic constraints.

The underlying system architecture can largely affect the outcome of our study.
Therefore, to make the conclusions of our experimental study as applicable as possible
to general SRL systems, the architecture of our SRL system follows the most widely
used two-step design. In the first step, the system is trained to identify argument candi-
dates for a given verb predicate. In the second step, the system classifies the argument
candidates into their types. In addition, it is also common to use a simple procedure to

2

prune obvious non-candidates before the first step, and to use post-processing inference
to fix inconsistent predictions after the second step. These two additional steps are also
employed by our system.

Our study of shallow and full syntactic information based SRL systems was done
by comparing their impact at each stage of the process. Specifically, our goal is to in-
vestigate at what stage the full parsing based information is most helpful relative to a
shallow parsing based system. Therefore, our experiments were designed so that the
compared systems are as similar as possible, and the addition of the full parse tree
based features is the only difference. The most interesting result of this comparison is
that while each step of the shallow information based system exhibits very good perfor-
mance, the overall performance is significantly inferior to the system that uses the full
information. Our explanation is that chaining multiple processing stages to produce the
final SRL analysis is crucial to understanding this analysis. Specifically, the quality of
the information passed from one stage to the other is a decisive issue, and it is not nec-
essarily judged simply by considering the F-measure. We conclude that, for the system
architecture used in our study, the significance of the full parsing information comes
into play mostly at the pruning stage, where the candidates to be processed later are de-
termined. In addition, we produce a state-of-the-art SRL system by combining different
SRL systems based on two automatic full parsers (Collins, 1999; Charniak, 2001), which
achieves the best result in the CoNLL-2005 shared task (Carreras and Màrquez, 2005).

The rest of this paper is organized as follows. Section 2 introduces the task of se-
mantic role labeling in more detail. Section 3 describes the 4-stage architecture of our
SRL system, which includes pruning, argument identification, argument classification,
and inference. The features used for building the classifiers and the learning algorithm
applied are also explained there. Section 4 explains why and where the full parsing in-
formation contributes to SRL by conducting a series of carefully designed experiments.
Inspired by the result, we examine the effect of inference in a single system and propose
an approach that combines different SRL systems based on joint inference in Section 5.
Section 6 presents the empirical evaluation of our system in the CoNLL-2005 shared
task competition. After that, we discuss the related work in Section 7 and conclude this
paper in Section 8.

2. The Semantic Role Labeling (SRL) Task

The goal of the semantic role labeling task is to discover the predicate–argument struc-
ture of each predicate in a given input sentence. In this work, we focus only on the
verb predicate. For example, given a sentence I left my pearls to my daughter-in-law in my
will, the goal is to identify different arguments of the verb predicate left and produce the
output:

[A0 I] [V left] [A1 my pearls] [A2 to my daughter-in-law] [AM-LOC in my will].

Here A0 represents the leaver, A1 represents the thing left, A2 represents the benefi-
ciary, AM-LOC is an adjunct indicating the location of the action, and V determines
the boundaries of the predicate which is important when a predicate contains many
words, e.g., a phrasal verb. In addition, each argument can be mapped to a constituent
in its corresponding syntactic full parse tree.

Following the definition of the PropBank and CoNLL-2004&2005 shared tasks, there
are six different types of arguments labeled as A0-A5 and AA. These labels have differ-
ent semantics for each verb and each of its senses as specified in the PropBank Frame
files. In addition, there are also 13 types of adjuncts labeled as AM-adj where adj speci-
fies the adjunct type. For simplicity in our presentation, we will also call these adjuncts

3

Computational Linguistics Volume 6, Number 9

as arguments. In some cases, an argument may span over different parts of a sentence;
the label C-arg is then used to specify the continuity of the arguments, as shown in the
example below.

[A1 The pearls] , [A0 I] [V said] , [C-A1 were left to my daughter-in-law].

In some other cases, an argument might be a relative pronoun that in fact refers to the
actual agent outside the clause. In this case, the actual agent is labeled as the appropriate
argument type, arg, while the relative pronoun is instead labeled as R-arg. For example,

[A1 The pearls] [R-A1 which] [A0 I] [V left] [A2 to my daughter-in-law] are fake.

Since each verb may have different senses producing different semantic roles for the
same labels, the task of discovering the complete semantic roles should involve not only
identifying these labels, but also the underlying sense for a given verb. However, as in
all current SRL work, the task in this paper focuses only on identifying the boundaries
and the labels of the arguments, and ignores the verb sense disambiguation problem.

The distribution of these argument labels is fairly unbalanced. In the official release
of PropBank I, core arguments (A0–A5 and AA) occupy 71.26% of the arguments, where
the largest parts are A0 (25.39%) and A1 (35.19%). The rest mostly consists of adjunct
arguments (24.90%). The continued (C-arg) and referential (R-arg) arguments are rela-
tively few, occupying 1.22% and 2.63% respectively. For more information on PropBank
and the semantic role labeling task, readers can refer to (Kingsbury and Palmer, 2002)
and (Carreras and Màrquez, 2004; Carreras and Màrquez, 2005).

Note that the semantic arguments of the same verb do not overlap. We define over-
lapping arguments to be those that share some of their parts. An argument is con-
sidered embedded in another argument if the second argument completely covers the
first one. Arguments are exclusively overlapping if they are overlapping but are not
embedded.

3. SRL System Architecture

Adhering to the most common architecture for SRL systems, our SRL system consists of
four stages: pruning, argument identification, argument classification, and inference.
In particular, the goal of pruning and argument identification is to identify argument
candidates for a given verb predicate. In the first three stages, however, decisions are
independently made for each argument, and information across arguments is not incor-
porated. The final inference stage allows us to use this type of information along with
linguistic and structural constraints in order to make consistent global predictions.

This system architecture remains unchanged when used for studying the impor-
tance of syntactic parsing in SRL, although different information and features are used.
Throughout this article, when the full parsing information is available, we assume that
the system is presented with the full phrase-structure parse tree as defined in Penn tree-
bank (Marcus et al., 1993) but without trace and functional tags. On the other hand,
when only the shallow parsing information is available, the full parse tree is reduced
to only the chunks and the clause constituents.

A chunk is a phrase containing syntactically related words. Roughly speaking,
chunks are obtained by projecting the full parse tree onto a flat tree; hence, they are
closely related to the base phrases. Chunks were not directly defined as part of the
standard annotation of the treebank, but, rather, their definition was introduced in the
CoNLL-2000 shared task on text chunking (Sang and Buchholz, 2000) which aimed to
discover such phrases in order to facilitate full parsing. A clause, on the other hand,

4

His duties will be assumed

assume

Predicate-Argument Structure:

AM-MODA1 V A0

by John Smith who has been elected deputy chairman

PRP$

NP

S

NNS MD

VP

VB

VP

VBN

VP

IN

PP

NNP

NP

NP

NNP WP

WHNP

S

VBZ

VP

VBN

VP

VBN

VP

NN

NP

NN

Chunks:

NP VP PP NP NP VP NP

Clauses:

elect

A1 R-A1 V A2

Figure 1
An example of a parse tree and its verb-argument structure

is the clausal constituent as defined by treebank standard. An example of chunks and
clauses is shown in Figure 1.

3.1 Pruning
When the full parse tree of a sentence is available, only the constituents in the parse tree
are considered as argument candidates. Our system exploits the heuristic rules intro-
duced by Xue and Palmer (2004) to filter out simple constituents that are very unlikely
to be arguments. This pruning method is a recursive process starting from the target
verb. It first returns the siblings of the verb as candidates; then it moves to the parent
of the verb, and collects the siblings again. The process goes on until it reaches the root.
In addition, if a constituent is a PP (propositional phrase), its children are also collected.
For example in Figure 1, if the predicate (target verb) is assume, the pruning heuristic
will output: [PP by John Smith who has been elected deputy chairman], [NP John Smith
who has been elected deputy chairman], [VB be], [MD will], and [NP His duties].

5

Computational Linguistics Volume 6, Number 9

3.2 Argument Identification
The argument identification stage utilizes binary classification to identify whether a
candidate is an argument or not. When full parsing is available, we train and apply
the binary classifiers on the constituents supplied by the pruning stage. When only
shallow parsing is available, the system does not have a pruning stage, and also does
not have constituents to begin with. Therefore, conceptually, the system has to consider
all possible subsequences (i.e., consecutive words) in a sentence as potential argument
candidates. We avoid this by using a learning scheme that utilizes two classifiers, one to
predict the beginnings of possible arguments, and the other the ends. The predictions
are combined to form argument candidates. However, we can employ a simple heuristic
to filter out some candidates that are obviously not arguments. The final predication
includes those that do not violate the following constraints.

1. Arguments cannot overlap with the predicate.

2. If a predicate is outside a clause, its arguments cannot be embedded in that
clause.

3. Arguments cannot exclusively overlap with the clauses.

The first constraint comes from the definition of this task that the predicate simply
cannot take itself or any constituents that contain itself as arguments. The other two
constraints are due to the fact that a clause can be treated as a unit that has its own
verb–argument structure. If a verb predicate is outside a clause, then its argument can
only be the whole clause, but may not be embedded in or exclusively overlap with the
clause.

For the argument identification classifier, the features used in the full parsing and
the shallow parsing settings are all binary features, which are described below.

3.2.1 Features used when full parsing is available Most of the features used in our
system are common features for the SRL task. The creation of Propbank was inspired
by the works of Levin (1993) and Levin and Hovav (1996), which discussed the relation
between syntactic and semantic information. Following this philosophy, the features
aim to indicate the properties of the predicate, the candidate argument, and the rela-
tionship between them through the available syntactic information. We explain below
these features. For further discussion of these features, we refer the readers to the article
by Gildea and Jurafsky (2002) which introduced these features.

• Predicate and POS tag of predicate features indicate the lemma of the predicate
verb and its POS tag.

• Voice feature indicates passive/active voice of the predicate.

• Phrase type feature provides the phrase type of the argument candidate, which
is the tag of the corresponding constituent in the parse tree.

• Head word and POS tag of the head word feature provides the head word and
its POS tag of the constituent. We use the rules introduced by Collins (1999) to
extract this feature.

• Position feature describes if the constituent is before or after the predicate, rel-
ative to the position in the sentence.

• Path records the tags of parse tree nodes in the traversal path from the con-
stituent to the predicate. For example, in Figure 1, if the predicate is assume
and the constituent is [S who has been elected deputy chairman], the path is
S↑NP↑PP↑VP↓VBN, where ↑ and ↓ indicate the traverse direction in the path.

6

His duties will be assumed by John Smith who has been elected deputy chairman

PRP$

S

NNS MD VB VBN IN NNP

NPNPPPVPNP

NNP WP

S-NP

VBZ

VP

VBN VBN NN

NP

NN

Figure 2
The pseudo-parse tree generated from the parse tree in Figure 1

• Subcategorization feature describes the phrase structure around the predicate’s
parent. It records the immediate structure in the parse tree that expands to its
parent. As an example, if the predicate is elect in Figure 1, its subcategoriza-
tion is VP→(VBN)-NP while the subcategorization of the predicate assume is
VP→(VBN)-PP. Parentheses indicate the position of the predicate.

Generally speaking, we consider only the arguments that correspond to some con-
stituents in parse trees. However, in some cases, we need to consider an argument that
does not exactly correspond to a constituent, e.g. in our experiment in Section 4.2 where
the gold standard boundaries are used with the parse trees generated by an automatic
parse. In such cases, if the information on the constituent, such as phrase type, needs to
be extracted, the deepest constituent that covers the whole argument will be used. For
example, in Figure 1, the phrase type for “by John Smith” is PP, and its path feature to
the predicate assume is PP↑VP↓VBN.

We also use the following additional features. These features have been shown to
be useful for the systems by exploiting other information in the absence of the full parse
tree information (Punyakanok et al., 2004), and, hence, can be helpful in conjunction
with the features extracted from a full parse tree. They also aim to encode the properties
of the predicate, the constituent to be classified, and their relationship in the sentence.

• Context words and POS tags of the context words: the feature includes the
two words before and after the argument, and their POS tags

• Verb class: the feature is the Verbnet (Kipper et al., 2002) class of the predicate
as described in PropBank Frames. Note that a verb may inhabit many classes
and we collect all of these classes as features, regardless of the context specific
sense which we do not attempt to resolve.

• Lengths of the target constituent, in the numbers of words and chunks sepa-
rately.

• Chunk tells if the target constituent is, embeds, exclusively overlaps, or is embedded
in a chunk with its type. For instance, if the target constituents in Figure 1 are
[NP His duties], [PP by John Smith] and [VBN elected], then their chunk features
are is-NP, embed-PP & embed-NP and embedded-in-VP, respectively.

• Chunk pattern encodes the sequence of chunks from the current constituent to
the predicate. For example, in Figure 1 the chunk sequence from [NP His duties]
to the predicate elect is VP-PP-NP-NP-VP.

• Chunk pattern length: the feature counts the number of chunks in the argu-
ment.

7

Computational Linguistics Volume 6, Number 9

• Clause relative position encodes the position of the target constituent relative
to the predicate in the pseudo-parse tree constructed only from clause con-
stituents, chunks and part-of-speech tags. In addition, we label the clause with
the type of chunk that immediately precedes the clause. This is a simple rule
to distinguish the type of the clause based on the intuition that a subordinate
clause often modifies the part of the sentence immediately before it. Figure 2
shows the pseudo-parse tree of the parse tree in Figure 1. By disregarding the
chunks, there are four configurations—target constituent and predicate are siblings,
target constituent’s parent is an ancestor of predicate, predicate’s parent is an ancestor
of target word, or otherwise. This feature can be viewed as a generalization of the
Path feature described earlier.

• Clause coverage describes how much of the local clause from the predicate is
covered by the target argument.

• NEG: the feature is active if the target verb chunk has not or n’t.

• MOD: the feature is active when there is a modal verb in the verb chunk. The
rules of the NEG and MOD features are used in a baseline SRL system devel-
oped by Erik Tjong Kim Sang (Carreras and Màrquez, 2004).

In addition, we also use the conjunctions of features which conjoin any two features
into a new feature. For example, the conjunction of the predicate and the path features
for the predicate assume and the constituent [S who has been elected deputy chairman]
in Figure 1 is (S↑NP↑PP↑VP↓VBN, assume).

3.2.2 Features used when only shallow parsing is available Most features used here
are similar to those used by the system with the full parsing information. However, for
features that need full parse trees in their extraction procedures, we either try to mimic
them with some heuristic rules or discard them. The details of these features are as
follows.

• Phrase type uses a simple heuristic to identify the type of the candidate argu-
ment as VP, PP, or NP.

• Head word and POS tag of the head word are the rightmost word for NP, and
the leftmost word for VP and PP.

• Shallow-Path records the traversal path in the pseudo-parse tree. This aims to
approximate the Path features extracted from the full parse tree.

• Shallow-Subcategorization feature describes the chunk and clause structure
around the predicate’s parent in the pseudo-parse tree. This aims to approxi-
mate the Subcategorization feature extracted from the full parse tree.

3.3 Argument Classification
This stage assigns labels to the argument candidates identified in the previous stage.
A multi-class classifier is trained to predict the types of the argument candidates. In
addition, to reduce the excessive candidates mistakenly output by the previous stage,
the classifier can also label an argument as null (meaning not an argument) to discard it.

The features used here are the same as those used in the argument identification
stage. However, when full parsing is available, an additional feature introduced by Xue
and Palmer (2004) is used.

• Syntactic frame describes the sequential pattern of the noun phrases and the
predicate in the sentence which aims to complement the Path and Subcatego-
rization features.

8

The learning algorithm used for training the argument classifier and argument identi-
fier is a variation of the Winnow update rule incorporated in SNoW (Roth, 1998; Carlson
et al., 1999), a multi-class classifier that is tailored for large scale learning tasks. SNoW
learns a sparse network of linear functions, in which the targets (argument border pre-
dictions or argument type predictions, in this case) are represented as linear functions
over a common feature space; multi-class decisions are done via a winner-take-all mech-
anism. It improves the basic Winnow multiplicative update rule with a regularization
term, which has the effect of separating the data with a large margin separator (Grove
and Roth, 2001; Dagan et al., 1997; Zhang et al., 2002) and voted (averaged) weight
vector (Freund and Schapire, 1999; Golding and Roth, 1999).

The softmax function (Bishop, 1995) is used to convert raw activation to conditional
probabilities. If there are n classes and the raw activation of class i is acti, the posterior
estimation for class i is

Prob(i) =
eacti

∑
1≤j≤n eactj

.

Note that in training this classifier, unless specified otherwise, the argument can-
didates used to generate the training examples are obtained from the output of the
argument identifier, not directly from the gold standard corpus. In this case, we au-
tomatically obtain the necessary examples to learn for class null.

3.4 Inference
In the previous stages, decisions were always made for each argument independently,
ignoring the global information across arguments in the final output. The purpose of the
inference stage is to incorporate such information, including both linguistic and struc-
tural knowledge, such as “arguments do not overlap” or “each verb takes at most one argu-
ment of each type.” This knowledge is useful to resolve any inconsistencies of argument
classification in order to generate final legitimate predictions. We design an inference
procedure that is formalized as a constrained optimization problem, represented as an
integer linear program (Roth and Yih, 2004). It takes as input the argument classifiers’
confidence scores for each type of argument, along with a list of constraints. The output
is the optimal solution that maximizes the linear sum of the confidence scores, subject
to the constraints that encode the domain knowledge.

The inference stage can be naturally extended to combine the output of several dif-
ferent SRL systems, as we will show in Section 5. In this subsection we first introduce
the constraints and formalize the inference problem for the semantic role labeling task.
We then demonstrate how we apply integer linear programming (ILP) to generate the
global label assignment.

3.4.1 Constraints over Argument Labeling Formally, the argument classifiers attempt
to assign labels to a set of arguments, S1:M , indexed from 1 to M . Each argument Si

can take any label from a set of argument labels, P , and the indexed set of arguments
can take a set of labels, c1:M ∈ PM . If we assume that the classifiers return a score
score(Si = ci) that corresponds to the likelihood of argument Si being labeled ci then,
given a sentence, the unaltered inference task is solved by maximizing the overall score
of the arguments,

ĉ1:M = argmax
c1:M∈PM

score(S1:M = c1:M) = argmax
c1:M∈PM

M∑

i=1

score(Si = ci). (1)

In the presence of global constraints derived from linguistic information and struc-
tural considerations, our system seeks to output a legitimate labeling that maximizes this

9

Computational Linguistics Volume 6, Number 9

score. Specifically, it can be thought of as if the solution space is limited through the use
of a filter function, F , which eliminates many argument labelings from consideration.
Here, we are concerned with global constraints as well as constraints on the arguments.
Therefore, the final labeling becomes

ĉ1:M = argmax
c1:M∈F(PM)

M∑

i=1

score(Si = ci). (2)

When the confidence scores correspond to the conditional probabilities estimated by the
argument classifiers, the value of the objective function represents the expected number
of correct argument predictions. Hence, the solution of the above equation is the one
that maximizes this expected value among all legitimate outputs.

The filter function used considers the following constraints: 1

1. Arguments cannot overlap with the predicate.

2. Arguments cannot exclusively overlap with the clauses.

3. If a predicate is outside a clause, its arguments cannot be embedded in that
clause.

4. No overlapping or embedding arguments.
This constraint holds because semantic arguments are labeled on non-embedding
constituents in the syntactic parse tree. In addition, as defined in the CoNLL-
2004&2005 shared tasks, the legitimate output of an SRL system must satisfy
this constraint.

5. No duplicate argument classes for core arguments, such as A0–A5 and AA.
The only exception is when there is a conjunction in the sentences. For example,

[A0 I] [V left] [A1 my pearls] [A2 to my daughter] and [A1 my gold] [A2 to my son].

Despite this exception, we treat it as a hard constraint since it almost always
holds.

6. If there is an R-arg argument, then there has to be an arg argument. That is,
if an argument is a reference to some other argument arg, then this referenced
argument must exist in the sentence. This constraint is directly derived from
the definition of R-arg arguments.

7. If there is a C-arg argument, then there has to be an arg argument; in addition,
the C-arg argument must occur after arg. This is stricter than the previous rule
because the order of appearance also needs to be considered. Similarly, this
constraint is directly derived from the definition of C-arg arguments.

8. Given the predicate, some argument classes are illegal (e.g. predicate stalk can
take only A0 or A1). This information can be found in PropBank Frames.
This constraint comes from the fact that different predicates take different types
and numbers of arguments. By checking the PropBank frame file of the target
verb, we can exclude some core argument labels.

Note that constraints 1, 2 and 3 are actually implemented in the argument identifi-
cation stage (see Sec. 3.2). In addition, they need to be explicitly enforced only when the

1There are other constraints such as “exactly one V argument per class”, or “V–A1–C-V pattern” as intro-
duced by Punyakanok et al. (2004). However, we did not find them particularly helpful in our experiments.
Therefore, we exclude those constraints in the presentation here.

10

full parsing information is not available because the output of the pruning heuristics
never violates these constraints.

The optimization problem (Eq. 2) can be solved using an ILP solver by reformulat-
ing the constraints as linear (in)equalities over the indicator variables that represent the
truth value of statements of the form [argument i takes label j], as described in detail
next.

3.4.2 Using Integer Linear Programming As discussed previously, a collection of po-
tential arguments is not necessarily a valid semantic labeling since it may not satisfy all
of the constraints. We enforce a legitimate solution using the following inference algo-
rithm. In our context, inference is the process of finding the best (according to Eq. 1)
valid semantic labels that satisfy all of the specified constraints. We take a similar ap-
proach to the one previously used for entity/relation recognition (Roth and Yih, 2004),
and model this inference procedure as solving an ILP problem.

An integer linear program is a linear program with integral variables. That is, the
cost function and the (in)equality constraints are all linear in terms of the variables. The
only difference in an integer linear program is that the variables can only take integers
as their values. In our inference problem, the variables are in fact binary. A general
binary integer linear programming problem can be stated as follows.

Given a cost vector p ∈ ℜd, a set of variables u = (u1, . . . , ud) and cost matrices
C1 ∈ ℜc1 × ℜd,C2 ∈ ℜc2 × ℜd , where c1 and c2 are the numbers of inequality and
equality constraints and d is the number of binary variables. The ILP solution u∗ is the
vector that maximizes the cost function,

u∗ = argmax
u∈{0,1}d

p · u,

subject to C1u ≥ b1, and C2u = b2,

where b1,b2 ∈ ℜd, and for all u ∈ u, u ∈ {0, 1}.
To solve the problem of Eq. 2 in this setting, we first reformulate the original cost

function
∑M

i=1 score(Si = ci) as a linear function over several binary variables, and then
represent the filter function F using linear inequalities and equalities.

We set up a bijection from the semantic labeling to the variable set u. This is done
by setting u to be a set of indicator variables that correspond to the labels assigned
to arguments. Specifically, let uic = [Si = c] be the indicator variable that represents
whether or not the argument type c is assigned to Si, and let pic = score(Si = c).
Equation 1 can then be written as an ILP cost function as

argmax
u∈{0,1}|u|

M∑

i=1

∑

c∈P

picuic,

subject to ∑

c∈P

uic = 1 ∀i,

which means that each argument can take only one type. Note that this new constraint
comes from the variable transformation, and is not one of the constraints used in the
filter function F .

Of the constraints listed earlier, constraints 1 through 3 can be evaluated on a per-
argument basis and, for the sake of efficiency, arguments that violate these constraints
are eliminated even before being given to the argument classifier. Next, we show how to
transform the constraints in the filter function into the form of linear (in)equalities over
u and use them in this ILP setting. For a more complete example of this ILP formulation,
please see Appendix A.

11

Computational Linguistics Volume 6, Number 9

Constraint 4: No overlapping or embedding If arguments Sj1 , . . . , Sjk cover the same word
in a sentence, then this constraint restricts that at most one of the arguments is assigned
to an argument type. In other words, at least k − 1 arguments will be the special class
null. If the special class null is represented by the symbol φ, then for every set of such
arguments, the following linear equality represents this constraint.

k∑

i=1

ujiφ ≥ k − 1

Constraint 5: No duplicate argument classes Within the same clause, several types of argu-
ments cannot appear more than once. For example, a predicate can only take one A0.
This constraint can be represented using the following inequality.

M∑

i=1

uiA0 ≤ 1

Constraint 6: R-arg arguments Suppose the referenced argument type is A0 and the ref-
erential type is R-A0. The linear inequalities that represent this constraint are:

∀m ∈ {1, . . . ,M} :
M∑

i=1

uiA0 ≥ umR-A0

If there are γ referential types, then the total number of inequalities needed is γM .

Constraint 7: C-arg arguments This constraint is similar to the reference argument con-
straints. The difference is that the continued argument arg has to occur before C-arg.
Assume that the argument pair is A0 and C-A0, and arguments are sorted by their be-
ginning positions, i.e. if i < k, the position of the beginning of Sjk is not before that of
the beginning of Sji . The linear inequalities that represent this constraint are:

∀m ∈ {2, . . . ,M} :
m−1∑

i=1

ujiA0 ≥ ujmC-A0

Constraint 8: Illegal argument types Given a specific verb, some argument types should
never occur. For example, most verbs do not have arguments A5. This constraint is
represented by summing all the corresponding indicator variables to be 0.

M∑

i=1

uiA5 = 0

Using ILP to solve this inference problem enjoys several advantages. Linear con-
straints are very general, and are able to represent any Boolean constraint (Guéret et
al., 2002). Table 1 summarizes the transformations of common constraints (most are
Boolean), which can be used for constructing complicated rules.

Previous approaches usually rely on dynamic programming to resolve non overlap-
ping/embedding constraints (i.e., Constraint 4) when the constraint structure is sequen-
tial. However, they are not able to handle more expressive constraints such as those
that take long-distance dependencies and counting dependencies into account (Roth
and Yih, 2005). The ILP approach, on the other hand, is flexible enough to handle more
expressive and general constraints. Although solving an ILP problem is NP-hard in

12

Table 1
Rules of mapping constraints to linear (in)equalities for Boolean variables, revised from (Guéret
et al., 2002)

Original constraint Linear form
exactly k of x1, x2, · · · , xn x1 + x2 + · · · + xn = k
at most k of x1, x2, · · · , xn x1 + x2 + · · · + xn ≤ k
at least k of x1, x2, · · · , xn x1 + x2 + · · · + xn ≥ k
a → b a ≤ b
a = b̄ a = 1 − b
a → b̄ a + b ≤ 1
ā → b a + b ≥ 1
a ↔ b a = b
a → b ∧ c a ≤ b and a ≤ c
a → b ∨ c a ≤ b + c
b ∧ c → a a ≥ b + c − 1
b ∨ c → a a ≥ (b + c)/2
a → at least k of x1, x2, · · · , xn a ≤ (x1 + x2 + · · · + xn)/k
At least k of x1, x2, · · · , xn → a a ≥ (x1 + x2 + · · · + xn − (k − 1))/(n − (k − 1))

the worst case, with the help of today’s numerical packages, this problem can usually
be solved very fast in practice. For instance, in our experiments it only took about 10
minutes to solve the inference problem for 4305 sentences, using Xpress-MP (2004) run-
ning on a Pentium-III 800 MHz machine. Note that ordinary search methods (e.g., beam
search) are not necessarily faster than solving an ILP problem and do not guarantee the
optimal solution.

4. The Importance of Syntactic Parsing

We experimentally study the significance of syntactic parsing by observing the effects of
using full parsing and shallow parsing information at each stage of an SRL system. We
first describe, in Section 4.1, how we prepare the data. The comparison of full parsing
and shallow parsing on the first three stages of the process is presented in the reversed
order (Sections 4.2, 4.3, 4.4). Note that in the following sections, in addition to the per-
formance comparison at various stages, we present also the overall system performance
for the different scenarios. In all cases, the overall system performance is derived after
the inference stage.

4.1 Experimental Setting
We use PropBank sections 02 through 21 as training data, section 23 as testing, and
section 24 as a validation set when necessary. In order to apply the standard CoNLL
shared task evaluation script, our system conforms to both the input and output format
defined in the shared task.

The goal of the experiments in this section is to understand the effective contribu-
tion of the full parsing information versus the shallow parsing information (i.e., using
only the part-of-speech tags, chunks, and clauses). In addition, we also compare per-
formance when using the correct (gold standard) data versus using automatic parse
data. The performance is measured in terms of precision, recall, and the F1 measure.
Note that all the numbers reported here do not take into account the V arguments as

13

Computational Linguistics Volume 6, Number 9

it is quite trivial to predict V and, hence, gives overoptimistic overall performance if
included. When doing the comparison, we also compute the 95% confidence interval of
F1 using the bootstrap resampling method (Noreen, 1989), and the difference is consid-
ered significant if the compared F1 lies outside this interval. The automatic full parse
trees are derived using Charniak’s parser (Charniak, 2001) (version 0.4). In automatic
shallow parsing, the information is generated by different state-of-the-art components,
including a POS tagger (Even-Zohar and Roth, 2001), a chunker (Punyakanok and Roth,
2001), and a clauser (Carreras and Màrquez, 2003).

4.2 Argument Classification
To evaluate the performance gap between full parsing and shallow parsing in argument
classification, we assume the argument boundaries are known, and only train classifiers
to classify the labels of these arguments. In this stage, the only difference between the
uses of the full parsing and the shallow parsing information is the construction of phrase
type, head word, POS tag of the head word, path, subcategorization, and syntactic frame fea-
tures. As described in Section 3.2.2, most of these features can be approximated using
chunks and clauses with the exception of the syntactic frame feature. It is unclear how
this feature can be mimicked since it relies on the internal structure of a full parse tree.
Therefore, it does not have a corresponding feature in the shallow parsing case.

Table 2 reports the experimental results of argument classification when argument
boundaries are known. In this case, because the argument classifier of our SRL system
does not over-predict or miss any arguments, we do not need to train with a null class,
and we can simply measure the performance using accuracy instead of F1. The train-
ing examples include 90,352 propositions with a total of 332,381 arguments. The test
data contain 5,246 propositions and 19,511 arguments. As shown in the table, although
the full parsing features are more helpful than the shallow parsing features, the perfor-
mance gap is quite small (0.75% on Gold standard data and 0.61% with the automatic
parsers).

Table 2
The accuracy of argument classification when argument boundaries are known

Full Parsing Shallow Parsing
Gold 91.50 ± 0.48 90.75 ± 0.45
Auto 90.32 ± 0.48 89.71 ± 0.50

The rather small difference in the performance between argument classifiers using
the full parsing and the shallow parsing information almost disappears when their out-
put is processed by the inference stage. Table 3 shows the final results in recall, precision
and F1, when the argument boundaries are known. In all cases, the differences in F1 be-
tween the full parsing based and the shallow parsing based systems are not statistically
significant.

Conclusion: When the argument boundaries are known, the performance of the full
parsing based SRL system is about the same as the shallow parsing based SRL system.

4.3 Argument Identification
Argument identification is an important stage that effectively reduces the number of
argument candidates after the pruning stage. Given an argument candidate, an argu-
ment identifier is a binary classifier that decides whether or not the candidate should

14

Table 3
The overall system performance when argument boundaries are known

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 91.58 91.90 91.74 ± 0.51 91.14 91.48 91.31 ± 0.51
Auto 90.71 91.14 90.93 ± 0.53 90.50 90.88 90.69 ± 0.53

be considered as an argument. To evaluate the influence of the full parsing information
in this stage, the candidate list used here is the outputs of the pruning heuristic applied
on the gold standard parse trees. The heuristic results in a total number of 323,155 pos-
itive and 686,887 negative examples in the training set, and 18,988 positive and 39,585
negative examples in the test set.

Similar to the argument classification stage, the only difference between the full
parsing and the shallow parsing based systems is in the construction of some features.
Specifically, phrase type, head word, POS tag of the head word, path, and subcategorization
features are approximated using chunks and clauses when the binary classifier is trained
using the shallow parsing information.

Table 4 reports the performance of the argument identifier on the test set using the
direct predictions of the trained binary classifier. The recall and precision of the full
parsing based system are around 2 to 3 percents higher than the shallow parsing based
system on the gold standard data. As a result, the F1 score is 2.5 percent higher. The per-
formance on automatic parse data is unsurprisingly lower but the difference between
the full parsing and the shallow parsing based systems is as observed before. In terms
of filtering efficiency, around 25% of the examples are predicted as positive. In other
words, both argument identifiers filter out around 75% of the argument candidates af-
ter pruning.

Table 4
The performance of argument identification after pruning (based on the gold standard full parse
trees)

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 96.53 93.57 95.03 ± 0.32 93.66 91.72 92.68 ± 0.38
Auto 94.68 90.60 92.59 ± 0.39 92.31 88.36 90.29 ± 0.43

Since the recall in the argument identification stage sets the upper bound to the
recall in argument classification, the threshold that determines when examples are pre-
dicted to be positive is usually lowered to allow more positive predictions. That is,
a candidate is predicted as positive when its probability estimation is larger than the
threshold. Table 5 shows the performance of the argument identifiers when the thresh-
old is 0.12.

Because argument identification is just an intermediate step of a complete system,
a more realistic evaluation method is to see how each final system performs. Using an

2The value was determined by experimenting with the complete system using automatic full parse trees,
on the development set. In our tests, lowering the threshold in argument identification always leads to higher
overall recall and lower overall precision. As a result, the gain in F1 is limited.

15

Computational Linguistics Volume 6, Number 9

Table 5
The performance of argument identification after pruning (based on the gold standard full parse
trees) and with threshold=0.1

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 92.13 95.62 93.84 ± 0.37 88.54 94.81 91.57 ± 0.42
Auto 89.48 94.14 91.75 ± 0.41 86.14 93.21 89.54 ± 0.47

argument identifier with threshold=0.1 (i.e., Table 5), Table 6 reports the final results in
recall, precision and F1. The F1 difference is 1.5 points when using the gold standard
data. However, when automatic parsers are used, the shallow parsing based system is,
in fact, slightly better; although the difference is not statistically significant. This may be
due to the fact that chunk and clause predictions are very important here, and shallow
parsers are more accurate in chunk or clause predictions than a full parser (Li and Roth,
2001).

Table 6
The overall system performance using the output from the pruning heuristics, applied on the
gold standard full parse trees

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 86.22 87.40 86.81 ± 0.59 84.14 85.31 84.72 ± 0.63
Auto 84.21 85.04 84.63 ± 0.63 86.17 84.02 85.08 ± 0.63

Conclusion: The full parsing information helps in argument identification. However,
when the automatic parsers are used, using the full parsing information may not have
better overall results compared to using shallow parsing.

4.4 Pruning
As shown in the previous two subsections, the overall performance gaps of full parsing
and shallow parsing are small. When automatic parsers are used, the difference is less
than 1 point in F1 or accuracy. Therefore, we conclude that the main contribution of full
parsing is in the pruning stage. Since the shallow parsing system does not have enough
information for the pruning heuristics, we train two word based classifiers to replace the
pruning stage. One classifier is trained to predict whether a given word is the start (S) of
an argument; the other classifier is to predict the end (E) of an argument. If the product
of probabilities of a pair of S and E predictions is larger than a predefined threshold,
then this pair is considered as an argument candidate. The threshold used here was
obtained by using the validation set. Both classifiers use very similar features to those
used by the argument identifier as explained in Section 3.2, treating the target word as
a constituent. Particularly, the features are predicate, POS tag of the predicate, voice,
context words, POS tags of the context words, chunk pattern, clause relative position,
and shallow-path. The head word and its POS tag are replaced by the target word
and its POS tag. The comparison of using the classifiers and the heuristics is shown in
Table 7.

16

Table 7
The performance of pruning using heuristics and classifiers

Full Parsing Classifier th=0.04
Prec Rec F1 Prec Rec F1

Gold 25.94 97.27 40.96 ± 0.51 29.58 97.18 45.35 ± 0.83
Auto 22.79 86.08 36.04 ± 0.52 24.68 94.80 39.17 ± 0.79

Even without the knowledge of the constituent boundaries, the classifier seems sur-
prisingly better than the pruning heuristics. Using either the gold standard dataset or
the output of automatic parsers, the classifiers achieve higher F1 scores. One possible
reason for this phenomenon is that the accuracy of the pruning strategy is limited by
the number of agreements between the correct arguments and the constituents of the
parse trees. Table 8 summarizes the statistics of the examples seen by both strate-
gies. The pruning strategy needs to decide which are the potential arguments among
all constituents. This strategy is upper-bounded by the number of correct arguments
that agree with some constituent. On the other hand, the classifiers do not have this
limitation. The number of examples they observe is the total number of words to be
processed, and the positive examples are those arguments that are annotated as such in
the dataset.

Note that since each verb is processed independently, a sentence is processed once
for each verb in the sentence. Therefore, the words and constituents in each sentence
are counted as many times as the number of verbs to be processed.

Table 8
Statistics of the training and test examples for the pruning stage. The Agreements column shows
the number of arguments that match the boundaries of some constituents.

Words Arguments Constituents Agreements
Gold Auto Gold Auto

Train 2,575,665 332,381 4,664,954 4,263,831 327,603 319,768
Test 147,981 19,511 268,678 268,482 19,266 18,301

As before, in order to compare the systems that use the full parsing and the shallow
parsing information, we need to see the impact on the overall performance. Therefore,
we built two semantic role systems based on the full parsing and the shallow parsing in-
formation. The full parsing based system follows the pruning, argument identification,
argument classification and inference stages, as described earlier. For the shallow pars-
ing system, the pruning heuristic is replaced by the word-based pruning classifiers, and
the remaining stages are designed to use only shallow parsing as described in previous
sections. Table 9 shows the overall performance of the two evaluation systems.

As indicated in the tables, the gap in F1 between the full parsing and the shallow
parsing systems enlarges to more than 11 points on the gold standard data. At first
glance, this result seems to contradict our conclusion in Section 4.3. After all, if the
pruning stage of the shallow parsing SRL system performs equally well or even better,
the overall performance gap in F1 should be small.

After we carefully examined the output of the word-based classifier, we realized
that it filters out easy candidates, and leaves examples that are difficult to the later

17

Computational Linguistics Volume 6, Number 9

Table 9
The overall system performance

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 86.22 87.40 86.81 ± 0.59 75.34 75.28 75.31 ± 0.76
Auto 77.09 75.51 76.29 ± 0.76 75.48 67.13 71.06 ± 0.80

stages. Specifically, these argument candidates often overlap and differ only in one
or two words. On the other hand, the pruning heuristic based on full parsing never
outputs overlapping candidates and consequently provides input that is easier for the
next stage to handle. Indeed, the following argument identification stage turns out to
be good in discriminating these non-overlapping candidates.

Conclusion: The most crucial contribution of full parsing is in the pruning stage. The
internal tree structure significantly helps in discriminating argument candidates, which
makes the work done by the following stages easier.

5. The Effect of Inference

Our inference procedure plays an important role in improving accuracy when the lo-
cal predictions violate the constraints among argument labels. In this section, we first
present the overall system performance when most constraints are not used. We then
demonstrate how the inference procedure can be used to combine the output of several
systems to yield better performance.

5.1 Inference with Limited Constraints
The inference stage in our system architecture provides a principled way to resolve
conflicting local predictions. It is interesting to see whether this procedure improves the
performance differently for full parsing vs. shallow parsing based system, as well as
gold vs. automatic parsing input.

Table 10 shows the results of using only constraints 1, 2, 3 and 4. As mentioned pre-
viously, the first three constraints are handled before the argument classification stage.
Constraint 4, which forbids overlapping or embedding arguments, is required in order
to use the official CoNLL-05 evaluation script and is therefore kept.

By comparing Table 9 with Table 10, we can see that the effect of adding more con-
straints is quite consistent over the four settings. Precision is improved by 1 to 2 percent
but recall is decreased a little. As a result, the gain in F1 is about 0.5 to 1 point. It is not
surprising to see this lower recall and higher precision phenomenon after the constraints
described in Sec. 3.4.1 are examined. Most constraints punish false non-null output, but
do not regulate false null predictions. For example, an assignment that has two A1 ar-
guments clearly violates the non-duplication constraint. However, if an assignment has
no predicted arguments at all, it still satisfies all the constraints.

5.2 Joint Inference
The empirical study in Section 4 indicates that the performance of an SRL system pri-
marily depends on the very first stage—pruning, which is directly derived from the full
parse trees. This also means that in practice the quality of the syntactic parser is decisive
to the quality of the SRL system. To improve semantic role labeling, one possible way is

18

Table 10
The impact of removing most constraints in overall system performance

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 85.07 87.50 86.27 ± 0.58 73.19 75.63 74.39 ± 0.75
Auto 75.88 75.81 75.84 ± 0.75 73.56 67.45 70.37 ± 0.80

to combine different SRL systems through a joint inference stage, given that the systems
are derived using different full parse trees.

To test this idea, we first build two SRL systems that use Collins’ parser (Collins,
1999)3 and Charniak’s parser (Charniak, 2001) respectively. In fact, these two parsers
have noticeably different outputs. Applying the pruning heuristics on the output of
Collins’ parser produces a list of candidates with 81.05% recall. Although this number
is significantly lower than the 86.08% recall produced by Charniak’s parser, the union of
the two candidate lists still significantly improves recall to 91.37%. We construct the two
systems by implementing the first three stages, namely, pruning, argument identifica-
tion, and argument classification. When a test sentence is given, a joint inference stage
is used to resolve the inconsistency of the output of argument classification in these two
systems.

We first briefly review the objective function used in the inference procedure in-
troduced in Section 3.4. Formally speaking, the argument classifiers attempt to assign
labels to a set of arguments, S1:M , indexed from 1 to M . Each argument Si can take any
label from a set of argument labels, P , and the indexed set of arguments can take a set
of labels, c1:M ∈ PM . If we assume that the argument classifier returns an estimated
conditional probability distribution, Prob(Si = ci), then, given a sentence, the inference
procedure seeks a global assignment that maximizes the objective function denoted by
Equation 2, which can be rewritten as follows.

ĉ1:M = argmax
c1:M∈F(PM)

M∑

i=1

Prob(Si = ci) (3)

where the linguistic and structural constraints are represented by the filter F . In other
words, this objective function reflects the expected number of correct argument predic-
tions, subject to the constraints.

When there are two or more argument classifiers from different SRL systems, a joint
inference procedure can take the output estimated probabilities for all these candidates
as input, although some candidates may refer to the same phrases in the sentence. For
example, Figure 3 shows the two candidate sets for a fragment of a sentence, ..., traders
say, unable to cool the selling panic in both stocks and futures. In this example, system A has
two argument candidates, a1 = traders and a4 = the selling panic in both stocks and futures;
system B has three argument candidates, b1 = traders, b2 = the selling panic, and b3 = in
both stocks and futures.

A straightforward solution to the combination is to treat each argument produced
by a system as a possible output. Each possible labeling of the argument is associated
with a variable which is then used to set up the inference procedure. However, the
final prediction will be likely dominated by the system that produces more candidates,

3We use the Collins’ parser implemented by Bikel (2004).

19

Computational Linguistics Volume 6, Number 9

cool

1

b1

b4

a4

a2

2b 3b

a3

..., traders say, unable to the selling panic in both stocks and futures.

a

Figure 3
The output of two SRL systems: system A has two candidates, a1 = traders and a4 = the selling
panic in both stocks and futures; system B has three argument candidates, b1 = traders, b2 = the
selling panic, and b3 = in both stocks and futures. In addition, we create two phantom candidates a2

and a3 for system A that correspond to b2 and b3 respectively, and b4 for system B that
corresponds to a4.

which is system B in this example. The reason is that our objective function is the sum
of the probabilities of all the candidate assignments.

This bias can be corrected by the following observation. Although system A only
has two candidates, a1 and a4, it can be treated as if it also has two additional phantom
candidates, a2 and a3, where a2 and b2 refer to the same phrase, and so do a3 and b3.
Similarly, system B has a phantom candidate b4 that corresponds to a4. Because system
A does not really generate a2 and a3, we can assume that these two phantom candidates
are predicted by it as null (i.e., not an argument). We assign the same prior distribution
to each phantom candidate. In particular, the probability of the null class is set to be 0.55
based on empirical tests, and the probabilities of the remaining classes are set based on
their occurrence frequencies in the training data.

Then, we treat each possible final argument output as a single unit. Each probability
estimation by a system can be viewed as evidence in the final probability estimation and,
therefore, we can simply average their estimation. Formally, let Si be the argument set

output by system i, and S =
⋃k

i=1 Si be the set of all arguments where k is the number
of systems; let N be the cardinality of S. Our augmented objective function is then:

ĉ1:N = argmax
c1:N∈F(PN)

N∑

i=1

Prob(Si = ci), (4)

where Si ∈ S, and

Prob(Si = ci) =
1

k

k∑

j=1

Probj(S
i = ci), (5)

where Probj is the probability output by system j.
Note that we may also treat the individual systems differently by applying different

priors (i.e., weights) on the estimated probabilities of the argument candidates. For
example, if the performance of system A is much better than system B, then we may
want to trust system A’s output more by multiplying the output probabilities by a larger
weight.

20

Table 11 reports the performance of two individual systems based on Collins’ parser
and Charniak’s parser, as well as the joint system, where the two individual systems are
equally weighted. The joint system based on this straightforward strategy significantly
improves the performance compared to the two original SRL systems in both recall and
precision, and thus achieves a much higher F1.

Table 11
The performance of individual and combined SRL systems

Prec Rec F1

Collins’ Parser 75.92 71.45 73.62 ± 0.79
Charniak’s Parser 77.09 75.51 76.29 ± 0.76
Combined Result 80.53 76.94 78.69 ± 0.71

6. Empirical Evaluation – CoNLL Shared Task 2005

In this section, we present the detailed evaluation of our SRL system, in the competition
on semantic role labeling – the CoNLL-2005 shared task (Carreras and Màrquez, 2005).
The setting of this shared task is basically the same as it was in 2004, with some exten-
sions. First, it allows much richer syntactic information. In particular, full parse trees
generated using Collins’ parser (Collins, 1997) and Charniak’s parser (Charniak, 2001)
were provided. Second, the “full parsing standard partition” was used – the training
set was enlarged and covered sections 02–21, the development set was section 24, and
the test set was section 23. Finally, in addition to the wall street journal (WSJ) data, three
sections of the Brown corpus were used to provide cross-corpora evaluation.

The system we used to participate in the CoNLL-2005 shared task is an enhanced
version of the system described in Sections 3 and 5. The main difference was that the
joint-inference stage was extended to combine six basic SRL systems instead of two.
Specifically for this implementation, we first trained two SRL systems that use Collins’
parser and Charniak’s parser respectively, because of their noticeably different outputs.
In evaluation, we ran the system that was trained with Charniak’s parser 5 times, with
the top-5 parse trees output by Charniak’s parser. Together we have six different out-
puts per predicate. For each parse tree output, we ran the first three stages, namely,
pruning, argument identification, and argument classification. Then, a joint inference
stage, where each individual system is weighted equally was used to resolve the incon-
sistency of the output of argument classification in these systems.

Table 12 shows the overall results on the development set and different test sets; the
detailed results on WSJ section 23 are shown in Table 13. Table 14 shows the results of
individual systems and the improvement gained by the joint inference procedure on the
development set.

Our system reached the highest F1 scores on all the test sets and was the best sys-
tem among the 19 participating teams. After the competition, we improved the system
slightly by tuning the weights of the individual systems in the joint inference procedure,
where the F1 scores on WSJ test section and the Brown test set are 79.59 points and 67.98
points, respectively.

In terms of the computation time, for both the argument identifier and the argument
classifier, the training of each model, excluding feature extraction, takes 50–70 minutes
using less than 1GB memory on a 2.6GHz AMD machine. On the same machine, the
average test time for each stage, excluding feature extraction, is around 2 minutes.

21

Computational Linguistics Volume 6, Number 9

Table 12
Overall CoNLL-2005 shared task results

Prec. Rec. F1

Development 80.05 74.83 77.35
Test WSJ 82.28 76.78 79.44
Test Brown 73.38 62.93 67.75
Test WSJ+Brown 81.18 74.92 77.92

Table 13
Detailed CoNLL-2005 shared task results on the WSJ test set

Test WSJ Prec. Rec. F1

Overall 82.28 76.78 79.44
A0 88.22 87.88 88.05
A1 82.25 77.69 79.91
A2 78.27 60.36 68.16
A3 82.73 52.60 64.31
A4 83.91 71.57 77.25
AM-ADV 63.82 56.13 59.73
AM-CAU 64.15 46.58 53.97
AM-DIR 57.89 38.82 46.48
AM-DIS 75.44 80.62 77.95
AM-EXT 68.18 46.88 55.56
AM-LOC 66.67 55.10 60.33
AM-MNR 66.79 53.20 59.22
AM-MOD 96.11 98.73 97.40
AM-NEG 97.40 97.83 97.61
AM-PNC 60.00 36.52 45.41
AM-TMP 78.16 76.72 77.44
R-A0 89.72 85.71 87.67
R-A1 70.00 76.28 73.01
R-A2 85.71 37.50 52.17
R-AM-LOC 85.71 57.14 68.57
R-AM-TMP 72.34 65.38 68.69

7. Related Work

The pioneering work on building an automatic semantic role labeler was proposed
by Gildea and Jurafsky (2002). In their setting, semantic role labeling was treated as
a tagging problem on each constituent in a parse tree, solved by a two-stage archi-
tecture consisting of an argument identifier and an argument classifier. This is sim-
ilar to our main architecture with the exclusion of the pruning and inference stages.
There are two additional key differences between their system and ours. First, their sys-
tem used a back-off probabilistic model as its main engine. Second, it was trained on

22

Table 14
The results of individual systems and the result with joint inference on the development set.

Prec. Rec. F1

Charniak-1 75.40 74.13 74.76
Charniak-2 74.21 73.06 73.63
Charniak-3 73.52 72.31 72.91
Charniak-4 74.29 72.92 73.60
Charniak-5 72.57 71.40 71.98
Collins 73.89 70.11 71.95
Joint inference 80.05 74.83 77.35

FrameNet (Baker et al., 1998)—another large corpus, besides Propbank, that contains
selected examples of semantically labeled sentences.

Later that year, the same approach was applied on Propbank by Gildea and Palmer
(2002). Their system achieved 57.7% precision and 50.0% recall with automatic parse
trees, and 71.1% precision and 64.4% recall with gold-standard parse trees. It is worth
noticing that at that time the Propbank project was not finished and the dataset avail-
able was only a fraction in size of what it is today. Since these pioneering works, the
task has gained increasing popularity and created a new line of research. The two-step
constituent-by-constituent architecture became a common blueprint for many systems
that followed.

Partly due to the expansion of the Propbank dataset, researchers have gradually
made improvement on the performance of automatic SRL systems by using new tech-
niques and new features. Some of the early systems are described in (Chen and Ram-
bow, 2003; Gildea and Hockenmaier, 2003; Surdeanu et al., 2003). All are based on a
two-stage architecture similar to the one proposed by Gildea and Palmer (2002) with the
differences in the machine learning techniques and the features used. The first break-
through in terms of performance was due to Pradhan et al. (2003), who first viewed the
task as a massive classification problem and applied multiple SVMs to it. Their final
result (after a few more improvements) reported in (Pradhan et al., 2004) achieved 84%
and 75% in precision and recall, respectively.

A second significant contribution beyond the two-stage architecture, is due to Xue
and Palmer (2004) who introduced the pruning heuristics to the two-stage architecture,
and remarkably reduced the number of candidate arguments a system needs to con-
sider; this was adopted by many systems. Another significant advancement was in the
realization that global information can be exploited and benefit the results significantly.
Inference based on an integer linear programming technique, which was originally in-
troduced by Roth and Yih (2004) on a relation extraction problem, was first applied to
the SRL problem by Punyakanok et al. (2004). It showed that domain knowledge can be
easily encoded and contribute significantly through inference over the output of clas-
sifiers. The idea of exploiting global information, which is detailed in this paper, was
pursued later by other researchers, in different forms.

Besides the constituent-by-constituent based architecture, others have also been ex-
plored. The alternative frameworks include representing semantic role labeling as a se-
quence tagging problem (Màrquez et al., 2005) and tagging the edges in the correspond-
ing dependency trees (Hacioglu, 2004). However, the most popular architecture by far
is the constituent-by-constituent based multi-stage architecture, perhaps due to its con-
ceptual simplicity and its success. In the CoNLL-2005 shared task competition (Carreras

23

Computational Linguistics Volume 6, Number 9

and Màrquez, 2005), the majority of the systems followed the constituent-by-constituent
based two-stage architecture, and the use of the pruning heuristics was also fairly com-
mon.

The CoNLL-2005 shared task also signified the importance of system combination,
such as our ILP technique when used in joint-inference, in order to achieve superior
performance. The top-4 systems, which produced significantly better results than the
rest, all used some schemes to combine the output of several SRL systems, ranging from
using a fixed combination function (Koomen et al., 2005; Haghighi et al., 2005) to using
a machine learned combination strategy (Màrquez et al., 2005; Pradhan et al., 2005).

The work of Gildea and Palmer (2002) pioneered not only the fundamental architec-
ture of SRL, but was also the first to investigate the interesting question regarding the
significance of using full parsing for high quality SRL. They compared their full system
with another system that only used chunking, and found that the chunk-based system
performed much worse. The precision and recall dropped from 57.7% and 50.0% to
27.6% and 22.0%, respectively. That led to the conclusion that the full parsing infor-
mation is necessary to solving the SRL problem, especially at the stage of argument
identification – a finding that is quite similar to ours in this article. However, their
chunk-based approach was very weak – only chunks were considered as possible can-
didates; hence, it is not very surprising that the boundaries of the arguments could not
be reliably found. In contrast, our shallow parse-based system does not have these re-
strictions on the argument boundaries and therefore performs much better at this stage,
providing a more fair comparison.

A related comparison can be found also in the work by Pradhan et al. (2005) (their
earlier version appeared in (Pradhan et al., 2003)) which reported the performance on
several systems using different information sources and system architectures. Their
shallow parse based system is modeled as a sequence tagging problem while the full
system is a constituent-by-constituent based two-stage system. Due to technical diffi-
culties, though, they reported the results of the chunk-based systems only on a sub-
set of the full dataset. Their shallow parse based system achieved 60.4% precision and
51.4% recall and their full system achieved 80.6% precision and 67.1% recall on the same
dataset (but 84% precision and 75% recall with the full dataset). Therefore, due to the
use of different architectures and data set sizes, the questions of “how much one can
gain from full parsing over shallow parsing when using the full Propbank dataset” and
“what the sources of the performance gain are” were left open.

Similarly, in the CoNLL-2004 shared task (Carreras and Màrquez, 2004), partici-
pants were asked to develop SRL systems with the restriction that only the shallow
parsing information (i.e., chunks and clauses) were allowed. The performance of the
best system was at 72.43% precision and 66.77% recall, which was about 10 points in F1

lower than the best system based on full parsing in the literature. However, the training
examples were derived from only 5 sections and not all the 19 sections usually used in
the standard setting. Hence, the question was not yet fully answered.

Our experimental study, on the other hand, is done with a consistent architecture,
by considering each stage in a controlled manner, and using the full dataset, allowing
one to draw direct conclusions regarding the impact of this information source.

8. Conclusion

This paper studies the important task of Semantic Role Labeling. We presented an ap-
proach to SRL and a principled and general approach to incorporating global informa-
tion in natural language decisions. Beyond presenting this approach which leads to a
state-of-the-art SRL system, we focused on investigating the significance of using the

24

full parse tree information as input to an SRL system adhering to the most common
system architecture, and the stages in the process where this information has the most
impact. We performed a detailed and fair experimental comparison between shallow
and full parsing information and concluded that, indeed, full syntactic information can
improve the performance of an SRL system. In particular, we have shown that this infor-
mation is most crucial in the pruning stage of the system, and relatively less important
in the following stages.

In addition, we showed the importance of global inference to good performance in
this task, characterized by rich structural and linguistic constraints among the predicted
labels of the arguments. Our integer linear programming based inference procedure is a
powerful and flexible optimization strategy that finds the best solution subject to these
constraints. As we have shown, it can be used to resolve conflicting argument predic-
tions in an individual system but can also serve as an effective and simple approach
to combining different SRL systems, resulting in a significant improvement in perfor-
mance.

In the future, we plan to extend our work in several directions. By adding more con-
straints to the inference procedure, an SRL system may be further improved. Currently,
the constraints are provided by human experts in advance. Learning both hard and
statistical constraints from the data will be our top priority. Some work on combining
statistical and declarative constrains has already started and is reported in (Roth and
Yih, 2005). Another issue we want to address is domain adaptation. It has been clearly
shown in the CoNLL-2005 shared task that the performance of current SRL systems
degrades significantly when tested on a corpus different from the one used in train-
ing. This may be due to the underlying components, especially the syntactic parsers
which are very sensitive to changes in data genre. Developing a better model that more
robustly combines these components could be a promising direction. In addition, al-
though the shallow parsing based system was shown here to be inferior, shallow parsers
were shown to be more robust than full parsers (Li and Roth, 2001). Therefore, combin-
ing these two systems may bring forward both of their advantages.

Acknowledgements

We thank Xavier Carreras and Lluı́s Màrquez for the data and scripts, Szu-ting Yi for
her help in improving our joint inference procedure, Nick Rizzolo for proofreading the
manuscript, and anonymous reviewers for their comments. We are also grateful to Dash
Optimization for the free academic use of Xpress-MP and AMD for their equipment do-
nation. This research is supported by the Advanced Research and Development Activ-
ity (ARDA)’s Advanced Question Answering for Intelligence (AQUAINT) Program, a
DOI grant under the Reflex program, NSF grants ITR-IIS-0085836, ITR-IIS-0085980 and
IIS-9984168, EIA-0224453, and an ONR MURI Award.

References

Baker, C. F., C. J. Fillmore, and J. B. Lowe. 1998. The Berkeley Framenet project. In
Proceedings of COLING/ACL, pages 86–90, Montreal, Canada.

Bikel, D. 2004. Intricacies of Collins’ parsing model. Computational Linguistics,
30(4):479–511, December.

Bishop, C., 1995. Neural Networks for Pattern Recognition, chapter 6.4: Modelling condi-
tional distributions, page 215. Oxford University Press.

25

Computational Linguistics Volume 6, Number 9

Carlson, A., C. Cumby, J. Rosen, and D. Roth. 1999. The SNoW learning architecture.
Technical Report UIUCDCS-R-99-2101, UIUC Computer Science Department, May.

Carreras, X. and L. Màrquez. 2003. Online learning via global feedback for phrase
recognition. In Proceedings of The 2003 Conference on Advances in Neural Information
Processing Systems (NIPS-2003). MIT Press.

Carreras, X. and L. Màrquez. 2004. Introduction to the CoNLL-2004 shared tasks: Se-
mantic role labeling. In Proceedings of CoNLL-2004, pages 89–97. Boston, MA, USA.

Carreras, X. and L. Màrquez. 2005. Introduction to the CoNLL-2005 shared task: Se-
mantic role labeling. In Proceedings of the Ninth Conference on Computational Natural
Language Learning (CoNLL-2005), pages 152–164, Ann Arbor, Michigan, June. Asso-
ciation for Computational Linguistics.

Carreras, X., L. M‘arquez, V. Punyakanok, and D. Roth. 2002. Learning and inference
for clause identification. In Proceedings of the European Conference on Machine Learn-
ing (ECML-2002), pages 35–47.

Charniak, E. 2001. Immediate-head parsing for language models. In Proceedings of the
39th Annual Meeting of the Association of Computational Linguistics (ACL-2001), pages
116–123, Toulouse, France.

Chen, J. and O. Rambow. 2003. Use of deep linguistic features for the recognition and
labeling of semantic arguments. In Proceedings of the Conference on Empirical Methods
for Natural Language Processing (EMNLP-2003), pages 41–48, Sapporo, Japan.

Collins, M. 1997. Three generative, lexicalised models for statistical parsing. In Proceed-
ings of the 35th Annual Meeting of the Association of Computational Linguistics (ACL-
1997), pages 16–23, Madrid, Spain.

Collins, M. 1999. Head-driven Statistical Models for Natural Language Parsing. Ph.D.
thesis, Computer Science Department, University of Pennsylvenia, Philadelphia.

Dagan, I., Y. Karov, and D. Roth. 1997. Mistake-driven learning in text categorization.
In Proceedings of the Conference on Empirical Methods for Natural Language Processing
(EMNLP-1997), pages 55–63, Aug.

Even-Zohar, Y. and D. Roth. 2001. A sequential model for multi-class classification.
In Proceedings of the Conference on Empirical Methods for Natural Language Processing
(EMNLP-2001), pages 10–19.

Freund, Y. and R. Schapire. 1999. Large margin classification using the Perceptron
algorithm. Machine Learning, 37(3):277–296.

Gildea, D. and J. Hockenmaier. 2003. Identifying semantic roles using combinatory
categorial grammar. In Proceedings of the Conference on Empirical Methods for Natural
Language Processing (EMNLP-2003), Sapporo, Japan.

Gildea, D. and D. Jurafsky. 2002. Automatic labeling of semantic roles. Computational
Linguistics, 28(3):245–288.

Gildea, D. and M. Palmer. 2002. The necessity of parsing for predicate argument recog-
nition. In Proceedings of the 40th Annual Meeting of the Association of Computational
Linguistics (ACL-2002), pages 239–246, Philadelphia, PA.

26

Golding, A. R. and D. Roth. 1999. A Winnow based approach to context-sensitive
spelling correction. Machine Learning, 34(1-3):107–130.

Grove, A. and D. Roth. 2001. Linear concepts and hidden variables. Machine Learning,
42(1/2):123–141.

Guéret, Christelle, Christian Prins, and Marc Sevaux. 2002. Applications of optimization
with Xpress-MP. Dash Optimization. Translated and revised by Susanne Heipcke.

Hacioglu, K. 2004. Semantic role labeling using dependency trees. In Proceedings the
International Conference on Computational Linguistics (COLING).

Hacioglu, K., S. Pradhan, W. Ward, J. H. Martin, and D. Jurafsky. 2004. Semantic role
labeling by tagging syntactic chunks. In Proceedings of CoNLL-2004, pages 110–113.

Haghighi, A., K. Toutanova, and C. Manning. 2005. A joint model for semantic role
labeling. In Proceedings of the Ninth Conference on Computational Natural Language
Learning (CoNLL-2005), Ann Arbor, Michigan, June. Association for Computational
Linguistics.

Kingsbury, P. and M. Palmer. 2002. From Treebank to PropBank. In Proceedings of
LREC-2002, Spain.

Kipper, K., M. Palmer, and O. Rambow. 2002. Extending PropBank with VerbNet se-
mantic predicates. In Proceedings of Workshop on Applied Interlinguas, Oct.

Koomen, P., V. Punyakanok, D. Roth, and W. Yih. 2005. Generalized inference with
multiple semantic role labeling systems. In Proceedings of the Ninth Conference on
Computational Natural Language Learning (CoNLL-2005), pages 181–184, Ann Arbor,
Michigan, June. Association for Computational Linguistics.

Levin, B. 1993. English Verb Classes And Alternations: A Preliminary Investigation. Uni-
versity of Chicago Press, Chicago.

Levin, B. and M. R. Hovav. 1996. From lexical semantics to argument realization. Man-
uscript.

Li, X. and D. Roth. 2001. Exploring evidence for shallow parsing. In Computational
Natural Language Learning, pages 107–110.

Marcus, M. P., B. Santorini, and M. Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330,
June.

Màrquez, L., J. Giménez P. Comas, and N. Català. 2005. Semantic role labeling as
sequential tagging. In Proceedings of the Ninth Conference on Computational Natural
Language Learning (CoNLL-2005), Ann Arbor, Michigan, June. Association for Com-
putational Linguistics.

Noreen, E. W. 1989. Computer-Intensive Methods for Testing Hypotheses. John Wiley &
Sons.

Palmer, M., D. Gildea, and P. Kingsbury. 2005. The proposition bank: An annotated
corpus of semantic roles. Computational Linguistics, 31(1):71–106, March.

27

Computational Linguistics Volume 6, Number 9

Pradhan, S., K. Hacioglu, V. Krugler, W. Ward, J. H. Martin, and D. Jurafsky. 2005. Sup-
port vector learning for semantic argument classification. Machine Learning, 60:11–
39.

Pradhan, S., K. Hacioglu, W. Ward, J. Martin, and D. Jurafsky. 2003. Semantic role
parsing adding semantic structure to unstructured text. In Proceedings of ICDM-
2003, pages 629–632.

Pradhan, S., K. Hacioglu, W. Ward, J. H. Martin, and D. Jurafsky. 2005. Semantic role
chunking combining complementary syntactic views. In Proceedings of the Ninth
Conference on Computational Natural Language Learning (CoNLL-2005), Ann Arbor,
Michigan, June. Association for Computational Linguistics.

Pradhan, S., W. Ward, K. Hacioglu, J. H. Martin, and D. Jurafsky. 2004. Shallow se-
mantic parsing using support vector machines. In Proceedings of NAACL-HLT 2004,
pages 233–240.

Punyakanok, V. and D. Roth. 2001. The use of classifiers in sequential inference. In
NIPS-13; The 2000 Conference on Advances in Neural Information Processing Systems,
pages 995–1001. MIT Press.

Punyakanok, V., D. Roth, W. Yih, and D. Zimak. 2004. Semantic role labeling via in-
teger linear programming inference. In Proceedings the International Conference on
Computational Linguistics (COLING), Geneva, Switzerland, August.

Roth, D. 1998. Learning to resolve natural language ambiguities: A unified approach.
In Proc. of AAAI, pages 806–813.

Roth, D. and W. Yih. 2004. A linear programming formulation for global inference in
natural language tasks. In Proceedings of CoNLL-2004, pages 1–8.

Roth, D. and W. Yih. 2005. Integer linear programming inference for conditional ran-
dom fields. In Proceedings of the International Conference on Machine Learning, pages
737–744.

Sang, E. F. Tjong Kim and S. Buchholz. 2000. Introduction to the CoNLL-2000 shared
task: Chunking. In Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal.

Surdeanu, M., S. Harabagiu, J. Williams, and P. Aarseth. 2003. Using predicate-
argument structures for information extraction. In Proceedings of ACL 2003, pages
8–15.

Tjong Kim Sang, E. F. and S. Buchholz. 2000. Introduction to the CoNLL-2000 shared
task: Chunking. In Proceedings of the CoNLL-2000 and LLL-2000, pages 127–132.

Xpress-MP. 2004. Dash Optimization. Xpress-MP. http://www.dashoptimization.com.

Xue, N. and M. Palmer. 2004. Calibrating features for semantic role labeling. In Pro-
ceedings of the EMNLP-2004, pages 88–94, Barcelona, Spain.

Zhang, T., F. Damerau, and D. Johnson. 2002. Text chunking based on a generalization
of Winnow. Journal of Machine Learning Research, 2:615–637.

28

A. An ILP Formulation for SRL

Sentence: w1 w2 w3 w4

Candidates: [S1] [S2] [S3] [S5]
[S4]

Illegal classes: A3, A4, A5

Indicator Variables: Costs:
u1A0, u1A1, . . . p1A0, p1A1, . . .
u2A0, u2A1, . . . p1A0, p1A1, . . .
...

...
u5A0, u5A1, . . . p5A0, p5A1, . . .

Objective function:

argmax
u∈{0,1}|u|

∑5
i=1

∑
c∈{A0,A1,...,AM-LOC,...} picuic

subject to

u1A0 + u1A1 + . . . + u1AM-LOC + . . . + u1φ = 1
u2A0 + u2A1 + . . . + u2AM-LOC + . . . + u2φ = 1
...
u5A0 + u5A1 + . . . + u5AM-LOC + . . . + u5φ = 1

Constraint 4: No overlapping or embedding
u3φ + u4φ ≥ 1
u4φ + u5φ ≥ 1

Constraint 5: No duplicate argument classes
u1A0 + u2A0 + . . . + u5A0 ≤ 1
u1A1 + u2A1 + . . . + u5A1 ≤ 1
u1A2 + u2A2 + . . . + u5A2 ≤ 1

Constraint 6: R-arg arguments
u1A0 + u2A0 + . . . + u5A0 ≥ u1R-A0

u1A0 + u2A0 + . . . + u5A0 ≥ u2R-A0

...
u1A0 + u2A0 + . . . + u5A0 ≥ u5R-A0

u1A1 + u2A1 + . . . + u5A1 ≥ u1R-A1

...
u1AM-LOC + u2AM-LOC + . . . + u5AM-LOC ≥ u1R-AM-LOC

...

29

Computational Linguistics Volume 6, Number 9

Constraint 7: C-arg arguments
u1A0 ≥ u2C-A0

u1A0 + u2A0 ≥ u3C-A0

...
u1A0 + u2A0 + . . . + u4A0 ≥ u5C-A0

u1A1 ≥ u2C-A1

...
u1AM-LOC ≥ u2C-AM-LOC

...

Constraint 8: Illegal argument types
u1A3 + u2A3 + . . . + u5A3 = 0
u1A4 + u2A4 + . . . + u5A4 = 0
u1A5 + u2A5 + . . . + u5A5 = 0

30

