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Exploiting Cross-Lingual Representations For Natural Language
Processing

Abstract
Traditional approaches to supervised learning require a generous amount of labeled data for good
generalization. While such annotation-heavy approaches have proven useful for some Natural Language
Processing (NLP) tasks in high-resource languages (like English), they are unlikely to scale to languages
where collecting labeled data is di cult and time-consuming. Translating supervision available in English is also
not a viable solution, because developing a good machine translation system requires expensive to annotate
resources which are not available for most languages.

In this thesis, I argue that cross-lingual representations are an effective means of extending NLP tools to
languages beyond English without resorting to generous amounts of annotated data or expensive machine
translation. These representations can be learned in an inexpensive manner, often from signals completely
unrelated to the task of interest. I begin with a review of different ways of inducing such representations using
a variety of cross-lingual signals and study algorithmic approaches of using them in a diverse set of
downstream tasks. Examples of such tasks covered in this thesis include learning representations to transfer a
trained model across languages for document classification, assist in monolingual lexical semantics like word
sense induction, identify asymmetric lexical relationships like hypernymy between words in different
languages, or combining supervision across languages through a shared feature space for cross-lingual entity
linking. In all these applications, the representations make information expressed in other languages available
in English, while requiring minimal additional supervision in the language of interest.
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ABSTRACT

EXPLOITING CROSS-LINGUAL REPRESENTATIONS

FOR NATURAL LANGUAGE PROCESSING

Shyam Upadhyay

Dan Roth

Traditional approaches to supervised learning require a generous amount of labeled data for

good generalization. While such annotation-heavy approaches have proven useful for some

Natural Language Processing (NLP) tasks in high-resource languages (like English), they are

unlikely to scale to languages where collecting labeled data is difficult and time-consuming.

Translating supervision available in English is also not a viable solution, because developing

a good machine translation system requires expensive to annotate resources which are not

available for most languages.

In this thesis, I argue that cross-lingual representations are an effective means of extending

NLP tools to languages beyond English without resorting to generous amounts of annotated

data or expensive machine translation. These representations can be learned in an inexpen-

sive manner, often from signals completely unrelated to the task of interest. I begin with a

review of different ways of inducing such representations using a variety of cross-lingual sig-

nals and study algorithmic approaches of using them in a diverse set of downstream tasks.

Examples of such tasks covered in this thesis include learning representations to transfer a

trained model across languages for document classification, assist in monolingual lexical se-

mantics like word sense induction, identify asymmetric lexical relationships like hypernymy

between words in different languages, or combining supervision across languages through a

shared feature space for cross-lingual entity linking. In all these applications, the represen-

tations make information expressed in other languages available in English, while requiring

minimal additional supervision in the language of interest.
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CHAPTER 1 : Introduction

1.1. Overview

Most work in Natural Language Processing (NLP) is driven by the availability of supervision

in the form of labeled data. Such labeled data is relatively easily available for simple

NLP tasks in high-resource languages (like document classification for English), but this

is not true for other languages. In fact, for more sophisticated NLP tasks like semantic

parsing, fully labeled data is hard to come by even in English, let alone other languages.

Consequently, even though there are over 7000 languages from over 140 different language

families in use across the world (Lewis, 2009), the state of NLP is skewed towards high-

resource languages like English.

Why should one care about NLP in other languages? Developing NLP technology that can

operate multilingually has several benefits. A large population of the world is multilingual,

and produces information at a unprecedented scale across several languages thanks to the

web. Indeed, over 40% of the content on the web is not in English, and the rate at which

such content is generated has been growing dramatically.1 Although most of this content is

publicly available (online news, social media platforms etc.), yet consuming it is complicated

by the multitude of languages used. Multilingual NLP makes this information available to

a broader audience than what the language in which it was expressed can reach, helping

overcome the metaphorical language-imposed barrier to knowledge. For instance, knowing

what entities appear in a certain tweet written in Hindi can improve the understanding of an

English reader. This can help faster dissemination of critical information, that can prove

crucial in urgent situations (e.g., early warning systems, financial trading). Multilingual

NLP can also help from a scientific standpoint, in understanding how languages evolve and

interact with each other, revealing previously unknown similarities or differences between

languages (Bender, 2009, 2011).
1Based on https://en.wikipedia.org/wiki/Languages_used_on_the_Internet.
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Unfortunately, traditional supervised learning approaches, which form the backbone of cur-

rent NLP technology, are inherently ill-equipped to deal with the lack of labeled data, which

poses a significant challenge in scaling to other languages. As a result, advances made in

NLP for high-resource languages take longer to percolate to the rest of the languages. To

bridge this language barrier, efforts have been made in two directions.

Annotation-heavy Approaches. The first direction is motivated by the overwhelming

success of supervised machine learning approaches for English NLP tasks. Given enough

training data, traditional machine learning approaches have shown remarkable generaliza-

tion abilities. One natural step is to apply these approaches to NLP tasks in non-English lan-

guages, by providing supervision in the target language. Often, such supervision is derived

from multilingual resources that are used in machine translation, such as parliamentary pro-

ceedings (Koehn, 2005) or translations of the Bible (Christodouloupoulos and Steedman,

2015; Agić et al., 2015). A popular approach for achieving this is annotation projection,

where annotation for some linguistic structure is projected from a high resource language to

a low resource language, usually by means of some cross-lingual alignment (Yarowsky and

Ngai, 2001; Hwa et al., 2005). Nevertheless, the community has also invested in curating an-

notated resources in non-English languages for various NLP tasks (Xue, 2008; de Melo and

Weikum, 2009; McDonald et al., 2013), so that traditional supervised learning approaches

can be developed for these languages. Indeed, statistical machine learning approaches have

become integral to advancing NLP in English in past three decades, and it is reasonable

to assume that they will succeed for other languages once the appropriate datasets become

available.

Translation-based Approaches. The second direction has advocated extending NLP

to languages other than English by automatically translating text in the target language

to English using machine translation, and then using state-of-the-art NLP models already

developed for English. Like annotation-heavy approaches, this direction also relies on the

success of the statistical learning approaches for English NLP tasks, with the hope that good
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translation from a language to English will be sufficient to bridge the language barrier. In-

deed, translation quality from a non-English language to English has improved considerably

over the past few years with the advent of neural machine translation (Sutskever et al., 2014;

Bahdanau et al., 2015; Luong et al., 2015a; Sennrich et al., 2016, inter alia).

While promising, both of these directions suffer from limitations. Traditional supervised

learning approaches require generous amount of labeled data to achieve good generalization.

While such annotation-heavy approaches have proved successful for high resource languages

such as English, their applicability to a new language is limited due to lack of labeled data.

Collecting high-quality labelled data for any NLP task in an arbitrary language is chal-

lenging due to the human effort involved and the paucity of expert annotators. There are

practical limitations as well — generating high-quality annotations such as treebanks (Mar-

cus et al., 1993; Prasad et al., 2008; McDonald et al., 2013; Socher et al., 2013) takes time

and expertise. This may not be ideal if one has limited time to develop a system in a

language to achieve certain goals (e.g., for disaster management).

Similar problems affect machine translation. Building a translation system requires re-

sources in the target language (namely large parallel corpora with English), which are not

always available and are expensive to annotate at scale (Lopez and Post, 2013). Unless

several million lines of in-domain parallel text are available, statistical machine translation

approaches perform poorly (Kolachina et al., 2012; Irvine, 2014), an issue that is exacer-

bated for the now popular neural machine translation approaches (Koehn and Knowles,

2017). From a practical standpoint too, including a translation system in the pipeline may

prove to be an overkill for simple understanding tasks such document classification. For

instance, knowing that गुɳĕवाकषăण means gravity and Ćवांटम यांȡśकɏ means quantum mechanics

is sufficient to realize a Hindi document containing the above words is about physics, with-

out translating the entire document. Another practical issue is that even though we can

apply NLP tools on the translated text, often the output is desired in the target language

itself (e.g., dependency parsing, sequence tagging). For these problems, a translation-based
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approach incurs the additional cost of projecting the output back to the original language,

which besides introducing latency, might be a hard task in itself. For instance, how to

project back the Part-Of-Speech (POS) tags for tokens in a English phrase that aligns to a

single word in Hindi?

All the above challenges become more acute when working with low-resource languages. To

extend NLP tools to languages beyond English, we need to find approaches that eliminate

or reduce the dependence on high quality annotated data, and that enable one to scale to

multiple languages quickly without investing too much effort.

1.2. Thesis Statement

In this thesis, I argue that cross-lingual representations are an effective means of extending

NLP tools to languages beyond English, without resorting to generous amounts of annotated

data or expensive machine translation. These cross-lingual representations encode semantics

and maintain similarity of lexical items across multiple languages. Such multilingually-

enriched semantic representations can be learnt in an inexpensive manner, often from cross-

lingual signals completely unrelated to the task of interest. By using these representations as

features (in lieu of monolingually derived representations) for training a model for a certain

NLP task, we can learn models that operate on input from multiple languages. Using such

language-agnostic feature representations in the model enable us to leverage any existing

annotations in a high-resource language for joint multilingual training, thereby reducing

the amount of supervision required for the task in a new language.

1.3. Outline of This Thesis

The rest of the document is organized as follows.

• Chapter 2 gives a brief history of different approaches of representing words in NLP

applications, and highlights their limitations in capturing cross-lingual semantics.

• Chapter 3 introduces cross-lingual representations as a means to overcome this limi-

4



High-Resource 
Languages

(e.g., English)
Other 

Languages

What signals can be used to transfer models from English to other languages? 
what is the impact of the choice of the signal?

Can we exploit freely available resources like 
Wikipedia to generate cross-lingual representations?

Can cross-lingual signals help learn 
better sense representations in English?

How to use cross-lingual representations to understand 
relationships (other than translation) across languages?

How to use cross-lingual representations to develop a 
cross-lingual information extraction system?

Chapter 3

Chapter 7 and 8

Chapter 6

Chapter 4

Chapter 5

Figure 1: Overview of the chapters in this thesis. The double-headed arrows indicate tasks
involving sharing of information between languages, and single-headed arrows indicate tasks
involving transfer from one language to another.

tation, and motivates them as an effective way of translating feature spaces. I then

describe different cross-lingual signals that we can exploit to learn cross-lingual repre-

sentations and evaluate their suitability for achieving semantic and syntactic transfer.

Based on (Upadhyay et al., 2016).

• In Chapter 4, I describe another approach to learn cross-lingual representations using

multilingual encyclopedic resources such as Wikipedia to encode words in different

languages in a shared semantic space, and use it to classify documents without any

supervision. Based on (Song et al., 2016).

• In Chapter 5, I describe our work on learning multi-sense representations in English

using cross-lingual signals, where we show that using a small amount of multilingual

data we can train models for sense induction that compare favorably with a model

trained on large amount of monolingual data. Based on (Upadhyay et al., 2017).
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• Chapter 6 shows how, by using appropriate cross-lingual word representations, one

can detect asymmetric relations across languages. The chapter demonstrates that

cross-lingual representations can aid in semantic tasks beyond those requiring coarse

semantics (such as document classification). Based on (Upadhyay* et al., 2018).

The next two chapters examine a downstream information extraction task, namely

cross-lingual entity linking, along two dimensions.

• Chapter 7 describes how we can exploit cross-lingual representations to develop a

cross-lingual entity linking system. In particular, I describe how we can augment the

limited supervision in a low-resource language with supervision from a high-resource

language by using a shared multilingual representation space. Based on (Upadhyay

et al., 2018a).

• Chapter 8 examines the problem of name transliteration from a language to English,

a crucial component for performing entity linking in the cross-lingual setting. I show

that we can improve transliteration from low-resource languages into English using

constraints to drive learning with limited supervision. Based on (Upadhyay et al.,

2018b).

Finally, Chapter 9 summarizes the contributions of this thesis and provides an overview of

future directions.
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CHAPTER 2 : History of Word Representations

2.1. Introduction

The generalizability of any machine learning model is a function of the data representation

(or features) that it operates on to make predictions. For instance, the generalizability of a

document classifier depends on what features are used to represent a document. For most

NLP applications, features of smaller units of language such as words are used to derive

features for larger linguistic structures such as sentences and documents. For instance, a

common choice of word-level features in the document classification task is “how often did

word w appear in the document”, and the document-level feature is simply the sum of all

the active word-level features in that document. The choice of feature representation for

units such as words is thus a crucial decision when developing a NLP model.

The idea of learning mathematical representations useful for building classifiers is a general

one (Bengio et al., 2013), and the aim of this chapter is to review different approaches

of representing words as mathematical objects in NLP. The techniques and principles in-

troduced in this chapter for training monolingual representations will serve as the starting

point for cross-lingual representation learning approaches described in the rest of the thesis.

I start with a discussion of one-hot word representations and their limitations. I will then

discuss how the principles of distributional semantics can be put into practice to derive

cluster-based or vector-based word representations. Owing to the popularity of vector-

based representations, I will briefly discuss the different frameworks for learning vector

representations and their benefits. I end the chapter by discussing some known limitations

of these word representations, that I will address in the rest of the thesis.

2.2. One-Hot Word Representations

Conventional approaches represent each word w in the vocabulary V by denoting w by

its index in V . For instance, for a word vocabulary V = {king, queen, computer, virus,
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disease}, the one-hot representations will be {1, 2, 3, 4, 5}. This representation scheme is

better visualized by treating each word as a vector of 0s with a 1 at the index associated

with the word (or a one-hot vector),

vking =



1

0

0

0

0


, vqueen =



0

1

0

0

0


, vcomputer =



0

0

1

0

0


, vvirus =



0

0

0

1

0


, vdisease =



0

0

0

0

1


(2.1)

It is easy to see that this is an extremely crude representation that fails to capture relation-

ships (or lack thereof) between words. For instance, related words like king and queen are

treated the same (two distinct atomic symbols), and so are unrelated words like computer

and king. Using features built on top of one-hot word representations will also suffer from

the same problem. For instance, the parameters learnt for the feature “the word king is

present in the document” during training cannot be shared for the feature “the word queen

is present in the document” that is only seen at test time. As a result, these one-hot word

representations have limited utility when used as the building blocks for a NLP model.

Another drawback is that the representation size increases with the size of the vocabulary,

which is cumbersome when working with large corpora.

2.3. Distributional Semantics

Marco saw a hairy little wampimuk crouching behind the tree.
During the winter the wampimuk hibernates in his burrow.
The girls fed their pet wampimuk berries and acorns.

Table 1: The distributional hypothesis in action: We (humans) can guess the meaning of
words like wampimuk by the context in which it appears.

How can we learn more meaningful representations for words that capture some notion of

relatedness? Intuitively, humans infer the meaning of a word from the context in which

the word appears. For instance, in Table 1, the meaning of a (hypothetical) word like
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wampimuk in the sentence “Marco saw a hairy little wampimuk crouching behind the tree.”

can be guessed based on the neighboring words.1 Such patterns of word usage also allows

humans to guess that words like squirrel or rabbit are similar to wampimuk, because they can

substitute wampimuk in the above context. These observations form the basis of the field

of distributional semantics, where word meanings are modeled as a function of statistics

computed over a corpus. This intuition can be formalized in two popular distributional

semantics hypotheses.

The Distributional Hypothesis

The distributional hypothesis states that you shall know a word by the company it

keeps (Weaver, 1955; Firth, 1957; Furnas et al., 1983, inter alia). The hypothesis

has been restated differently (and more formally) over the years — words that are

similar in meaning occur in similar contexts (Rubenstein and Goodenough, 1965);

words with similar meanings will occur with similar neighbors if enough text material

is available (Schütze and Pedersen, 1995).

The definition of context and similarity in the distributional hypothesis is task-dependent.

The notion of similarity is often dictated by the representation paradigm — vector-based

word representations use a geometric similarity metric like cosine or the dot product, while

cluster-based word representations simply check for cluster overlap. Most popular repre-

sentation learning approaches define context to be the lexical neighborhood of the word

under consideration, but this choice can also be dictated by the task. For instance, in

Chapter 6, I will describe word representations that use syntactic context of words to learn

representations for detecting asymmetric relations like hypernymy.

Distributed v/s Distributional. An important distinction is to be made between dis-

tributional word representations and distributed representations, A related term used in

representation learning literature (Bengio et al., 2013). Word representations that ap-

peal to the distributional hypothesis are called distributional representations. On the other
1Example inspired from Goldberg (2017).
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hand, distributed representations are those where each word’s representation is described by

multiple contexts, and each context participates in describing multiple words. Distributed

representations are in contrast to local representations, such as the one-hot representation

discussed earlier. Note that a representation can be both distributional and distributed

(e.g., representations learnt using Skip-gram with Negative Sampling (SGNS), described in

Section 2.9).

While the distributional hypothesis is widely popular, it is worth noting that not all word

representation approaches appeal to it. Another related hypothesis that describes the se-

mantics of a word through statistics computed on a corpus is the bag-of-words hypothesis.

The Bag-of-Words Hypothesis

The bag-of-words hypothesis states that similar documents contain similar words,

and similar words appear in similar documents. More formally, documents that have

similar column vectors in a term-document matrix are similar (Salton et al., 1975;

Salton and Buckley, 1988).

The term-document matrix is computed by treating each document as a bag-of-words,

hence the hypothesis is referred to as the bag-of-words hypothesis. The bag-of-words hy-

pothesis examines the document level co-occurrence of words, and is close relative of the

distributional hypothesis.2 In Chapter 4, I will describe Explicit Semantic Analysis (ESA)

representations, that appeal to the bag-of-words hypothesis to represent words as the ‘bag-

of-concepts’ that they describe in an encyclopedic resource like Wikipedia.

By invoking the distributional hypothesis and the bag-of-words hypothesis, representation

learning approaches can extract contextual knowledge directly from raw corpora. This

way of extracting semantics automatically is particularly appealing compared to the time-

consuming approach of hand-coding semantics (e.g., building lexical ontologies). Another

benefit of these representations is their re-usability — once extracted from a large and
2In fact, by defining the context of a word to be the documents it appears in, one can arrive at the

bag-of-words hypothesis from the distributional hypothesis.
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general enough corpora, the same word representation can be used for multiple tasks.

2.4. Cluster-based Word Representations

The problem with the one-hot representations were that they were extremely high dimen-

sional (of the size of the vocabulary), and thus did not permit any sharing. An alternative

to the crude one-hot representation is to first cluster the words in the vocabulary, such

that words that share meaningful linguistic properties gets assigned to the same cluster.

Intuitively, this cluster-based word representation reduces the effective vocabulary size to

the number of word clusters, such that words that are similar (clustered together) have

same one-hot representations. Here, I discuss one popular clustering algorithm for learning

such representations, Brown clustering (Brown et al., 1992).

The input to the Brown clustering algorithm is a corpus of words w1, w2, · · · , wT , where T

is the size of the corpus. The aim of the algorithm is to assign each word to a cluster, where

C : V → 1, 2, · · · ,K is a cluster assignment function that maps each word wi in the vocab-

ulary V to its cluster C(wi). The sequence of cluster assignments C(w1), C(w2), · · · , C(wT )

for words w1, w2, · · · , wT is modeled using a class-based bi-gram language model. Under this

model the generative story of the corpus is the following — transition to the current cluster

C(wi) conditioned on the previous cluster C(wi−1), sample a word wi conditioned on the cur-

rent cluster C(wi), and repeat the process. The log-likelihood of the corpus w1, w2, · · · , wT

(or the clustering quality) under this model is computed as,

logPr(w1, w2, · · · , wT ) =
n∑

i=1

logPr(wi | C(wi))Pr(C(wi)|C(wi−1)) (2.2)

The output of the clustering algorithm is a binary tree, whose leaves are words, and internal

nodes are clusters of the words in the sub-tree rooted at that node. Each cluster can be

expressed using a binary code, which is the representation shared by all the words that

belongs to that cluster. It can be shown that the clustering quality is a function of the
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mutual information of adjacent clusters,

Quality(C) =
∑
c,c′

Pr(c, c′) log Pr(c, c′)
Pr(c)Pr(c′) −

∑
w

Pr(w) logPr(w) (2.3)

= I(C)−H (2.4)

Thus, Brown clustering uses mutual information of adjacent clusters (i.e., at bi-gram level)

as a measure of distributional similarity between the words in those clusters. Starting with

each word in its own distinct cluster, the brown clustering algorithm greedily merges pair

of clusters that cause the smallest decrease in the likelihood of the corpus with respect to

the class-based bi-gram language model. The greedy clustering strategy naturally leads

to a hierarchical clustering upon termination. However, naively implementing this clus-

tering strategy has a run-time of O(|V |5), which was reduced to O(|V |3) in Brown et al.

(1992). Later, Liang (2005) proposed a more efficient approach that reduced the run-time

to O(|V |m2 + n) by starting with m initial clusters for each of the m most popular words,

where m is number of initial clusters and n is the corpus length.

Brown clustering has proved successful in several semi-supervised scenarios, improving per-

formance on tasks like dependency parsing (Koo et al., 2008; Tratz and Hovy, 2011), syntac-

tic chunking (Turian et al., 2010), with sequence labeling tasks like named-entity recognition

enjoying large gains (Freitag, 2004; Miller et al., 2004; Ratinov and Roth, 2009).

Other Clustering Representations. Many variants of the Brown clustering algorithm

exists. For instance, Ushioda (1996) extended the Brown clustering algorithm to compute

clusters for words and phrases, while Martin et al. (1998) extended the bi-gram model

to tri-grams. Similarly, Uszkoreit and Brants (2008) used a more expressive class-based

language model that transitions to the current cluster C(wi) conditioned on the previous

word wi−1. The word-to-class transitions allow the model more freedom to improve the
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clustering quality,

logPr(w1, w2, · · · , wT ) =
n∑

i=1

logPr(wi | C(wi))Pr(C(wi)|wi−1) (2.5)

More recently, Stratos et al. (2014) noticed that the greedy strategy employed in Brown clus-

tering is simply a heuristic and is not guaranteed to recover the (provably) correct clustering

when given sufficient number of training examples. Furthermore, even with Liang (2005)’s

improved algorithm, the run-time is prohibitively long. Stratos et al. (2014) proposed an

improved cluster based representation learning approach that is guaranteed to recover the

correct clustering and runs around 10 times faster than the Liang (2005) implementation.

Limitations of Cluster-based Representations. A key limitation of using clustering-

based representations is that they are not amenable to end-to-end learning aimed at a

downstream task. This is due to the fact that the cluster assignment function C is, in general,

discontinuous, so end-to-end learning methods like back-propagation cannot be used with

them. Furthermore, approaches like Brown clustering scale quadratically in the number

of clusters, and thus are extremely slow to train, preventing more expressive partitioning

of the space. The discreteness of the space induced by the clustering also means that the

granularity of similarity score between pair of words is discretely quantized. For instance, at

a certain level of the Brown clusters, two words either belong to the same cluster (similarity

of 1), or don’t (similarity of 0). One can circumvent this by describing a word by its path

from the root in the binary tree (e.g., apple becomes 101101). However, this approach

partially alleviates the discreteness of the space. We will see that vector space models

allow for a more expressive representation equipped with a continuous similarity measures

between words, and are amenable to fast and efficient end-to-end learning.
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car

bike

king
queen

book magazine

muffin
cake

Figure 2: Vector-based word representations in a 2-dimensional space.

2.5. Vector-based Word Representations

Vector-based word representations use a point in a n-dimensional vector space to describe

each word in a language (see Figure 2). Under this representation paradigm, geometric

proximity in the vector space is used as surrogate for semantic similarity of two words. For

instance, in Figure 2, related words like king and queen are closer than king and car. The

similarity of two words v and w represented in a vector space as v and w respectively, can

then be computed using some natural geometric measure of vector proximity, like the dot

product dot(v, w) = v⊺w, or the cosine cosine(v, w) = dot(v,w)
|v||w| . This notion of “proximity

as a surrogate for similarity” traces its roots in cognition (Lakoff and Johnson, 1980, 1999)

as discussed in (Sahlgren, 2006).

As these representations embed a word in a geometric space, they are also called word em-

beddings or word vectors. Over the years, several different ways of learning vector-based

word representations have been developed, that differ in the form of the vector representa-

tion (sparse or dense), and the learning framework used — count-based model and matrix

factorization (either exact or approximate). I briefly discuss these below.
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dimension → 1st 2nd 3rd 4th 5th 6th 7th . . .

word
context computer is of fruit breed physics bank . . .

apple 10 70 90 20 0 0 0 . . .
cat 0 60 75 5 20 0 0 . . .
interest 25 45 55 5 5 30 30 . . .
...

...
...

...
...

...
...

... . . .

Table 2: Example of a word-context co-occurrence matrix extracted from a corpus. Each
dimension of a row corresponds to co-occurrence with a certain context word. For instance,
the word apple co-occurs with fruit (4th dimension) 20 times in the corpus.

2.6. Sparse Word Representations using Count Models

Sparse word representations (Lin, 1998a,b; Turney and Pantel, 2010; Baroni and Lenci,

2010; Levy and Goldberg, 2014a, inter alia) describe each word in the vocabulary using a

high dimensional but extremely sparse (>90% entries of the vector are 0s) vector.

The key ingredient in all sparse word representations is a co-occurrence matrix M ∈ R|V |×|C|,

such as the one shown in Table 2, where |V | is the size of the word vocabulary V , |C| is

the size of the context vocabulary C. The entry M[w, c] counts how often the word w ∈ V

has appeared in a context c ∈ C.3 As a result, these approaches are also called count-based

models for learning word representations (Baroni et al., 2014). The matrix M is extremely

sparse, e.g., for the text8 corpus containing about 17 million tokens and 71 thousand distinct

words, the co-occurrence matrix has ≈1% non-zero entries only (Jiang et al., 2018). The

sparsity of M is an artifact of the Zipfian distribution of words in natural language (Zipf,

1949). The representation of a word w can be directly read off the from the relevant row

w ∈ R|C| in the co-occurrence matrix, where |C| is the size of the context vocabulary.

Variants of count-based models differ along two dimensions — the definition of context,

and how the entries of M are computed. As discussed in Section 2.3, the definition of the
3While I yield to the popular usage, the entries of the matrix can denote event frequencies other than

simple co-occurrence, such as, “how often did w take c as its parent in a syntactic tree?”.
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context is task-dependent, with lexical neighborhood being a popular choice. Similarly,

there are several ways to compute the entries of the co-occurrence matrix M. A naive way

of computing the entries of the co-occurrence matrix is to simply set each to the raw co-

occurrence frequency n(w, c). However, raw frequency is not a good measure of relatedness

between words, because it is skewed towards co-occurrences with function words like the,

of, is etc., that do not truly reflect the semantics of the context. Different approaches of

computing the entries of M have been proposed to remedy this issue.

Point-wise Mutual Information (PMI). A popular approach is to weigh each entry of

the co-occurrence matrix using point-wise mutual information or PMI (Church and Hanks,

1990). PMI measures the association between word w and context c as,

PMI(w, c) = log Pr(w, c)
Pr(w)Pr(c) (2.6)

The probability of the co-occurrence is simply estimated using counts Pr(w, c) = n(w,c)
N ,

Pr(w) = n(w)
N , Pr(c) = n(c)

N , where n(w, c) is the frequency of (w, c) co-occurrence, n(w) and

n(c) are the frequencies of w and c respectively, and N is the total corpus size. Intuitively,

PMI measures how much the probability Pr(w, c) differs from what we would expect it to

be assuming independence of Pr(w) and Pr(c) (Bouma, 2009).

Positive PMI (PPMI). An issue with PMI is that negative PMI values do not convey

meaningful information. When will PMI assume a negative value? when we have Pr(w, c) <

Pr(w)Pr(c), that is when one of w or c tend to occur individually rather than together.

For instance, this can happen when computing co-occurrences with words like the. PPMI

helps to ignore such uninformative co-occurrences. Furthermore, for unobserved (w, c) pairs

PMI(w, c) = log 0 = −∞, which makes the co-occurrence matrix dense (and ill-defined).

To remedy these issues, Levy and Bullinaria (2001) suggested using positive PMI, that

simply ignores negative values PPMI(w, c) = max[PMI(w, c), 0].
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Positive Local Mutual Information (PLMI). PMI and PPMI have a bias towards

rare events (i.e., small n(w, c)). To see this, notice that for perfectly correlated word w and

context c (i.e., Pr(w) = Pr(c) = Pr(w, c)), the PMI or PPMI value is − logPr(w, c), which

is higher for low Pr(w, c) (i.e., rare co-occurrences). Positive Local Mutual Information

(PLMI) (Evert, 2005, 2008) balances PPMI by including a factor for the co-occurrence

count n(w, c) of word w and context c, PLMI(w, c) = n(w, c) × PPMI(w, c). This way

rare co-occurrences get appropriately low entries in M.

Limitations of Sparse Representations. While sparse word representations do over-

come most of the limitations of one-hot word presentations, they have their own limitations.

The entries of M are frequency estimates from a large corpus, that may be unreliable due

to chance co-occurrences of unrelated word pairs and missing evidence for unobserved but

related word pairs. Furthermore, many columns of the matrix M will be highly correlated.

For instance, words that appear frequently with the context word big are also likely to

appear with the context word large. These correlated context dimensions introduce redun-

dancy in the representation. The size of the representations also increases with the size of

the context vocabulary, just like one-hot representations.

Dense low dimensional word representations alleviate the above limitations of the sparse

word representations. These representations are dense, in that most entries in the rep-

resentation are non-zero values. Unlike sparse representation, the representation size is

significantly smaller than the size of the vocabulary (e.g., dense representation of size 100

can be used for a vocabulary of size 200k words). The reduced representation size also

reduces the redundancy due to correlated dimensions in the representation. Over the years,

several different approaches have been used to learn dense word representations. While

some approaches derive the dense representations by factorizing the sparse co-occurrence

matrix (either exactly or approximately), others directly learn dense representation by using

them for a prediction task like neural language modeling.
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2.7. Dense Word Representations using Exact Matrix Factorization

Exact factorization approaches first factorize the sparse high dimensional word co-occurrence

matrix exactly using a dimensionality reduction technique like Singular Value Decomposi-

tion (SVD) (Golub and Kahan, 1965) or Principal Component Analysis (PCA) (Pearson,

1901). A low rank approximation of the matrix is then constructed from the resulting

factors, from which the dense representations are derived.

A popular example of this approach is Latent Semantic Analysis (LSA) (Deerwester et al.,

1990; Landauer and Dumais, 1997).4 LSA factorizes the co-occurrence matrix M ∈ R|V |×|C|

into factors U,Σ,V using SVD,

M = UΣV⊺ (2.7)

where Σ ∈ Rn×n is a diagonal matrix containing the singular values (σ1, · · · , σn), and

U ∈ R|V |×|n| and V ∈ R|C|×|n| are orthogonal matrices. Note that the factorization is exact,

as U, Σ, V can exactly recover M. It can be shown that the best rank d approximation Md

toM under the squared difference norm (spectral norm), can be computed using the output

of SVD,Md =
∑d

i=1 σiuiv⊺
i where ui and vi are ith column ofU andV, respectively (Eckart

and Young, 1936). The dense word representation are obtained by projecting the rank-d

approximation of the co-occurrence matrix using Vd,

MdVd = UdΣd (2.8)

where MdVd ∈ R|V |×d is the matrix of the word representations. Over the years, other

matrix factorization approaches have improved over LSA in different ways, like making LSA

translation-invariant (Gardner et al., 2016) or scale-invariant (Dhillon et al., 2012, 2015), or

using information theoretic measures for discrete distributions like Hellinger PCA (Lebret

and Collobert, 2014).
4Also referred to Latent Semantic Indexing (LSI).
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The motivation behind using exact matrix factorization approach is to reduce both the

dimensionality and the sparsity of the observations simultaneously (Sahlgren, 2006). The

low rank approximation merges the dimensions associated with contexts that are “similar”,

thereby compressing information spread across multiple related dimensions in the sparse

representation. An added benefit of this low rank approximation is that it allows the user

to control the size of the representation unlike sparse representations where the size scales

with the size of vocabulary. Another attractive property of exact matrix factorization

approaches like SVD is that they do not require hyper-parameter tuning (e.g., learning

rates) and can be solved efficiently.

2.8. Dense Word Representations using Neural Language Modeling

The Brown clustering approach trained word representations by using a class-based bi-gram

language model to assign discrete clusters to the words in the vocabulary. However, Bengio

et al. (2003) showed that useful word representations can also be learnt as a by-product of

using a neural network for performing the language modeling task, i.e., predict the next

word wt given a sequence of preceding words w1, · · · , wt−1.

In a neural language modeling approach the sequence of left context words w1, · · · , wt−1

is first transformed into a sequence of vectors w1, · · · ,wt−1 using an embedding matrix

W ∈ R|V |×d. Using this sequence of vectors, a neural network g, computes the score for the

word w being the next word. This score is then normalized by using the softmax operation

to obtain the next word probability distribution Pr(wt = w | w1, · · · , wt−1),

Pr(wt = w | w1, · · · , wt−1) =
exp g(w,w1, · · · ,wt−1)∑
w′ exp g(w′,w1, · · · ,wt−1)

(2.9)

the parameters of the neural network g and the embedding matrix W are parameters that

are learnt by maximizing the log-likelihood of the corpus 1
T

∑
i=1 Pr(wi | w1..wi−1) using

gradient descent (Cauchy, 1847) and back-propagation (Rumelhart et al., 1986). After

training, the rows of the W are the dense word representations.
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Early approaches like that of Bengio et al. (2003) used a fixed number of words from the

left context to compute the of the next word probability using a feed-forward layer. This

was improved upon by Collobert and Weston (2008); Collobert et al. (2011), who used a

convolutional operation instead to combine the context word representations, minimized

using a max margin loss instead of cross-entropy loss. Later, Mikolov et al. (2010) showed

further improvements using a recurrent neural network (Elman, 1990) that in principle can

take into account an arbitrary long past context of the word, unlike the bi-gram assumption

made by Brown clustering.

2.9. Dense Word Representations using Approximate Matrix Factorization

So far, we have seen two approaches to learn dense word representations, either by comput-

ing co-occurrence matrix and factorizing it exactly using low-rank matrices, or training a

model to predict the next word. These approaches naturally lead to the following question

— what if we train a model to predict entries of the word-context co-occurrence matrix,

instead of just the next word? Such an approach will approximately factorize the word-

context co-occurrence matrix, but can use more expressive ways to model the entries of the

co-occurrence matrix.

Skip-gram with Negative Sampling (SGNS)

The language modeling objective only utilizes the past context (i.e., context to the left) to

predict the next word. Mikolov et al. (2013a) proposed the skip-gram model, an alternative

training strategy to learn word representations that utilizes both the right and left context

around a word.

The skip-gram model’s learning objective aims to train a classifier for a prediction task, and

word representations are learnt as a by-product of this training objective. The prediction

task aims to predict the surrounding words in a window around a central (or pivot) word,

using the representations of the pivot and surrounding words as parameters of the classifier.
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Formally, the learning objective of the skip-gram approach is,

L = −
∑
w

∑
wc∈Neighbors(w)

logPr(wc | w) (2.10)

The skip-gram formulation attempts to learn representations that are good at predicting

neighboring words (in a predefined context window size), where the prediction are modeled

using a log-linear conditional probability,

Pr(wc | w) =
exp(wc

⊺w)∑
w′∈V exp(w′⊺w)

(2.11)

The denominator of the conditional probability requires sum over |V | terms, computing

which can become prohibitive for vocabularies derived from large corpora. To avoid this

computational bottleneck, efficient implementations of the skip-gram model employ negative

sampling to optimize an approximation of the skip-gram objective. The skip-gram with

negative sampling (SGNS) formulation poses the following binary classification task — is a

given (w, c) pair a co-occurrence observed in the corpus D, or obtained by randomly pairing

a word w with a context c? The randomly paired are referred as negative samples from a

noise distribution D′, leading the following learning objective,

max
∑

(w,c)∈D

logPr(D = 1 | (w, c)) +
∑

(w,c)∈D′

logPr(D = 0 | (w, c)) (2.12)

where Pr(D = 1 | (w, c)) = 1

1 + exp(−w⊺c) = 1− Pr(D = 0 | (w, c)) (2.13)

is the probability that the model assigns to the (w, c) pair originating from the corpus.

Note that the SGNS objective does not involve computing a normalization term over the

entire vocabulary, and thus can be efficiently optimized. The negative sampling approach

can be shown to be a special case of the more general technique of noise contrastive es-

timation (Gutmann and Hyvärinen, 2012; Dyer, 2014), used for training un-normalized

probabilistic models. It was shown by Levy and Goldberg (2014c) that the SGNS learning

objective implicitly factorizes a shifted version of the PPMI matrix.
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Related Word Prediction Tasks. Instead of predicting the next word using the left

context words (as in language modeling), or predicting the context words using the pivot

word (as in SGNS), other word prediction tasks can also be used to learn word represen-

tations. For instance, Even-Zohar et al. (1999); Even-Zohar and Roth (2000) train word

representations by predicting a missing word using the representations of the other words in

a sentence. The representations are learnt as a set of discriminators in the Sparse Network

of Winnows (SNoW) architecture (Roth, 1998), with the aim of improving context-sensitive

spelling correction. A similar learning objective to the above was proposed by Mikolov et al.

(2013a), which they termed contextual bag-of-words (CBOW). In contrast to SGNS, the

aim of CBOW is to train a classifier for the opposite prediction task — predict the pivot

word using all the surrounding words.

L = −
∑
w

logPr(w | Neighbors(w)) (2.14)

where Pr(w | Neighbors(w)) = exp(w⊺v)∑
w′∈V exp(w′⊺v) and vNeighbors(w) =

∑
wc∈Neighbors(w)

wc

(2.15)

The CBOW model is several times faster than the SGNS model. On the other hand,

SGNS works well with even a small amount of training data, because each context window

generates multiple training instances, unlike CBOW, where each context window generates

a single training instance.

Global Vector Representations (GloVe)

Unlike SGNS, global vector representations (GloVe) (Pennington et al., 2014) explicitly

factorizes the log of co-occurrence matrix. GloVe approximates the log-co-occurrence count

logn(w, c) using the dot product of vector representations w and c of the word and context,

weighted using a function f of the co-occurrence frequency f(n(w, c)). Formally, the loss
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for the entry corresponding to word wi and context cj in the co-occurrence matrix is,

L(wi, cj) = f(n(wi, cj))×
(
wi

⊺cj + bwi + bcj − logn(wi, cj)
)2 (2.16)

where f(x) =


(

x
xmax

)α
if x < xmax

0 otherwise
(2.17)

The choice of f ensures that unobserved entries get a weight of 0, and neither rare co-

occurrences nor frequent co-occurrences are over-weighted.5

The GloVe objective is closely related to PMI matrix factorization. Indeed, fixing bwi =

logn(wi) and bcj = logn(cj) results in an objective that is approximately factorizing the

PMI-weighted co-occurrence matrix shifted by logN , where N is the corpus size. However,

unlike exact factorization approaches like LSA, GloVe weighs each entry in the matrix

differently (using f(n(wi, cj))), and learns bwi and bcj , make it more expressive.

2.10. Limitations of Word Representations

Despite their overwhelming success as features for NLP tasks, word representations have

their shortcomings. I discuss a few aspects in which these representations fall short, and

how the community has attempted to overcome them.

Issues of Distributional Hypothesis. Distributional approaches do not account for the

compositional nature of language, and cannot represent larger units of language like phrases

or sentences. Attempts have been made to remedy this by appealing to formal semantics,

and combining it with distributional representations (Grefenstette and Sadrzadeh, 2011;

Garrette et al., 2011; Grefenstette, 2013; Lewis and Steedman, 2013; Beltagy et al., 2016).

Problems with distributional similarity are also exposed in lexical semantics tasks. For

instance, distributional methods assign high similarity to word pairs like new and old,

happy and sad, and are thus unable to distinguish antonyms from synonyms (Grefenstette,
5Pennington et al. (2014) report α = 3/4 gave best results.
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1992; Padó and Lapata, 2003). This is an artifact of the distributional hypothesis itself, as

antonymous word pairs tend to occur in similar contexts even though they convey opposite

meanings in those contexts.

A related issue is that measures like cosine similarity are symmetric, and are thus unable to

reveal any asymmetric relationships that might hold between words. For instance, the cosine

between rodent and squirrel is the same regardless of the order in which its is computed,

even though there is an asymmetric relation between the two — squirrel is a kind of rodent.

In Chapter 6, I will discuss an asymmetric similarity measure that can remedy this issue.

Single Representation per Word. The approaches discussed so far associate each word

with a single representation. As a result, representations for polysemous words like screen

are forced to capture multiple meanings by superimposing all relevant meaning represen-

tations (Arora et al., 2018). Accurately capturing the semantics of such ambiguous words

is important, as many frequent words have multiple senses.6 Several approaches to remedy

this limitation by learning a fixed number (> 1) of representations per word have been pro-

posed that use monolingual distributional information (Reisinger and Mooney, 2010; Huang

et al., 2012). In Chapter 5, I will describe one such approach that uses multilingual trans-

lational information in addition to monolingual distributional information to dynamically

learn different number of representations per word.

Interpretability. A limitation of using dense vector representations is that the low-rank

approximation process obscures the meaning of each dimension of the vector. For instance,

in Table 2 the 5th dimension of the word cat denotes how often it co-occurs with breed, but

after (say) factorizing the co-occurrence matrix, we cannot assign any meaning to the 5th

dimension of a GloVe vector. This hurts interpretability — while each dimension in sparse

representations correspond to presence (or absence) of a particular context word, this is

not so for the dense representations. To retain the interpretability of the sparse vector
6Principle of Economical Versatility of Words (Zipf, 1949).
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spaces, without incurring the limitations of naive sparse word representations, different

sparse coding approaches have been proposed (Murphy et al., 2012; Faruqui et al., 2015b;

Subramanian et al., 2018), that transform dense d-dimensional vector representations to

sparse d-dimensional ones. In Chapter 6, we will examine one such sparse coding objective

in the context of learning dependency based cross-lingual representations.

Cross-lingual Semantics. While word representations can be trained monolingually for

each language using a large corpus, these representations are unable to capture meaning-

ful relationships that exist between words across languages. For instance, monolingually

trained word representations in Hindi and English will not reflect the fact that ɮध in Hindi

and milk in English are translationally equivalent. The reason behind this is that both

representations have been trained solely using monolingual distributional information, and

have no cross-lingual signal to align the vector spaces that are learnt independently. As a

result, any NLP model that uses word representations as features for training is also limited

to operate on a single language. This is undesirable, because this forces one to develop sepa-

rate models for different languages, and prevents utilizing task-specific supervision available

in one language to aid in another language. Ideally, one would expect that a model trained

using supervision available in one language should work reasonably well on related language,

something that a human learner can effectively adapt to do. In Chapter 3, I will describe

how we can overcome this limitation by using different forms of cross-lingual alignments to

align the semantic spaces across languages. Using such cross-lingual word representations

for performing lexical semantic tasks, facilitating model transfer, and sharing of supervision

across languages is the main theme of this thesis.
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CHAPTER 3 : Cross-lingual Word Representations

3.1. Introduction

One of the limitations of traditional word representations discussed in the last chapter is

that they are confined to a single language. As a result, NLP models that employ these rep-

resentations as features for training cannot be transferred to a related language, despite the

underlying task remaining the same. In this chapter, I discuss how word representations can

be learnt across languages to capture cross-lingual relationships between words in addition

to the notion of monolingual distributional similarity, and facilitate model transfer.

I will discuss the various cross-lingual alignments that are available for learning cross-lingual

representations, and evaluate their ability to extrinsically facilitate model transfer across

languages for semantic and syntactic applications respectively. The discussion will also

focus on the cost of obtaining the cross-lingual alignment and the suitability of different

signals for different tasks.

3.2. Motivation

Why do we expect cross-lingual word representations to aid in model transfer? Suppose

we have a supervised document classification model in English, and we wish to use it for

document classification in French. One of the features used in the classification model in

English is “the word law is present in the document”. To use the English model, we need to

translate this feature to its French equivalent “the word loi is present in the document”. One

way to translate the feature representation is to use a discrete bilingual dictionary (such

as one shown in Figure 3), mapping a word in English to its translational equivalent word

in French. In practice, any such dictionary will have missing entries (missing dictionary

entries are indicated by ??). Consequently, using such a discrete bilingual dictionary to

translate features will have coverage problems, which can lead to loss of useful features. For

instance, the dictionary in Figure 3 cannot translate the feature “the word world is present
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English French
children enfants

law loi
money argent
world ??
?? paix
?? marche

enfants
children

loi
law

argent
money

monde
world

paix
peace

marche
market

English Vectors

French Vectors

Figure 3: Cross-lingual word representations as a vector space approximation of discrete
translation dictionaries. By encoding items present in the dictionary as points in a contin-
uous vector space, one can recover some of the missing entries. Note that while the figure
uses vector-based representations (which partition the space implicitly) a similar reasoning
can be applied to cluster-based representations (which partition the space explicitly).

in the document”.

On the other hand, if the words in both languages are embedded in a shared representation

space using the bilingual dictionary (we will see how in Section 3.4.3), such that word pairs

that are translational equivalent are close, it is possible to recover from this sparsity of the

discrete dictionary. Intuitively, if two words in English are geometrically close in the vector

space, and one of them is missing its translation, the other word’s nearest neighbor in the

other language can serve as the missing translation. Indeed, the ability to recover such

missing entries is the basis of applications like bilingual dictionary induction (Rapp, 1995,

1999; Vulić and Moens, 2015; Irvine and Callison-Burch, 2017, inter alia), a task we will

examine in Section 3.5.2.

In addition to capturing cross-lingual relationships, these embeddings can also aid in learn-

ing better representations for monolingual lexical semantics. This is possible because two or

more words that align to similar words in another language should be semantically similar.

Indeed, this intuition is the basis of paraphrase detection (Bannard and Callison-Burch,
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2005; Callison-Burch, 2007). We will see cross-lingual signals aiding one such task in Chap-

ter 5.

Notation. Let W = {w1, w2, . . . , w|W |} be the vocabulary of a language l1 with |W |

words, andW ∈ R|W |×l be the corresponding embedding matrix denoting word embeddings

of length l, such that row i of the matrix W corresponds to the vector of the word wi.

Similarly, let V = {v1, v2, . . . , v|V |} be the vocabulary of another language l2 with |V |

words, and V ∈ R|V |×m be the corresponding embedding matrix denoting word embeddings

of length m. We denote the word vector for a word w by w.

3.3. Cluster-based Cross-lingual Representations

In cross-lingual cluster based representations, each cluster contains words in two (or more)

languages that share some meaningful linguistic properties. A general approach for learning

such representations was proposed by Täckström et al. (2012).

Täckström et al. (2012)’s approach involves two-stages, where words in the source language

S are first clustered monolingually, and these clusters are then projected to the target

language T using word-alignments from parallel corpora. The monolingual clustering can

be performed by using any of the clustering algorithms discussed in Section 2.4. Each target

word is assigned to the cluster with which it is most often aligned according to the word

alignments. Formally, a target word vi is assigned to the cluster C(vi) which solves,

C(vi) = argmax
k∈[1,··· ,K]

∑
(vi,wj)∈Q

ni,j × 1[C(wj) = k] (3.1)

where Q is the set of word alignments, ni,j is the number of times word vi is aligned to

word wj , and 1[p] is an indicator variable that is 1 when condition p is true. Täckström

et al. (2012) showed that such cross-lingual word clusters can be included in lieu of brittle,

language-specific lexical features for delexicalized transfer models.

A obvious limitation of the two-stage approach is that words outside the alignment dictio-
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nary will not get mapped to any cluster. To fix this, Täckström et al. (2012) also suggested a

joint clustering approach that alternatingly optimizing the monolingual clustering objective

in each language, followed by performing the projection step in Equation 3.1.

3.4. Vector-based Cross-lingual Representations

The cross-lingual clustering approach described above suffer from the same limitations of

cluster-based representations discussed in Section 2.4. Furthermore, optimization-wise the

approach of fixing the clusters alternatingly is not satisfactory; ideally one would like a joint

learning objective where the updates respect both monolingual and cross-lingual signals si-

multaneously. The vector-based cross-lingual word representations described in this section

do not suffer from these issues.

I will describe four different cross-lingual representation learning approaches, and show

how each is an instance of a general learning objective (Algorithm 1) to facilitate better

understanding. The representation learning approaches use different forms of cross-lingual

alignments (illustrated in Figure 4) as supervision for aligning the vector spaces. The

alignments differ in the nature of cross-lingual information they encode, and in terms of the

cost of obtaining them. I describe them in the following sections.

Algorithm 1 A general algorithm for inducing cross-lingual word embeddings.
Input:

Initial embedding matrices W0,V0,
Suitably defined monolingual losses A and B, and cross-lingual loss C,
Scalar weights α and β.

Output: W∗,V∗

1: Initialize W←W0,V← V0

2: (W∗,V∗) ← argminαA(W) + βB(V) + C(W,V)
3: return (W∗,V∗)

3.4.1. Sentence and Word-level Alignment

Parallel corpora are a valuable source of translational information that are available for

many high-resource languages. A parallel corpus contains aligned sentences in two (or

more) languages, where aligned sentences are translations of each other. Word alignments
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I Love You

Je t’ aime

(a) Sentence and
Word-level Alignment

I Love You

Je t’ aime

(b) Sentence-level
Alignment

(I, Je)

(Love, aime)

(You, t’)

(c) Word-level
Alignment

Hello! how are
you? I Love You.

Bonjour! Je t’ aime.

(d) Document-level
Alignment

Figure 4: Different forms of cross-lingual alignments one can use as supervision for learning
cross-lingual representations. From left to right, the cost of the supervision required varies
from expensive (sentence and word-level alignments) to cheap (document-level alignment).

can be automatically induced from such aligned sentences in a parallel corpora using a

statistical aligner (e.g., IBM Model 1 aligner (Brown et al., 1993), the cdec aligner (Dyer

et al., 2013)). These sentence and word-level alignments (Figure 4a) derived from a parallel

corpus are used to learn cross-lingual representations. There are many approaches that use

these alignments to learn cross-lingual representations (Klementiev et al., 2012; Zou et al.,

2013; Kočiský et al., 2014). This section describes one such approach, that of Luong et al.

(2015b), henceforth referred as BiSkip.

The learning objective of BiSkip is an extension of the skip-gram model (Mikolov et al.,

2013a), where the context of a word is expanded to include bilingual links obtained from

word alignments, so that the model is trained to predict words cross-lingually. In particular,

given a word alignment (v, w) ∈ Q from word v ∈ V in language l2 to w ∈ W in language

l1, BiSkip predicts the context words of w using v and vice-versa. Formally, we can define a

cross-lingual loss term D12 for predicting the neighbors of word w in language l1 using the

embedding for v in language l2 as,

D12(W,V) = −
∑

(v,w)∈Q

∑
wc∈Neighbors1(w)

logPr(wc | v) (3.2)

where Neighbors1(w) is the context of w in language l1, Q is the set of word alignments,

and Pr(wc | v) ∝ exp(wc
⊺v). A similar cross-lingual loss term D21 can be defined for

predicting neighbors of v in language l2 using embedding for w in l1. In addition to the

cross-lingual terms D12 and D21, the BiSkip learning objective contains monolingual terms
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for predicting the monolingual context of v and w in the respective languages,

D11(W) = −
∑
w∈W

∑
wc∈Neighbors1(w)

logPr(wc | w) (3.3)

D22(V) = −
∑
v∈V

∑
vc∈Neighbors2(v)

logPr(vc | v) (3.4)

The BiSkip objective can be cast into Algorithm 1 as,

A(W) = D11(W) B(V) = D22(V) (3.5)

C(W,V) = D12(W,V) +D21(W,V) (3.6)

where A(W) and B(V) are the familiar SGNS formulation of the monolingual part of the

objective from Section 2.9.

3.4.2. Sentence-level Alignment

Sometimes a phrase in a language aligns with a word in another language, a fact that

word-level alignments cannot capture. To overcome this limitation, Hermann and Blunsom

(2014a) developed the Bilingual Compositional Vector Model (BiCVM) algorithm, that

learns cross-lingual word representations using only sentence-level alignment (Figure 4b).

Hermann and Blunsom (2014a) argued that allowing the model to learn similarity at a

coarser level (namely, sentence-level) is better in such cases, than forcing it to respect word

alignments. BiCVM assumes that aligned sentences have equivalent meaning, thus their

sentence representations should be similar.

Let v⃗ = [x1, . . . ,xi, . . .] and w⃗ = [y1, . . . ,yj , . . .] denote two aligned sentences, where

xi ∈ V,yj ∈ W, are vectors corresponding to the words in the sentences. Let func-

tions f : v⃗ → Rn and g : w⃗ → Rn, map sentences to their semantic representations in Rn.

BiCVM generates word vectors by minimizing the squared ℓ2 norm between the sentence

representations of aligned sentences. To prevent the degeneracy arising from directly min-

imizing the ℓ2 norm, BiCVM uses a noise-contrastive large-margin update, with randomly
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drawn sentence pairs (v⃗, w⃗n) as negative samples. The margin-based loss (with margin δ)

for the sentence pairs (v⃗, w⃗) and (v⃗, w⃗n) can be written as,

E(v⃗, w⃗, w⃗n) = max (δ +∆E(v⃗, w⃗, w⃗n), 0) (3.7)

where ∆E(v⃗, w⃗, w⃗n) = E(v⃗, w⃗)− E(v⃗, w⃗n) (3.8)

and E(v⃗, w⃗) = ∥f(v⃗)− g(w⃗)∥2 (3.9)

This can be cast into Algorithm 1 by,

C(W,V) =
∑

aligned (v⃗,w⃗)
random w⃗n

E(v⃗, w⃗, w⃗n) (3.10)

A(W) = ∥W∥2 B(V) = ∥V∥2 (3.11)

with A(W) and B(V) being regularizers, with α = β.

3.4.3. Word-level Alignment

The previous two approaches relied on parallel corpora in the languages of interest for de-

riving the cross-lingual alignment, which is an expensive resource not available for many

languages (Lopez and Post, 2013). In contrast, bilingual translation dictionaries (Figure 4c)

containing a few thousand words are much easier to obtain (or annotate) than a parallel cor-

pus. These dictionaries can serve as another form of cross-lingual alignment, to ensure that

the representations for translationally equivalent word pairs (i.e., entries in the dictionary)

are similar. This principle is the basis of many representation learning algorithms that use

bilingual dictionaries (Mikolov et al., 2013b; Lu et al., 2015; Smith et al., 2017; Artetxe et al.,

2017); this section describes the approach proposed in Faruqui and Dyer (2014), henceforth

referred as BiCCA (Bilingual Canonical Correlation Analysis based embeddings).

The BiCCA model projects independently trained monolingual embedding matrices W,V

using Canonical Correlation Analysis (CCA) (Hotelling, 1936) to respect a bilingual dic-
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tionary. CCA is an algorithm that takes as input pairs of observations {(xi,yi)}ni=1 drawn

from two different feature spaces (xi ∈ X,yi ∈ Y), and finds directions d1 and d2 such that

the linear projections {d1
⊺xi}ni=1 and {d2

⊺yi}ni=1 are maximally correlated.

For applying CCA, first matrices W′ ⊆W,V′ ⊆ V are constructed such that |W′| = |V′|

and the corresponding rows (wi,vi) in the matrices are representations of words (wi, vi)

that are translations of each other. The projection is then computed as:

PW ,PV = CCA(W′,V′) (3.12)

W∗ = WPW V∗ = VPV (3.13)

where, PV ∈ Rl×d,PW ∈ Rm×d are the projection matrices with d ≤ min(l,m) and the

V∗ ∈ R|V |×d,W∗ ∈ R|W |×d are the word vectors that have been aligned using the entries in

the bilingual dictionary.

The BiCCA objective can be viewed as the following instantiation of Algorithm 1,1

W0 = W′ V0 = V′ (3.14)

C(W,V) = ∥W−V∥2 + γ (V⊺W) (3.15)

A(W) = ∥W∥2 − 1 B(V) = ∥V∥2 − 1 (3.16)

where W = W0PW and V = V0PV , where α = β = γ =∞ to set hard constraints.

3.4.4. Document-level Alignment

Another inexpensive cross-lingual alignment can be derived by identifying comparable doc-

uments between two languages. Comparable documents are thematically aligned, in that

they contain overlapping information, but neither document is an exact translation of the

other (Figure 4d). Examples of comparable documents in different languages are news
1This formulation is described in Section 6.5 of (Hardoon et al., 2004)
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articles that report on the same event, captions of the same image, or Wikipedia pages

describing the same entity. Such document-level alignments offer an attractive alternative

to using word or sentence level alignments to train cross-lingual representations, as they

are relatively easier to obtain. This section describes the approach proposed by Vulić and

Moens (2015), henceforth referred as BiVCD (Bilingual Vectors from Comparable Data),

that exploits this cross-lingual information.

Let De and Df denote a pair of comparable documents with length (in words) p and q

respectively (assume p > q). BiVCD first merges these two comparable documents into

a single pseudo-bilingual document. The pseudo-bilingual document is constructed by as-

suming a monotonic alignment between the words of De and Df . That is, every Rth word

of the merged pseudo-bilingual document is picked sequentially from Df , where R = ⌊pq ⌋

is the length ratio of two documents. Finally, a skip-gram model is trained on the corpus

of pseudo-bilingual documents, to generate vectors for all words in W∗ ∪V∗. The vectors

constituting W∗ and V∗ can then be easily identified.

Instantiating BiVCD in the general algorithm is obvious — C(W,V) assumes the familiar

SGNS objective over the pseudo-bilingual document,

C(W,V) = −
∑

s∈W∪V

∑
t∈Neighbors(s)

logPr(t | s) (3.17)

where t, s ∈W ∪ V are words in the combined vocabulary, Neighbors(s) is neighborhood

of s in the pseudo-bilingual document, and Pr(t | s) ∝ exp(t⊺s), similar to SGNS.

Although BiVCD is designed to use comparable corpus, in the experiments it is provided

with parallel data (treating two aligned sentences as comparable) to ensure comparability

with other methods.
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3.5. Experiments

The experiments in this section evaluate the different cross-lingual representation learn-

ing approaches on four different tasks — monolingual lexical similarity (Section 3.5.1),

cross-lingual dictionary induction (Section 3.5.2), cross-lingual document classification (Sec-

tion 3.5.3) and cross-lingual dependency parsing (Section 3.5.4). The aim of the monolingual

lexical similarity task is to assess how much the English representation benefits from the

cross-lingual training. On the other hand, the aim of the remaining experiments is to

measure the ability of the cross-lingually trained representations to facilitate transfer of

semantic or syntactic knowledge across languages.

3.5.1. Monolingual Lexical Similarity

The first experiment evaluates if the inclusion of cross-lingual knowledge improves the qual-

ity of English embeddings, by using them for two monolingual lexical semantic tasks.

Word Similarity. Word similarity datasets contain word pairs that are assigned similar-

ity ratings by humans. The task evaluates how well the notion of word similarity according

to humans is emulated in the vector space.

This experiment uses the SimLex word similarity dataset for English (Hill et al., 2014), which

contains 999 word pairs, with a balanced set of noun, adjective and verb pairs. Evaluation is

based on the Spearman’s rank correlation coefficient (Spearman, 1904) between the human

rankings and rankings produced by computing cosine similarity between the vectors of two

words. Improvement is considered statistically significant if p < 0.1 according to Steiger’s

method (Steiger, 1980) for calculating the significance of differences between two dependent

correlation coefficients. The Spearman rank correlation coefficient and Steiger’s test are

described in detail in Appendix A.1.

Table 3 shows the performance of the English embeddings induced using different cross-

lingual alignments on the SimLex word similarity task, for different language pairs. As a
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Lang. Pair Mono BiSkip BiCVM BiCCA BiVCD
English–German 0.29 0.34 0.37 0.30 0.32
English–French 0.30 0.35 0.39 0.31 0.36
English–Swedish 0.28 0.32 0.34 0.27 0.32
English–Chinese 0.28 0.34 0.39 0.30 0.31
avg. 0.29 0.34 0.37 0.30 0.33

Table 3: Word similarity score measured in Spearman’s correlation ratio for English on
SimLex-999. The best score for each language pair is shown in bold. Scores that are
significantly better (per Steiger’s Method with p < 0.1) than the next lower score are
underlined. For example, for English-Chinese, BiCVM is significantly better than BiSkip,
which in turn is significantly better than BiVCD.

baseline, the score obtained by monolingual English embeddings trained on the respective

English side of each language is shown in column marked Mono. For all language pairs

(except for English-Swedish for BiCCA), the bilingually trained vectors achieve better scores

than the mono-lingually trained vectors.

Overall, across all language pairs, BiCVM is the best performing model in terms of Spear-

man’s correlation, but its improvement over BiSkip and BiVCD is often insignificant. It is

notable that 2 of the 3 top performing models, BiCVM and BiVCD, need sentence aligned

and document-aligned corpus only, which are easier to obtain than parallel data with word

alignments required by BiSkip.

Qvec. Qvec is another intrinsic evaluation metric for estimating the quality of English

word vectors, proposed by Tsvetkov et al. (2015). The score produced by Qvec measures

how well a given set of word vectors is able to quantify linguistic properties of words, with

higher being better. Tsvetkov et al. (2015) showed high Qvec scores has strong correlation

with good performance on downstream semantic applications.

Table 4 shows Qvec scores for the English embeddings learnt using different cross-lingual

alignments. On an average, BiSkip achieves the best score across language pairs, followed by

Mono (mono-lingually trained English vectors), BiVCD and BiCCA. A possible explanation

for why Mono scores are better than those obtained by some of the cross-lingual models is
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Lang. Pair Mono BiSkip BiCVM BiCCA BiVCD
English–German 0.39 0.40 0.31 0.33 0.37
English–French 0.39 0.40 0.31 0.33 0.38
English–Swedish 0.39 0.39 0.31 0.32 0.37
English–Chinese 0.40 0.40 0.32 0.33 0.38
avg. 0.39 0.40 0.31 0.33 0.38

Table 4: Intrinsic evaluation of English word vectors measured in terms of Qvec score
across models. Best scores for each language pair is shown in bold.

that Qvec measures monolingual semantic content based on a linguistic oracle made for

English. Cross-lingual training might affect these semantic properties arbitrarily.

Interestingly, BiCVM, which was the best model according to SimLex, ranks last according

to Qvec. The fact that the best models according to Qvec and SimLex are different

reinforces observations made in previous work that performance on word similarity tasks

alone does not reflect quantification of linguistic properties of words (Tsvetkov et al., 2015;

Schnabel et al., 2015).

3.5.2. Cross-lingual Dictionary Induction

The cross-lingual dictionary induction task (Vulić and Moens, 2013; Gouws et al., 2015;

Mikolov et al., 2013b) judges how good cross-lingual embeddings are at detecting word

pairs that are translationally equivalent (e.g., cow in English and vache in French).

The experiment follows the setup of Vulić and Moens (2013), and evaluates if the correct

translation of an English word is present in its top-10 nearest neighbors in the target

language, using the word embeddings and cosine similarity as a measure of distance. Instead

of manually creating a gold cross-lingual dictionary for evaluation, gold dictionaries are

derived using the Open Multilingual WordNet data released by Bond and Foster (2013).

The data includes synset alignments across 26 languages with over 90% accuracy. First,

words from each synset whose corpus frequency is less than 1000 are pruned. Then, for

each pair of aligned synsets s1 = {k1, k2, · · · } s2 = {g1, g2, · · · }, all elements from the set
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l1 l2 BiSkip BiCVM BiCCA BiVCD

English

German 79.7 74.5 72.4 62.5
French 78.9 72.9 70.1 68.8
Swedish 77.1 76.7 74.2 56.9
Chinese 69.4 66.0 59.6 53.2

avg. 76.3 72.5 69.1 60.4

Table 5: Cross-lingual dictionary induction results (top-10 accuracy). The same trend was
also observed across models when computing MRR (mean reciprocal rank).

{(k, g) | k ∈ s1, g ∈ s2} are included in the gold dictionary, where k and g are the lemmas.

Using this approach, dictionaries of sizes 1.5k, 1.4k, 1.0k and 1.6k pairs are constructed

for English–French, English–German, English–Swedish and English–Chinese respectively.

These dictionaries serve as the gold dictionaries for evaluating the cross-lingual embeddings.

Top-10 accuracy is reported in the experiments, which is the fraction of the entries (e, f)

in the gold dictionary for which f belongs to the list of top-10 neighbors of the word vector

of e, according to the induced cross-lingual embeddings. The results are shown in Table 5.

From the results, it can be seen that for dictionary induction, the performance improves

with the quality of supervision. As we move from cheaply supervised methods (e.g., BiVCD)

to more expensive supervision (e.g., BiSkip), the accuracy improves. This suggests that for

cross-lingual similarity tasks, the more expensive the cross-lingual knowledge available, the

better. Models using weak supervision like BiVCD perform poorly in comparison to models

like BiSkip and BiCVM, with performance gaps greater than 10 points on an average.

3.5.3. Cross-lingual Document Classification

To judge how good are these cross-lingual representations at facilitating model transfer for a

downstream semantic task, we use them as features for cross-lingual document classification

(CLDC).

In the CLDC task, a document classifier is trained using the document representations in

language l1, and then the trained model is tested on documents from language l2. The
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l1 l2 BiSkip BiCVM BiCCA BiVCD

English

German 85.2 85.0 79.1 79.9
French 77.7 71.7 70.7 72.0
Swedish 72.3 69.1 65.3 59.9
Chinese 75.5 73.6 69.4 73.0

German

English

74.9 71.1 64.9 74.1
French 80.4 73.7 75.5 77.6
Swedish 73.4 67.7 67.0 78.2
Chinese 81.1 76.4 77.3 80.9

avg. 77.6 73.5 71.2 74.5

Table 6: Cross-lingual document classification accuracy when trained on language l1, and
test on language l2. Best scores for each language is shown in bold. Majority baselines for
English→ l2 and l1 → English are 49.7% and 46.7% respectively, for all languages. Scores
significantly better (per McNemar’s Test, p < 0.05) than the next best score are underlined.
For example, for Swedish → English, BiVCD is significantly better than BiSkip, which is
significantly better than BiCVM.

document representation is computed by taking the TF-IDF (Luhn, 1957; Sparck Jones,

1972; Salton and Buckley, 1988) weighted average of vectors (from the appropriate language)

of the words present in the document. By using supervised training data in one language

and evaluating without further supervision in another, CLDC assesses whether the learned

cross-lingual representations are semantically coherent across multiple languages.

The cross-lingual document classification (CLDC) setup of Klementiev et al. (2012) and the

RCV2 Reuters multilingual corpus2 are used in this experiment. A multi-class classifier is

trained using an averaged perceptron (Freund and Schapire, 1999) for 10 iterations, using

the document vectors of language l1 in the RCV2 corpus as features, and then tested on the

documents in target language l2. When l1 = English (i.e., for the English → l2 direction),

the model is trained on 1000 documents in English and tested on 1800 documents of target

language l2. When l2 = English (i.e., for the l1 → English direction), the model is trained

on 1000 documents of language l1 and tested on 5000 documents of English. Table 6 shows

the classification accuracies of different models across different language pairs.
2http://trec.nist.gov/data/reuters/reuters.html
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l Mono BiSkip BiCVM BiCCA BiVCD
German 71.1 72.0 60.4 71.4 58.9
French 78.9 80.4 73.7 80.2 69.5
Swedish 75.5 78.2 70.5 79.0 64.5
Chinese 73.8 73.1 65.8 71.7 67.0
avg. 74.8 75.9 67.6 75.6 66.8

Table 7: Labeled attachment score (LAS) for dependency parsing when trained and tested
on language l (direct-parsing experiment). Mono refers to parser trained with mono-
lingually induced embeddings. Scores in bold are better than the Mono scores for each
language, showing improvement from cross-lingual training.

Table 6 shows that in almost all cases, BiSkip performs significantly better than the re-

maining models. This suggests that for transferring semantic knowledge across languages

via embeddings, using sentence and word level alignment when training is superior to us-

ing sentence or word level alignment alone. This observation parallels the trend in the

cross-lingual dictionary induction experiments.

It is interesting to note that BiVCD does well on languages like French and Chinese, but

poorly on German and Swedish. A possible reason is that BiVCD assumes a monotonic

alignment between words in documents to create the pseudo-cross-lingual document for

training, which appears to work well with languages with largely the same subject-verb-

object order as English.

3.5.4. Cross-lingual Dependency Parsing

How useful are these cross-lingual representations as features for a downstream syntactic

task? This is evaluated using two experiments — (a) direct-parsing: using representations

for language l1 trained using some cross-lingual signals as features for training a dependency

parser for l1, and (b) model-transfer: training a dependency parser on the English Treebank

and then transferring the model to language l2 via cross-lingual representations.

The direct-parsing experiment evaluates whether using cross-lingually trained vectors is

better than using mono-lingually trained vectors for training dependency parsers. The
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l1 l2 BiSkip BiCVM BiCCA BiVCD

English

German 49.8 47.5 51.3 49.0
French 65.8 63.2 65.9 60.7
Swedish 56.9 56.7 59.4 54.6

avg. 57.5 55.8 58.9 54.8
German

English

49.7 45.0 50.3 43.6
French 53.3 50.6 54.2 49.5
Swedish 48.2 49.0 49.9 44.6

avg. 50.4 48.2 51.5 45.9

Table 8: Labeled attachment score (LAS) for cross-lingual dependency parsing when trained
on language l1, and evaluated on language l2 (model-transfer experiment). The best score
for each language is shown in bold.

comparison is done against parsers trained using mono-lingually trained word vectors. These

vectors are the same used as input to BiCCA. All other settings remain the same.

In the model-transfer experiments, a model is trained using embeddings for language l1 and

then tested on language l2, replacing embeddings for language l1 with those of l2. For these

experiments, the dependency parsing model from Guo et al. (2015) is used. The model

trains a transition-based dependency parser using nonlinear activation function, with the

source-side word embeddings as lexical features. These embeddings can be replaced by

target-side embeddings at test time. The universal dependency treebank (McDonald et al.,

2013) version-2.0 is used for training and evaluation.

The results for the direct-parsing experiments are in Table 7 and the model-transfer exper-

iments are in Table 8. On an average, for both experiments, BiCCA and BiSkip perform

better than other models. BiSkip is a close second to BiCCA, with an average performance

gap of less than 1 point. For the direct-parsing experiment, improvement over the monolin-

gual embeddings (column Mono in Table 7) was obtained with BiSkip and BiCCA, while

BiCVM and BiVCD consistently performed worse. Unlike the semantic transfer tasks con-

sidered earlier, the models with expensive supervision requirements like BiSkip and BiCVM

could not outperform BiCCA, a model with relatively inexpensive requirements, in both the
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experiments. A possible reason for this is that approaches like BiCVM and BiVCD operate

on sentence level contexts to learn the embeddings, which only captures the semantic mean-

ing of the sentences and ignores the internal syntactic structure. As a result, embedding

trained using BiCVM and BiVCD are not informative for syntactic tasks. On the other

hand, approaches like BiSkip and BiCCA both utilize the word alignment information to

train their embeddings and thus do better in capturing some notion of syntax.

3.6. Summary

This chapter provided a review and a unifying perspective of different approaches for learn-

ing distributional word representations cross-lingually. A myriad of approaches of learning

cross-lingual word representations have been proposed, and reviewing all of them is beyond

the scope of the thesis (for a more thorough survey, see Ruder et al. (2018)). Nevertheless,

the general principles and the algorithms in use are more-or-less the same. We saw how

each of these approaches can be viewed as instances of the same algorithm, revealing the

same underlying principle — combine monolingual distributional information with some

form of cross-lingual alignment. Experimental evaluation on different semantic and syn-

tactic tasks revealed some cross-lingual alignments are a natural fit for certain tasks (e.g.,

word level alignments are essential for syntactic transfer), while for others (e.g., dictionary

induction) the performance was correlated with the cost and quality of the cross-lingual

alignment. Nevertheless, all forms of alignments successfully facilitated model transfer (to

varying degrees) across languages, a desiderata of cross-lingual representations.
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CHAPTER 4 : Deriving Cross-lingual Representations from Wikipedia

4.1. Introduction

The previous chapter described different approaches for learning cross-lingual representa-

tions by incorporating various forms of cross-lingual alignments into distributional informa-

tion acquired from unstructured text. In addition to unstructured resources, there are also

structured sources of semantic information, such as encyclopedic resources like Wikipedia.

In this chapter, I discuss an approach for learning cross-lingual representation that uses such

multilingual encyclopedic resources. Unlike the representations discussed in the previous

chapter, all of which appealed to the distributional hypothesis, the representation used in

this chapter appeals to the bag of words hypothesis (Salton et al., 1975; Salton and Buck-

ley, 1988) described in Chapter 2. Specifically, I show how we can exploit the inter-lingual

structure of Wikipedia to apply the bag-of-words hypothesis across languages, and learn

shared sparse semantic representations, that can be used to classify documents in multiple

languages with no supervision.

4.2. Background

This chapter builds on two related research directions — an approach to derive semantic

representations of documents using encyclopedic resources, and an approach to perform

unsupervised document classification. I briefly describe them below.

4.2.1. Explicit Semantic Representations (ESA)

Gabrilovich and Markovitch (2009) noticed that distributional approaches for learning word

representations are completely divorced from efforts to organize world knowledge (like Word-

Net (Miller, 1995), SUMO (Niles and Pease, 2001), CyC (Lenat, 1995)). As a result, these

statistical representations need lots of data to learn relations (e.g. ‘Clinton’ is related to

‘Arkansas’) that are explicitly stated in compiled knowledge resources, because such co-

occurrences might not be frequent enough even in large corpora.
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London 0 2 · · · 3

English

Table 9: Concept-term matrix constructed using the English Wikipedia. Explicit Semantic
Analysis (ESA) representations are derived from the matrix above by reweighing each entry
using TF-IDF and normalizing the columns. Each column describes a word in English using
a “bag-of-concepts” in Wikipedia.

However, learning good representations from such compiled knowledge resources is not

straight-forward. Most of these resources are relatively small in size due to the expensive

manual effort involved in creating them, and are unlikely to scale to large vocabularies.

Nevertheless, this manual effort is necessary to ensure high quality. What is needed is

a resource that compiles human knowledge at scale while maintaining its high quality.

Gabrilovich and Markovitch (2009) argued that Encyclopedias like Wikipedia are one such

resource, and showed how the meaning for words and longer pieces of text can be derived

directly from such encyclopedic resources.

Wikipedia is an collaboratively maintained online encyclopedic resource consisting of de-

scription of entities, events, and technical terms in hypertext document, referred to as

Wikipedia articles (or pages). Wikipedia is constructed by thousands of volunteer editors

around the world, who not only generate content but also ensure its quality. The En-

glish Wikipedia contains over 5 million articles, dwarfing other encyclopedic resources like

Britannica in both size and quality (Giles, 2005), and growing in size every year.1

Gabrilovich and Markovitch (2009) introduced Explicit Semantic Analysis (ESA), a method

to exploit encyclopedic resources like Wikipedia to generate semantic representations of
1An average of 605 articles were added everyday to the English Wikipedia during 2017-2018, according

to https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia.
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words and documents. ESA assumes each Wikipedia article A corresponds to a concept,

and each word can be represented by the concepts that contain it. ESA computes a concept-

term matrix T (such as one shown in Table 9) of size |C| × |V | from Wikipedia, where V is

the vocabulary of the English Wikipedia, and C = {A1, · · · ,A|C|} is the set of Wikipedia

articles, such that each row corresponds to an English Wikipedia article, while each column

corresponds to a word in the vocabulary. The entry T[i, j] denotes the TF-IDF (Luhn, 1957;

Sparck Jones, 1972; Salton and Buckley, 1988) value of the jth word of the vocabulary, in

the Wikipedia page Ai. The matrix T will be sparse, for reasons similar to those discussed

in Section 2.6. The (sparse) explicit semantic representation of word w (whose index in the

vocabulary is i) is the ith column of T,

Φ(w) =

[
Φ(A1, w) . . . Φ(A|C|, w)

]
∈ R|C| (4.1)

where Φ(Ai, w) is the weight indicating how important word w is in the Wikipedia article

Ai. Note that these representations are explicit (as opposed to latent), as the dimensions of

the ESA representation convey meaningful information about concepts relevant to a word,

unlike dense vector representations like LSA.

To generate the representation of a document D using ESA, a TF-IDF weighted average

of the ESA representation of words in the document is computed, as in Section 3.5.3. A

document D can be viewed as an indicator vector over words in the vocabulary,

D =

[
w1 . . . wV

]
∈ R|V | (4.2)

where V is the vocabulary and wi ∈ {0, 1}. If pi is the inverse document frequency (IDF)

of wi in English Wikipedia, then the vector representation for D is,

Φ(D) = 1

V

∑
i

piΦ(wi) (4.3)
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Gottron et al. (2011) showed that ESA are a kind of generalized vector space model (Wong

et al., 1985), where document similarity is affected by correlations between the different

context dimensions (encoded as G), i.e., similarity(x,y) = x⊺Gy.

I will use Φ(D) and Φ(w) to denote the ESA representation of a document D and a word

w respectively in the rest of the chapter.

4.2.2. Dataless Document Classification using ESA

Humans can assign a label to a document without requiring any training examples, sim-

ply by understanding what the label means. However, traditional document classification

approaches treat the labels as atomic symbols (similar to one-hot representations in Chap-

ter 2), without ascribing any meaning to them. As a result, these methods require super-

vision to train a model to map documents to these atomic symbols. How can one assign

a more meaningful representation to both documents and labels so that supervision is not

needed? Chang et al. (2008) showed how one achieve this by using ESA representations

discussed earlier, by representing documents and labels in the same semantic space. As a

result, classification can be done simply by a nearest neighbor search, without requiring any

supervision. They named their approach dataless classification which we describe below.2

Let D denote a document, and {l1, · · · , lm} denote the set of m possible labels that can be

assigned. Chang et al. (2008) assumed that each label li is accompanied by a short descrip-

tion desc(li) that contains prototypical terms that illustrate the semantics of the label. For

instance, the label sport can be described by the terms “baseball basketball hockey” and

the label politics can be described as “democrats gun-rights congress constitution”.

Dataless classification generates representation Φ(D) for a document D and representations

{Φ(l1), . . . ,Φ(lm)} for each of the m labels, in the same semantic space. The document

representation Φ(D) is constructed as above (Equation 4.3), while the label representation
2The name is a bit of a misnomer, as data (from Wikipedia) is being used. It is dataless in the sense that

it is unsupervised.
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en.wikipedia.org/wiki/Albert_Einstein hi.wikipedia.org/wiki/अल्ब र्ट_आइंस्टीन

inter-language linksA
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

B
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 5: Inter-language links in English Wikipedia and Hindi Wikipedia link the corre-
sponding articles that describe the entity Albert_Einstein in both Wikipedias.

is computed by treating its description as a ‘document’. For example, the labels sports and

politics will be assigned representations Φ(desc(sports)) and Φ(desc(politics)) respectively.

As both the documents and the labels now reside in the same space, we can predict the

label(s) that maximizes the similarity of the label and the document representation,

l∗ = argmax
i

Φ(D)⊺Φ(li)

∥Φ(D)∥∥Φ(li)∥
(4.4)

Besides being “dataless”, an attractive property of this approach is that classification can

be done on-the-fly, that is, the label space is not necessarily known in advance. One can

easy operate with a new label at no cost, by simply using it’s description to generate the

label representation at test time.

4.3. Inter-lingual Structure of Wikipedia

While the ESA representations described earlier used the English Wikipedia, Wikipedias

exist in over 250 languages, where each article describes a concept in that language. Fur-

thermore, concepts described in different Wikipedias often overlap, indirectly introducing

information redundancy across languages, as some concepts have articles in more than one

languages. Such articles in Wikipedia are linked through inter-language links. Formally,

an inter-language link Ai ↔ Bj indicates that article Ai in the language l1’s Wikipedia

and article Bj in language l2’s Wikipedia describe the same concept. For instance, Fig-
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Language # Articles Intersection %
German 2.06M 1.06M 52
French 1.87M 1.21M 65
Italian 1.36M 927k 68
Spanish 1.29M 850k 66
Chinese 942k 519k 55
Arabic 521k 330k 63
Turkish 292k 203k 69
Tamil 104k 61k 59
Tagalog 69k 53k 77

Table 10: Statistics showing number of articles in Wikipedias for 9 languages, and the size
of the intersection (as identified by inter-language links) with the English Wikipedia. The
last column shows the relative size of the intersection (in % age). For instance, 52% of
German Wikipedia articles have an English Wikipedia counterpart.

ure 5 shows that the article अġबटă_आइंĥटीन in the Hindi Wikipedia corresponds to the article

Albert_Einstein in the English Wikipedia. These inter-language links identify the same

concept in different Wikipedias, thereby unifying the concepts across languages. Table 10

shows the statistics of the number of articles in Wikipedias for 9 languages, along with the

size of the intersection of the respective Wikipedia with the articles in English Wikipedia.

4.4. Cross-lingual ESA (CLESA)

How can one learn ESA representations for words outside the English vocabulary? The fact

that one can resolve Wikipedia articles written in different languages to the same concept

can help us define cross-lingual extension of ESA representations, henceforth referred as

CLESA. CLESA appeals to the bag-of-words hypothesis across words in different languages

— if a word in language l1 (e.g., ȟŌकेटर in Hindi) and a word in language l2 (e.g., cricketer

in English) describe similar concepts in their respective Wikipedias, then they are similar.3

For generating CLESA vectors for languages l1 and l2 with C1 and C2 articles each, the

concept-term matrix has to be constructed appropriately. First, the concept space C ′ is com-
3The Hindi word translates to cricketer.
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London 0 2 · · · 3 10 12 · · · 2 0 0 · · · 2
English Spanish Hindi

Table 11: Concept-term matrix constructed using the English, Spanish and Hindi
Wikipedias (compare to Table 9). From left to right, the words in Spanish and Hindi trans-
late to tower, big, politician, olympic, democratic, hawaii respectively. The term counts are
computed in the respective article in the Spanish or Hindi Wikipedia. CLESA representa-
tions are derived from this matrix by weighing each entry using TF-IDF and normalizing
the columns. Each column describes a word using a “bag-of-concepts” in Wikipedia.

puted by identifying concepts that have articles in both l1’s Wikipedia and l2’s Wikipedia,

C ′ = {C1, . . . , C|C′|} = {. . . ,Ai, . . .} ∩ {. . . ,Bj , . . .} (4.5)

Here the intersection is computed by identifying corresponding articles Ai ↔ Bj using

the inter-language links, ignoring articles with no counterparts. Next, the vocabulary V ′

is extended to languages other than English by computing it over the Wikipedia of the

relevant languages. This way, a concept-term matrix of size C ′ × V ′ is constructed, where

V ′ = V1 ∪ V2 is the union of vocabularies of Wikipedia in different languages and C ′ is the

intersection of concepts appearing in l1’s and l2’s Wikipedia. An example concept-term

matrix for English, Spanish and Hindi is shown in Table 11. The CLESA representation of

a word w ∈ V ′ can be defined similar to Equation (4.1),

Φ(w) ≜
[
Φ(C1, w) . . . Φ(C|C′|, w)

]
∈ R|C′| (4.6)

The document and the label representation can be defined similarly.
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Other Cross-lingual ESA Variants. Other cross-lingual extensions of ESA that are

similar to ours have also been proposed. Potthast et al. (2008) and Sorg and Cimiano (2012)

generated ESA like representations for performing cross-lingual information retrieval. Inde-

pendent to us, Søgaard et al. (2015) used an inverted index constructed from Wikipedia to

represent words using Wikipedia concepts, and used these as features for performing down-

stream tasks like POS tagging, word alignment, document classification and dependency

parsing. Later, Camacho-Collados et al. (2016) developed NASARI representation using

inter-language links in Wikipedia, with the goal of performing lexical semantic tasks like

word sense clustering across languages. Though superficially different, the underlying idea

among all these works are the same as ours.

4.5. Experimental Setup and Experiments

The aim of the experiments is to: (a) quantify the effectiveness of CLESA based document

classification in terms of number of labeled examples needed to achieve similar performance.

(b) determine if CLESA based document classification superior to monolingual ESA based

document classification in the target language.

Building CLESA. First the relevant Wikipedias were tokenized using Lucene’s tok-

enizer4, and articles with <100 words or <5 inter-language links were removed. This step

removes short articles and disambiguation pages from the respective Wikipedias. The re-

maining articles were used to construct the concept-term matrix for CLESA by creating an

inverted index using Lucene. For classification, the label space is assumed to be provided

in English. For language L the CLESA concept-term matrix is computed by considering

the intersection of the Wikipedia articles with English, as described above.
4http://lucene.apache.org
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Figure 6: Comparing CLESA based document classification with supervised classification
on the TED dataset (averaged macro-F1 scores over 15 labels) for 7 languages — English
(en), Arabic (ar), German (de), Spanish (es), Dutch (nl), Turkish (tr) and Chinese (zh).

4.5.1. CLESA v/s Supervised Classification

This experiment compares CLESA based document classification with a fully supervised

model on the TED dataset5, and a model trained using 10% and 15% of the supervision,

sampled randomly over 10 different runs (the scores are averaged). The TED dataset

contains ≈1200 labeled documents in total (1000 train + 200 test) per language, with a

label space of 15 topic labels. A ℓ2-regularized linear support vector machine trained using

bag-of-words features is used as the supervised method. Results are in Figure 6.

Figure 6 shows that CLESA based dataless classification is comparable to supervised learn-

ing with 10% labeled data (100 examples), and a little worse than supervised learning with

15% labeled data (150 examples). This suggests that one can get accuracy competitive

to that of a supervised classifier with 100 examples using the unsupervised CLESA based

document classification, which is an encouraging result.
5http://www.clg.ox.ac.uk/tedcldc.html

51

http://www.clg.ox.ac.uk/tedcldc.html


range
metric(p) accuracy@1 accuracy@3

Mono CLESA Mono CLESA
1 ≥ p ≥ 0.9 2 20 5 28
0.9 > p ≥ 0.8 7 8 9 8
0.8 > p ≥ 0.7 10 7 16 8
0.7 > p ≥ 0 69 53 58 44

Table 12: Comparing monolingual ESA (Mono) and cross-lingual ESA (CLESA) for clas-
sification on translated documents from 20-Newsgroup. The table shows the number of
languages which achieve accuracies in a certain range with a given ESA representation
(Mono or CLESA). For instance, CLESA achieves accuracy@1 in the range of 70% to 80%
(i.e., 0.8 > p ≥ 0.7) for 7 languages. It can be seen that CLESA achieves high accura-
cies (e.g., accuracy@1 lies in 1 ≥ p ≥ 0.9) for 20 languages, whereas the same is true for
monolingual ESA for 2 languages only.

4.5.2. CLESA v/s Monolingual ESA

An alternative approach to perform cross-lingual document classification is to first translate

the label space to the target language and then perform monolingual ESA based classifica-

tion. This experiment compares this approach with CLESA based document classification.

The test set is constructed by translating a set of 100 English documents from the 20-

Newsgroup dataset (Lang, 1995) and their label descriptions to language L (all 88 languages

supported by Google Translate). Then, monolingual ESA representations are constructed

using language L’s Wikipedia, and used for dataless document classification. The results

are compared to CLESA based document classification results in Table 12.

From Table 12, it can be seen that CLESA achieves high accuracies (1 ≥ p ≥ 0.9) for

a larger number of languages (for instance, 20 compared to 2 for accuracy@1) compared

to monolingual ESA based classification. This suggests that even though the number of

concepts used for CLESA is less than the monolingual ESA, CLESA is successful for more

languages. This result shows that benefit of sharing information across languages through

a shared semantic space, rather than using a monolingual semantic space.

52



4.6. Summary

This chapter described an approach to learn cross-lingual word representations using mul-

tilingual encyclopedic resources like Wikipedia by appealing to the bag-of-words hypoth-

esis. Key to this was the inter-lingual structure of Wikipedia, arising from information

redundancy across Wikipedias in different languages, that allowed us to identify equivalent

concepts in two or more languages. These representations can then be used in a ‘dataless’

classification approach for labeling documents in an unsupervised manner, by projecting the

document and labels in the same semantic space. Unlike the representation in the previous

chapters, these cross-lingual representations were explicit and hence interpretable, where

the dimensions correspond to concepts in Wikipedia to which the word is relevant.

Interesting extensions to ESA and CLESA remain open. For instance, hybrid approaches

that combine the distributional information extracted from corpus co-occurrences with the

explicit representation of ESA/CLESA could combine the benefits of both these paradigms.

A limitation of ESA and CLESA like representations that all word co-occurrences in the

same document are considered equal regardless of the distance between the words, something

accounted for in distributional representations like SGNS and GloVe. Hybrid approaches

can potentially alleviate this limitation. Extensions of CLESA can also be developed by,

say, comparing concepts that behave similarly over time as in Radinsky et al. (2011) across

languages. Such meta-data is available in the form article revision histories in Wikipedia.

Other structural properties of Wikipedia, like article link structure or category information,

can also be incorporated to learn better ESA/CLESA representations (Scholl et al., 2010).
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CHAPTER 5 : Multi-sense Representation Learning with Cross-lingual Signals

5.1. Introduction

Traditional distributional word representations encode the meaning of a word in a single vec-

tor. This does not allow a word to have different meanings (or senses) in different contexts,

and thus these representations are unable to reflect polysemy. For instance, the meaning

of the word screen is different in a medical context and an electronics context, something a

single vector cannot adequately capture. Several algorithms that rely on the “one-sense per

collocation” hypothesis of Yarowsky (1993, 1995) have been developed to learn multi-sense

representations, which allow a single word to have multiple representations, one for each

sense. However, this hypothesis provides only a weak signal for sense identification, and

such algorithms require large amount of training data to learn good sense representations.

In this chapter, I describe an approach to learning multi-sense word representation using

cross-lingual translational information and non-parametric sense modeling. Experiments

show that after training on a small multilingual corpus, this approach achieves performance

competitive to a model trained monolingually on a much larger corpus.

Why do we expect incorporating cross-lingual translational information to aid in learning

sense representations? The intuition behind this is a well established fact in the literature

that different senses of the same word may be translated into different words in another

language (Dagan and Itai, 1994; Resnik and Yarowsky, 1999; Diab and Resnik, 2002; Ng

et al., 2003). For example, bank in English may be translated to banc or banque in French,

depending on whether the sense is financial or geographical. Such bilingual translational in-

formation indirectly allows the model to identify which sense of a word is being used. Indeed,

many recent work on learning multi-sense embeddings using cross-lingual signals (Bansal

et al., 2012; Guo et al., 2014; Kawakami and Dyer, 2015; Šuster et al., 2016). I build upon

this line of work, and discuss why using more than two languages to derive the translational

information is an improvement on this idea.
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5.2. Related Work — Representing Word Senses

I first review different approaches to learn sense-specific word representations, and place

our work in their context. These approaches can be broadly categorized into two categories

— approaches that utilize lexical resources, and approaches that are purely data-driven.1

5.2.1. Sense Representations using Lexical Resources

Over the past few decades, many efforts have been made to organize lexical semantic knowl-

edge with some resources like WordNet (Miller, 1995), FrameNet (Baker et al., 1998), Babel-

Net (Navigli and Ponzetto, 2012) etc., also listing word senses. Naturally, many representa-

tion learning approaches have attempted at combining distributional information extracted

from raw corpora with information available in these manually created lexical resources.

I describe some of the recent work in this direction below, and discuss the limitation of

relying on such lexical resources.

Incorporating knowledge expressed in lexical resources into word representations is not a

new idea. Early work in this direction was done by Mohammad et al. (2008) and Yih et al.

(2012), who combined relations expressed in a thesaurus (Roget, 1852) with distributional

representations for differentiating synonyms from antonyms. A more recent line of work

that uses lexical resource is that of retrofitting (Faruqui et al., 2015a; Jauhar et al., 2015),

which infuses lexical semantic resources like WordNet, FrameNet, PPDB (Ganitkevitch

et al., 2013), ConceptNet (Speer et al., 2017) into embeddings during a post-processing

step. Retrofitting takes as input vector-based word representations and a graph expressing

semantic relations between words, and adjusts the word representations such that remain

close to their original representations and close to the “neighbors” in the graph.

The most popularly used lexical semantic resource among the ones listed above is WordNet.

WordNet (Miller, 1995) is a relation graph describing relationships between nodes denoting

synsets, where each synset is set of sense-specific word lemmas that are synonymous. A
1Also referred as knowledge-based and unsupervised approaches (Camacho-Collados and Pilehvar, 2018).
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WordNet Search - 3.1

- WordNet home page - Glossary - Help

Adjective

wicked
wicked

wicked

wicked

wicked

Figure 7: Senses listed in WordNet for the word wicked when used as an adjective. None of
the senses listed reflect the sense of wicked in the sentence, “Tony Hawk did a wicked ollie
at the convention”, where wicked is used as an adjective denoting awesome-ness.

polysemous word lemma belongs to multiple synsets, one for each sense. For instance, the

lemma good belongs to the synsets good.a.01 and commodity.n.01, one for its sense used as an

adjective (beneficial), and one for its sense used as a noun (commercial object). Relations

such as hypernymy, holonymy etc., are encoded using edges between the synsets nodes.

Every lemma belonging to a synset is also associated with a sense frequency, denoting

how many times that sense of the lemma was used in a sense-tagged corpus. The sense

frequencies in WordNet were estimated using the 220k word SemCor corpus (Miller et al.,

1993) that was manually tagged with the WordNet senses.

Limitation of Lexical Resources. While resources like WordNet are available for many

languages (Bond and Foster, 2013), they are not exhaustive in listing all possible senses for

the words listed therein. For instance, Figure 7 shows the senses for wicked listed in the

English WordNet, and how none describe the sense of wicked in “Tony Hawk did a wicked

ollie at the convention”.2 Indeed, the number senses of a word is highly dependent on the

task and cannot be pre-determined using a lexicon, as argued by Kilgarriff (1997). For
2Tony Hawk is a professional skateboarder. An ollie is skateboarding trick.
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instance, the sense frequency estimates are hardly representative of all polysemous words

in WordNet — Bennett et al. (2016) found out that approximately 61% of the polysemous

lemmas have no sense annotations in WordNet 3.0, with only 20% having at least 5 sense

annotations. Similarly, some of these resources are automatically created (like BabelNet),

and thus may contain incorrect or noisy sense annotations. It is clear that all such lexical

resources are incomplete in some form (either the sense is not listed, or the word itself is

not present), and are likely to remain so, as language is ever-changing.

Ideally, the word senses should be inferred in a data-driven manner, so that new senses

not listed in such lexicons can be discovered. This necessitates the need for developing

data-driven approaches to identify the different senses of a word.

5.2.2. Data-driven Sense Representations

Data driven approaches induce word senses in an unsupervised manner from un-annotated

corpora, and hold appeal that they can discover new senses of a word that are not listed

in any lexical resource. However, learning sense representations in a data-driven manner

is complicated by the fact that no large sense-annotated corpora exists. As a result, data-

driven approaches by appealing to the one-sense per collocation hypothesis of Yarowsky

(1993, 1995). I categorize data-driven approaches for inducing multi-sense embeddings by

the learning paradigms they adopt — two-staged approaches and joint learning approaches.

Two-staged approaches. Two-staged approaches first compute some context representa-

tions from a raw corpus, that are then used derive sense representations. Popular examples

are (Reisinger and Mooney, 2010; Huang et al., 2012), who induce multi-sense embed-

dings by first clustering the contexts in which a given word appears, and then using the

clustering to obtain the sense vectors for that word. The contexts can be topics induced

using latent topic models (Liu et al., 2015a,b), or Wikipedia (Wu and Giles, 2015) or coarse

part-of-speech tags (Qiu et al., 2014).

A few two-staged approaches also utilize the cross-lingual translational information dis-
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cussed earlier (Bansal et al., 2012; Guo et al., 2014). For instance, Guo et al. (2014) first

sense-tag and project sense annotations using bilingual parallel data, and then learn multi

sense representations using a standard neural language modeling objective. This approach

ignores any monolingual distributional signal to differentiate senses, and may suffer when

the bilingual signal is not sufficient (as I shortly discuss in Section 5.2.3).

Joint Learning Approaches. In contrast to two staged approaches, some approaches

(Neelakantan et al., 2014; Li and Jurafsky, 2015) jointly learn the sense clusters and sense-

specific embeddings by maximizing a SGNS-like learning objective (Section 2.9), using

Bayesian non-parametrics. Neelakantan et al. (2014) proposed two models to learn fixed or

dynamic number of sense vectors for each word using a modified version of the skip-gram

objective. First, the sense representation of the current word is predicted as the vector that

is closest to its averaged context representation. This vector is then used for the gradient

update. In their dynamic version, Neelakantan et al. (2014) increase the number of sense

vectors when the similarity of the current context representation with each of the existing

sense vectors is less than a hyper-parameter λ. Li and Jurafsky (2015) build on (Neelakan-

tan et al., 2014) in a more principled manner, using a Chinese Restaurant Process (CRP)

to decide if the current appearance of a word is an old sense or a new one (sit on an existing

“table” or a new “table” in CRP).

Our Approach. Our approach belongs to the joint learning category. Specifically, we

learn multi-sense representations using a multilingual variant of the skip-gram model that

dynamically adds new sense vectors for a word using Bayesian non-parametrics. The closest

non-parametric approach to ours is that of Bartunov et al. (2016), who proposed a multi-

sense variant of the skip-gram model that learns the different number of sense vectors for

all words from a large monolingual corpus (in their case, the English Wikipedia). Our work

can be viewed as the multi-view extension of their model, leveraging both monolingual and

cross-lingual distributional signals as the views of the data. In our experiments, we compare

our model to monolingually trained version of their model.
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5.2.3. Motivation for Our Work

As stated in the introduction, the motivation behind incorporating cross-lingual transla-

tional information to aid in learning sense representations was that different senses of the

same word may be translated into different words in another language. Many works used

this fact by exploiting bilingual parallel corpora to derive the signal (Bansal et al., 2012;

Guo et al., 2014; Kawakami and Dyer, 2015; Šuster et al., 2016).

However, bilingual translational signals often do not suffice. It is possible that polysemy

for a word survives translation. Figure 8 shows an illustrative example — both senses of

interest get translated to intérêt in French. However, this becomes much less likely as the

number of languages under consideration grows. For instance, by considering the Chinese

translation in Figure 8, it can be seen that these senses translate to different surface forms

in Chinese. Note that the opposite can also happen (i.e., same surface forms in Chinese, but

different in French). Inspired by this, this chapter proposes a model that can use multiple

languages to indirectly identify the sense of a word and learn multi-sense representations.

I got high [interest] on 
my savings from the bank.

My [interest] lies in History.

Je suis un grand [intérêt] sur mes 
économies de la banque.

Mon [intérêt] réside dans l'Histoire.

[ ]

[ ]

Figure 8: Benefit of Multilingual Information (beyond bilingual): Two different
senses of the word interest and their translations to French and Chinese (word translation
shown in [bold]). While the surface form of both senses of interest are same in French,
they are different in Chinese, illustrating the benefit of having more than two languages.

5.3. Model Description

Let us define some notation before describing the model. Let E = {xe1, .., xei , .., xeNe
} denote

the words of the English side and F = {xf1 , .., x
f
i , .., x

f
Nf
} denote the words of the non-

English side of the parallel corpus. We assume that we have word alignments Ae→f and

Af→e mapping words in English sentence to their translation in non-English sentence (and

vice-versa), so that xe and xf are aligned if Ae→f (x
e) = xf .
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We define Neighbors(x, L, d) as the neighborhood in language L of size d (on either side)

around word x in its sentence. The English and non-English neighboring words are denoted

by ye and yf , respectively. Note that ye and yf need not be translations of each other. Each

word xf in the non-English vocabulary is associated with a dense vector xf in Rm, and each

word xe in English vocabulary admits at most T sense vectors, with the kth sense vector

denoted as xe
k. A context vector is maintained for each word in the English and non-English

vocabularies. The context vector is used as the representation of the word when it appears

as the context for another word. As our main goal is to model multiple senses for words in

English, we do not model polysemy in the non-English language and use a single vector to

represent each word in the non-English vocabulary.

The joint conditional distribution of the context words ye, yf given an English word xe and

its corresponding translation xf on the parallel corpus is defined as,

Pr(ye, yf | xe, xf ;α, θ), (5.1)

where θ are model parameters, i.e., all sense and context representations, and hyper-

parameter α governs the prior on latent senses described below.

By indexing the senses of xe by the random variable z, Equation (5.1) can be rewritten as,

∫
β

∑
z
Pr(ye, yfz, β | xe, xf , α; θ)dβ

where β are the parameters determining the model probability on each sense for xe (i.e., the

weight on each possible value for z). We place a Dirichlet process (Ferguson, 1973) prior

on sense assignment for each word. Thus, adding the word-x subscript to emphasize that

these are word-specific senses,

Pr(zx = k | βx) = βxk
∏k−1

r=1
(1− βxr) (5.2)

βxk | α
ind∼ Beta(βxk | 1, α), k = 1, . . . . (5.3)
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That is, each of the potentially infinite senses for word x have their probability determined

by a sequence of independent stick-breaking weights, βxk, from the constructive definition of

the Dirichlet Process (Sethuraman, 1994). The hyper-parameter α (or prior concentration)

provides information on the number of senses we expect to observe in our corpus.

After conditioning upon word sense, the context probability decomposes as,

Pr(ye, yf | z, xe, xf ; θ) = Pr(ye | xe, xf , z; θ) · Pr(yf | xe, xf , z; θ). (5.4)

Both the first and the second terms are sense-dependent, and each factors as,

Pr(y |xe, xf , z=k; θ) ∝ Ψ(xe, z=k, y) ·Ψ(xf , y) (5.5)

where Ψ(xe, z=k, y) = exp(y⊺xe
k) and Ψ(xf , y) = exp(y⊺xf ) (5.6)

where xe
k is the representation corresponding to the kth sense of the word xe, and y is the

representation of either ye or yf . The factor Ψ(xe, z = k, y) use the corresponding sense

vector in a skip-gram-like formulation. This results in total of 4 factors,

Pr(ye, yf | z, xe, xf ; θ) ∝ Ψ(xe, z, ye) ·Ψ(xf , yf ) ·Ψ(xe, z, yf ) ·Ψ(xf , ye) (5.7)

Figure 9 illustrates each factor. This approach is reminiscent of the BiSkip model of Luong

et al. (2015b) from Section 3.4.1. BiSkip jointly learnt representations for two languages l1

and l2 by optimizing an objective containing 4 skip-gram terms for the aligned pair (xe,xf )

— two predicting monolingual contexts l1 → l1, l2 → l2 , and two predicting cross-lingual

contexts l1 → l2, l2 → l1.
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The	bank	paid	me	[interest]	on	my	savings.	

la	banque	m'a	payé	des	[intérêts]	sur	mes	économies.

 (interest, 2, banque)
<latexit sha1_base64="LQkmIDr6IG+SWIro9nqWlhEVfIU=">AAACMnicbVBNSwMxEM36bf2qevQSLEIFKbtF0KPoRW8VrC20S8lmpxrMZtdkVizL/iYv/hLBgx4U8eqPMF170NaBhMd7bzKZFyRSGHTdF2dqemZ2bn5hsbS0vLK6Vl7fuDRxqjk0eSxj3Q6YASkUNFGghHaigUWBhFZwczLUW3egjYjVBQ4S8CN2pURfcIaW6pXPug0jql2Ee8yKu3gyC2QKeSYUggaDeb5X35vwaAjzLGDq1lrzXdorV9yaWxSdBN4IVMioGr3yUzeMeRqBQi6ZMR3PTdDPmEbBJeSlbmogYfyGXUHHQsUiMH5WzM7pjmVC2o+1PQppwf7uyFhkzCAKrDNieG3GtSH5n9ZJsX/o282TFEHxn0H9VFKM6TA/GgoNHOXAAsa1sH+l/Jppxm1UpmRD8MZXngSX9Zrn1rzz/crR8SiOBbJFtkmVeOSAHJFT0iBNwskDeSZv5N15dF6dD+fzxzrljHo2yZ9yvr4BqG2tZw==</latexit><latexit sha1_base64="LQkmIDr6IG+SWIro9nqWlhEVfIU=">AAACMnicbVBNSwMxEM36bf2qevQSLEIFKbtF0KPoRW8VrC20S8lmpxrMZtdkVizL/iYv/hLBgx4U8eqPMF170NaBhMd7bzKZFyRSGHTdF2dqemZ2bn5hsbS0vLK6Vl7fuDRxqjk0eSxj3Q6YASkUNFGghHaigUWBhFZwczLUW3egjYjVBQ4S8CN2pURfcIaW6pXPug0jql2Ee8yKu3gyC2QKeSYUggaDeb5X35vwaAjzLGDq1lrzXdorV9yaWxSdBN4IVMioGr3yUzeMeRqBQi6ZMR3PTdDPmEbBJeSlbmogYfyGXUHHQsUiMH5WzM7pjmVC2o+1PQppwf7uyFhkzCAKrDNieG3GtSH5n9ZJsX/o282TFEHxn0H9VFKM6TA/GgoNHOXAAsa1sH+l/Jppxm1UpmRD8MZXngSX9Zrn1rzz/crR8SiOBbJFtkmVeOSAHJFT0iBNwskDeSZv5N15dF6dD+fzxzrljHo2yZ9yvr4BqG2tZw==</latexit><latexit sha1_base64="LQkmIDr6IG+SWIro9nqWlhEVfIU=">AAACMnicbVBNSwMxEM36bf2qevQSLEIFKbtF0KPoRW8VrC20S8lmpxrMZtdkVizL/iYv/hLBgx4U8eqPMF170NaBhMd7bzKZFyRSGHTdF2dqemZ2bn5hsbS0vLK6Vl7fuDRxqjk0eSxj3Q6YASkUNFGghHaigUWBhFZwczLUW3egjYjVBQ4S8CN2pURfcIaW6pXPug0jql2Ee8yKu3gyC2QKeSYUggaDeb5X35vwaAjzLGDq1lrzXdorV9yaWxSdBN4IVMioGr3yUzeMeRqBQi6ZMR3PTdDPmEbBJeSlbmogYfyGXUHHQsUiMH5WzM7pjmVC2o+1PQppwf7uyFhkzCAKrDNieG3GtSH5n9ZJsX/o282TFEHxn0H9VFKM6TA/GgoNHOXAAsa1sH+l/Jppxm1UpmRD8MZXngSX9Zrn1rzz/crR8SiOBbJFtkmVeOSAHJFT0iBNwskDeSZv5N15dF6dD+fzxzrljHo2yZ9yvr4BqG2tZw==</latexit><latexit sha1_base64="LQkmIDr6IG+SWIro9nqWlhEVfIU=">AAACMnicbVBNSwMxEM36bf2qevQSLEIFKbtF0KPoRW8VrC20S8lmpxrMZtdkVizL/iYv/hLBgx4U8eqPMF170NaBhMd7bzKZFyRSGHTdF2dqemZ2bn5hsbS0vLK6Vl7fuDRxqjk0eSxj3Q6YASkUNFGghHaigUWBhFZwczLUW3egjYjVBQ4S8CN2pURfcIaW6pXPug0jql2Ee8yKu3gyC2QKeSYUggaDeb5X35vwaAjzLGDq1lrzXdorV9yaWxSdBN4IVMioGr3yUzeMeRqBQi6ZMR3PTdDPmEbBJeSlbmogYfyGXUHHQsUiMH5WzM7pjmVC2o+1PQppwf7uyFhkzCAKrDNieG3GtSH5n9ZJsX/o282TFEHxn0H9VFKM6TA/GgoNHOXAAsa1sH+l/Jppxm1UpmRD8MZXngSX9Zrn1rzz/crR8SiOBbJFtkmVeOSAHJFT0iBNwskDeSZv5N15dF6dD+fzxzrljHo2yZ9yvr4BqG2tZw==</latexit>

 (interets, savings)
<latexit sha1_base64="qR0L58GiUA0rBjG8Jmajqysfe3c=">AAACMXicbVDLSgMxFM34rPVVdelmsAgVpMyIoMuimy4r2Ae0pWTS2zY0kxmSO8UyzC+58U/ETReKuPUnzEy70NYLCYdzzs3NPV4ouEbHmVlr6xubW9u5nfzu3v7BYeHouKGDSDGos0AEquVRDYJLqCNHAa1QAfU9AU1vfJ/qzQkozQP5iNMQuj4dSj7gjKKheoVqp6Z5qYPwhHF2Z0/GCvpJzCWCAtRJcrli8EQESazphMuhMVzke4WiU3aysleBuwBFsqhar/Da6Qcs8kEiE1TrtuuE2I2pQs4EJPlOpCGkbEyH0DZQUh90N86mJ/a5Yfr2IFDmSLQz9ndHTH2tp75nnD7FkV7WUvI/rR3h4LZrNg8jBMnmgwaRsDGw0/jsPlfAUEwNoExx81ebjaiizESl0xDc5ZVXQeOq7Dpl9+G6WLlbxJEjp+SMlIhLbkiFVEmN1Akjz+SNvJMP68WaWZ/W19y6Zi16Tsifsr5/AIXRrWg=</latexit><latexit sha1_base64="qR0L58GiUA0rBjG8Jmajqysfe3c=">AAACMXicbVDLSgMxFM34rPVVdelmsAgVpMyIoMuimy4r2Ae0pWTS2zY0kxmSO8UyzC+58U/ETReKuPUnzEy70NYLCYdzzs3NPV4ouEbHmVlr6xubW9u5nfzu3v7BYeHouKGDSDGos0AEquVRDYJLqCNHAa1QAfU9AU1vfJ/qzQkozQP5iNMQuj4dSj7gjKKheoVqp6Z5qYPwhHF2Z0/GCvpJzCWCAtRJcrli8EQESazphMuhMVzke4WiU3aysleBuwBFsqhar/Da6Qcs8kEiE1TrtuuE2I2pQs4EJPlOpCGkbEyH0DZQUh90N86mJ/a5Yfr2IFDmSLQz9ndHTH2tp75nnD7FkV7WUvI/rR3h4LZrNg8jBMnmgwaRsDGw0/jsPlfAUEwNoExx81ebjaiizESl0xDc5ZVXQeOq7Dpl9+G6WLlbxJEjp+SMlIhLbkiFVEmN1Akjz+SNvJMP68WaWZ/W19y6Zi16Tsifsr5/AIXRrWg=</latexit><latexit sha1_base64="qR0L58GiUA0rBjG8Jmajqysfe3c=">AAACMXicbVDLSgMxFM34rPVVdelmsAgVpMyIoMuimy4r2Ae0pWTS2zY0kxmSO8UyzC+58U/ETReKuPUnzEy70NYLCYdzzs3NPV4ouEbHmVlr6xubW9u5nfzu3v7BYeHouKGDSDGos0AEquVRDYJLqCNHAa1QAfU9AU1vfJ/qzQkozQP5iNMQuj4dSj7gjKKheoVqp6Z5qYPwhHF2Z0/GCvpJzCWCAtRJcrli8EQESazphMuhMVzke4WiU3aysleBuwBFsqhar/Da6Qcs8kEiE1TrtuuE2I2pQs4EJPlOpCGkbEyH0DZQUh90N86mJ/a5Yfr2IFDmSLQz9ndHTH2tp75nnD7FkV7WUvI/rR3h4LZrNg8jBMnmgwaRsDGw0/jsPlfAUEwNoExx81ebjaiizESl0xDc5ZVXQeOq7Dpl9+G6WLlbxJEjp+SMlIhLbkiFVEmN1Akjz+SNvJMP68WaWZ/W19y6Zi16Tsifsr5/AIXRrWg=</latexit><latexit sha1_base64="qR0L58GiUA0rBjG8Jmajqysfe3c=">AAACMXicbVDLSgMxFM34rPVVdelmsAgVpMyIoMuimy4r2Ae0pWTS2zY0kxmSO8UyzC+58U/ETReKuPUnzEy70NYLCYdzzs3NPV4ouEbHmVlr6xubW9u5nfzu3v7BYeHouKGDSDGos0AEquVRDYJLqCNHAa1QAfU9AU1vfJ/qzQkozQP5iNMQuj4dSj7gjKKheoVqp6Z5qYPwhHF2Z0/GCvpJzCWCAtRJcrli8EQESazphMuhMVzke4WiU3aysleBuwBFsqhar/Da6Qcs8kEiE1TrtuuE2I2pQs4EJPlOpCGkbEyH0DZQUh90N86mJ/a5Yfr2IFDmSLQz9ndHTH2tp75nnD7FkV7WUvI/rR3h4LZrNg8jBMnmgwaRsDGw0/jsPlfAUEwNoExx81ebjaiizESl0xDc5ZVXQeOq7Dpl9+G6WLlbxJEjp+SMlIhLbkiFVEmN1Akjz+SNvJMP68WaWZ/W19y6Zi16Tsifsr5/AIXRrWg=</latexit>

 (interest, 2, savings)
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Figure 9: The aligned pair (interest,intérêt) is used to predict monolingual and cross-lingual
context in both languages (see factors in Equation (5.7)). Each sense vector (here 2nd is
shown) for interest, participates in the update. Only the polysemy in English is modelled.

5.4. Learning and Disambiguation

Learning. Learning involves maximizing the log-likelihood,

Pr(ye, yf | xe, xf ;α, θ) =
∫
β

∑
z
Pr(ye, yf , z, β | xe, xf , α; θ)dβ (5.8)

for which a variational approximation is used. Let q(z, β) = q(z) · q(β) where

q(z) =
∏
i

q(zi) q(β) =
V∏

w=1

T∏
k=1

βwk (5.9)

are the fully factorized variational approximation of the true posterior in Equation 5.8,

where V is the size of English vocabulary, and T is the maximum number of senses for any

word. The optimization problem solves for θ, q(z) and q(β) using the stochastic variational

inference technique (Hoffman et al., 2013) similar to Bartunov et al. (2016).

The resulting learning algorithm is shown as Algorithm 2. The first for-loop (line 1) updates

the English sense vectors using the cross-lingual and monolingual contexts. First, the

expected sense distribution for the current English word w is computed using the current

estimate of q(β) (line 4). The sense distribution is updated (line 8) using the combined

monolingual and cross-lingual contexts (line 6) and re-normalized (line 10). Using the

updated sense distribution q(β)’s sufficient statistics is re-computed (line 11) and the global
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Algorithm 2 Pseudocode of Learning Algorithm
Input:

Parallel corpus E = {xe1, .., xei , .., xeNe
} and F = {xf1 , .., x

f
i , .., x

f
Nf
}

Word alignments Ae→f and Af→e

Hyper-parameters:
Prior concentration α and maximum number of allowed senses T , window sizes d, d′

Output: θ, q(β), q(z)
1: for i = 1 to Ne do ▷ Update English vectors.
2: w ← xei
3: for k = 1 to T do
4: zik ← Eq(βw)[logPr(zi = k|, xei )]
5: end for
6: yc ← Neighbors(xei , E, d) ∪ Neighbors(xfi , F, d′) ∪ {xfi } where xfi = Ae→f (x

e
i )

7: for y in yc do
8: sense-update(xei , y, zi)
9: end for

10: Re-normalize zi using softmax
11: Update sufficient statistics for q(β) like Bartunov et al. (2016)
12: Update θ using Equation (5.10)
13: end for
14: for i = 1 to Nf do ▷ Jointly update non-English vectors.
15: yc ← Neighbors(xfi , F, d) ∪ Neighbors(xei , E, d′) ∪ {xei} where xei = Af→e(x

f
i )

16: for y in yc do
17: skip-gram-update(xfi , y)
18: end for
19: end for
20: procedure sense-update(xi, y, zi)
21: zik ← zik + logPr(y | xi, k, θ)
22: end procedure

parameter θ is updated (line 12) as follows,

θ ← θ + ρt∇θ

∑
k|zik>ϵ

∑
y∈yc

zik logPr(y|xi, k, θ) (5.10)

Note that in the above sum, a sense participates in an update only if its probability exceeds

a threshold ϵ (= 0.001). The final model retains sense vectors whose sense probability

exceeds the same threshold. The last for-loop (line 14) jointly optimizes the non-English

representations using English context with the standard skip-gram updates.

63



Disambiguation. Similar to Bartunov et al. (2016), the sense of the word xe can be

disambiguated given its monolingual context ye as follows,

Pr(z | xe, ye) ∝ Pr(ye | xe, z; θ)
∑

β
Pr(z | xe, β)q(β) (5.11)

Although the model trains representations using both monolingual and cross-lingual con-

text, at test time only monolingual context is available. However it was seen that so long

as the model is trained with multilingual context, it performs well at sense disambiguation

on the test data. A similar observation was made by Šuster et al. (2016).

5.5. Multilingual Extension

As discussed in Section 5.2.3, bilingual distributional signal alone may not be sufficient as

polysemy may survive translation in the second language. The model described above can

be easily modified to incorporate distributional information from more than one language.

For using languages l1 and l2 to learn multi-sense embeddings for English, we train on a con-

catenation of English–l1 parallel corpus with an English–l2 parallel corpus. This technique

can easily be generalized to more than two non-English languages to learn representations

using a large multilingual corpus.

Value of Ψ(ye, xf ). The factor modeling the dependence of the English context word ye on

non-English word xf is crucial to performance when using multiple languages. Consider the

case of using French and Spanish contexts to disambiguate the financial sense of the English

word bank. In this case, the (financial) sense vector of bank will be used to predict vector

of banco (Spanish context) and banque (French context). If vectors for banco and banque

do not reside in the same space or are not “close”, the model will incorrectly assume they

are different contexts to introduce a new sense for bank. This is precisely why the bilingual

models, like that of Šuster et al. (2016), cannot be extended to multilingual setting, as they

pre-train the embeddings of second language before running the multi-sense embedding

process. As a result of naive pre-training, the French and Spanish vectors of semantically
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similar pairs like (banco,banque) will lie in different spaces and need not be close. A similar

reasoning applies to the model of Guo et al. (2014).

To avoid this, the vector for pairs like banco and banque should lie in the same space and

close to each other and the sense vector for bank. The Ψ(ye, xf ) term attempts to ensure

this by using the vector for banco and banque to predict the vector of bank. This way,

the model brings the embedding space for Spanish and French closer by using English as a

bridge language during joint training. A similar idea of using English as a bridging language

was used in the models proposed in (Hermann and Blunsom, 2014b) and (Coulmance et al.,

2015). Beside the benefit in the multilingual case, the Ψ(ye, xf ) term improves performance

in the bilingual case as well, as it forces the English and second language embeddings to

remain close in space.

To show the value of Ψ(ye, xf ) factor, a variant of Algorithm 2 is trained without the

Ψ(ye, xf ) factor in our experiments, by only using monolingual neighborhood, which is

denoted by Neighbors(xfi , F ) in line 15 of Algorithm 2. This variant is referred to as the

One-Sided model, and the model in Algorithm 2 as the Full model.

5.6. Experimental Setup

We first describe the datasets and the preprocessing methods used to prepare them. We

also describe the Word Sense Induction (WSI) task used in the experiments.

Parallel Corpora. The experiments use parallel corpora in English (en), French (fr),

Spanish (es), Russian (ru) and Chinese (zh) (corpus statistics are in Table 13). The first

10M lines from the English–French Giga corpus (Callison-Burch et al., 2011) are used for

en–fr. The FBIS parallel corpus (LDC2003E14) is used for en–zh. As the domain from

which parallel corpus has been derived can affect the final result, it is necessary to control

for domain in all parallel corpora when analyzing what choice of languages provide suitable

disambiguation signal. To this end, we also used the en–fr, en–es, en–zh and en–ru sections

of the MultiUN parallel corpus (Eisele and Chen, 2010). Word alignments were generated
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Corpus Source Lines (M) English-Words (M)
English–French (en–fr) EU proc. ≈ 10 250
English–Chinese (en–zh) FBIS news ≈ 9.5 286
English–Spanish (en–es) UN proc. ≈ 10 270
English–French (en–fr) UN proc. ≈ 10 260
English–Chinese (en–zh) UN proc. ≈ 8 230
English–Russian (en–ru) UN proc. ≈ 10 270

Table 13: Corpus statistics (in millions) of the parallel corpora used to train the multi-sense
representations. Horizontal lines demarcate corpora from the same domain.

using fast_align tool (Dyer et al., 2013) in the symmetric intersection mode. Tokenization

was performed using cdec3 toolkit. Stanford Segmenter (Tseng et al., 2005) was used to

preprocess the Chinese corpora.

Word Sense Induction (WSI). We evaluate our approach on the word sense induction

task. In this task, the input consists of several sentences showing usages of the same

word, and the required output is a clustering of all sentences that use the same sense of

the given word (Nasiruddin, 2013). The predicted clustering is then compared against a

reference gold clustering. Note that WSI is a harder task than Word Sense Disambiguation

(WSD)(Navigli, 2009), as unlike WSD, this task does not involve any supervision or explicit

human knowledge about senses of words. The disambiguation approach in Equation 5.11

is used to predict the sense given the target word and four context words.

To allow for fair comparison with earlier work, the same benchmark datasets as Bartunov

et al. (2016) are used — Semeval-2007, 2010 and Wikipedia Word Sense Induction (WWSI).

We report Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) in the experiments, as

ARI is a more strict and precise metric than F-score and V-measure. Details on ARI can

be found in the Appendix A.1.

Parameter Tuning. Five context words on either side are used to update each English

word-vectors in all the experiments. In the monolingual setting, all five words are English;
3github.com/redpony/cdec
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in the multilingual settings, we used four neighboring English words plus the one foreign

word aligned to the word being updated (d = 4, d′ = 0 in Algorithm 2). The effect of

varying d′, the context window size in the foreign sentence, is also analyzed.

The parameters α (prior concentration) and T (maximum number of allowed senses per

word) were tuned by maximizing the log-likelihood of a held out English text.4 The pa-

rameters were chosen from the following values α = {0.05, 0.1, .., 0.25}, T = {5, 10, .., 30}.

All models were trained for 10 iteration with a decaying learning rate of 0.025, decayed to

0. Unless otherwise stated, all embeddings are 100 dimensional.

5.7. Experiments

The experiments in this section evaluate the benefit of leveraging bilingual and multilingual

information during training. The experiments also analyze how the choice of language (i.e.,

using closer or farther languages) used in cross-lingual training affect the performance of

the embeddings.

5.7.1. Word Sense Induction (WSI) Results

The results for WSI are shown in Table 14. Recall that the One-Sided model is the

variant of Algorithm 2 without the Ψ(ye, xf ) factor. Mono refers to the AdaGram model

of Bartunov et al. (2016) trained on the English side of the parallel corpus. In all cases,

the Mono model is outperformed by One-Sided and Full models, showing the benefit of

using cross-lingual signal in training. Best performance is attained by the multilingual model

English–(French,Chinese), showing value of multilingual signal. The value of Ψ(ye, xf ) term

is also verified by the fact that the One-Sided model performs worse than the Full model.

The Full model can also be compared5 to to the AdaGram model described in Bartunov

et al. (2016). AdaGram achieved ARI scores of 0.069, 0.097 and 0.286 on the three datasets

respectively after training 300 dimensional embeddings on English Wikipedia (≈ 100M
4first 100k lines from the en–fr Europarl (Koehn, 2005)
5This comparison is unfair to the Full model, that uses a smaller corpus than AdaGram.
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Model
Dataset S-2007 S-2010 WWSI avg. ARI

English–French
Mono .044 .064 .112 .073
One-Sided .054 .074 .116 .081
Full .055 .086 .105 .082

English–Chinese
Mono .054 .074 .073 .067
One-Sided .059 .084 .078 .074
Full .055 .090 .079 .075

English–(French,Chinese)
Mono .056 .086 .103 .082
One-Sided .067 .085 .113 .088
Full .065 .094 .120 .093

Table 14: Results on word sense induction (left four columns) in ARI and contextual word
similarity (last column) in percent correlation. Language pairs are separated by horizontal
lines. Best results in bold.

lines). Note that, as WWSI was derived from Wikipedia, training on Wikipedia gives Ada-

Gram model an undue advantage, resulting in high ARI score on WWSI. In comparison, our

model did not train on English Wikipedia, and uses 100 dimensional embeddings. Never-

theless, even in the unfair comparison, it noteworthy that on S-2007 and S-2010, the model

achieves comparable performance (0.067 and 0.094) with multilingual training to a model

trained on almost 5 times more data using higher (300) dimensional embeddings.

5.7.2. Effect of Language Family Distance

Intuitively, the choice of language used in cross-lingual training can affect the results as

some languages may provide better disambiguation signals than others. This experiment

systematically evaluates the impact of choosing languages from a closer family (e.g., French,

Spanish) or a farther family (e.g., Russian, Chinese) for cross-lingual training along with

English. To control for domain, the MultiUN corpus is used for all languages.6 To evaluate

the effect of using closer languages, we pair English with French and Spanish. Similarly,
6Šuster et al. (2016) compared different languages but did not control for domain.
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Model
Dataset S-2007 S-2010 WWSI Avg. ARI

Lang. Setting → en–fr,es en–ru,zh en–fr,es en–fr,es en–fr,es en–ru,zh en–fr,es en–ru,zh
(1) Mono .035 .033 .046 .049 .054 .049 .045 .044
(2) One-Sided .044 .044 .055 .063 .062 .057 .054 .055
(3) Full .046 .040 .056 .070 .068 .069 .057 .059

(3) - (1) .011 .007 .010 .021 .014 .020 .012 .015

Table 15: Effect (in ARI) of language family distance on WSI task. Best results for each
column is shown in bold. The improvement from Mono to Full is shown as (3) - (1).
Note that this is not comparable to results in Table 14, as a different training corpus is used
to control for the domain.

English is paired with Russian and Chinese to evaluate the effect of using farther languages.

The result for each of these combinations for all datasets is in Table 15.

From Table 15, it can be seen that using farther languages yield a slightly higher improve-

ment on an average than using closer languages, suggesting that using languages from a

farther family aids better disambiguation. These findings echo those of Resnik and Yarowsky

(1999), who found that the tendency to lexicalize senses of an English word differently in a

second language correlated with language distance.

To illustrate the effect of multilingual signals for representation learning, a qualitative anal-

ysis of learnt embeddings is also conducted in Appendix A.3.

5.7.3. Effect of Window Size

Figure 10 shows the effect of increasing the cross-lingual window (d′) on the average ARI for

the English–French and English–Chinese models. Increasing d′ improves the average score

for English–Chinese model, while the opposite is true for the English-French model. This

suggests that it might be beneficial to have a separate d′ per language. This also aligns

with the earlier observation that different language families have different suitability (bigger

cross-lingual context from a distant family helped) for optimal performance.
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Figure 10: Tuning window size for English-Chinese and English-French models.

5.7.4. Qualitative Analysis of Induces Senses

The fraction of polysemous words in the vocabulary is a function of the prior concentration

parameter α, the maximum number of allowed senses per word T , and the training paradigm

(monolingual or multilingual). For different choices of α and T , about 10-20% polysemous

words in the vocabulary were identified using monolingual training, while the same number

was about 20-25% when using multilingual training. On closer examination, it was found

that often the senses for a known polysemous word are over-segmented. For instance,

consider the senses detected for the word apple in Table 16. On examining the nearest

neighbors of senses apple1 and apple3, it is evident that these actually represent the same

sense of the word (i.e., apple the technology company). Ideally, the model should have

assigned a single sense representation for this sense instead of two. A similar observation

can be made for the senses discovered for plant and bank. These extraneous senses (also

called pseudo-senses) can also appear for a word which is used in only one sense in the

corpus (i.e., should ideally be monosemous). For instance, the three senses detected for

the word pope are all related to concepts in the Catholic Church. These pseudo-senses

are generated because often the same sense of a word may appear in sufficiently different
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senses neigbours

apple1 netscape, vmware, nintendo, tivo, mandriva
apple2 peach, plum, pear, strawberry, banana
apple3 macintosh, smartphones, microsoft, pc, ibm

plant1 medicinal, legume, cultivated, insects, vascular
plant2 fern, tuber, shrub, fertilize, conifer
plant3 fungus, genus, flowering, rosaceae, asteracea
plant4 power, nuclear, reactor, fueled, reprocessing
plant5 manufacturing, fabrication, bottling, steelmaking, compressor

monitor1 observer, un, deploy, mission, peacekeeper
monitor2 propublica, watchdog, politbarometer, internews
monitor3 lcd, display, handheld, infrared, camera

bank1 hsbc, citibank, lender, insurance, macquarie
bank2 loan, deposit, depositor, thrift, asset
bank3 bethlehem, jericho, ramallah, west, kalkilya
bank4 edge, side, opposite, along, shore

pope1 vatican, benedict, sainthood, papal, pontiff, homily
pope2 pius, excommunicate, gregory, antipope, calixtus
pope3 papacy, beatify, pontificate, xxiii, beatification, frail

Table 16: Senses discovered for some words under multilingual training, and their nearest
neighbors in the vector space.

contexts that the model decides to allocate a new sense representation for the word. Note

that the presence of pseudo-senses is not unique to our model, but a limitation of all data-

driven approaches for sense discovery. Indeed, the over-segmentation problem also affects

models which learn a fixed number of senses per word, as documented in (Shi et al., 2016).

Shi et al. (2016) suggested a post-processing step, where such pseudo-senses are detected

and eliminated, while preserving the spatial orientation with respect to rest of the words

in the vocabulary. However, this approach only addresses this problem post-hoc, instead of

preventing over-segmentation of senses during training itself, which is currently an active

area of research.

5.8. Summary

In this chapter, I described a multi-sense representation learning approach that exploits

translational information from two or more languages, in addition to monolingual distri-

butional information, to dynamically learn multiple representations per word in English.

The experiments showed that using the additional multilingual signal yielded comparable
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performance to a monolingual model that was trained on five times more data. Unlike

other chapters, the aim of this chapter was to show that cross-lingual signals can also aid in

learning better representations for a monolingual lexical semantic task like sense induction.

One limitation of the sense-specific representation learning approaches is that the sense

vectors learnt are static. That is, once trained, the sense vector(s) for a word remains the

same, regardless of the context in which it appears. The act of compiling a sense vector for

a word divorces it from the contexts that defined (and warranted) its representation. This

goes against one of the remarks made by Firth (1935) — the complete meaning of a word

is always contextual, and no study of meaning apart from a complete context can be taken

seriously. Indeed, this criticism also applies to single-sense word representations discussed

in earlier chapters. Ideally, the representation of a word (or one of its senses) cannot be

static, but should dynamically change as a function of its context. To truly captures this

intuition, dynamic, context-sensitive word representations that generate the representation

of the word conditioned on the context have been developed recently (Peters et al., 2018;

Devlin et al., 2018). Nevertheless, enumerating possible meanings in sense inventories do

hold practical value, evident from the success of resources like WordNet, FrameNet in NLP

applications. Consequently, data-driven sense representation approaches like ours are still

attractive as a tool to aid lexicographers estimate how many different senses a word assumes

in a large corpus, or cluster appearances of a word that resemble the same sense, easing the

burden of manual annotation.
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CHAPTER 6 : Identifying Hypernymy across Languages

6.1. Introduction

Previous chapters showed the effectiveness of cross-lingual representations for primarily

coarse semantic tasks (like dictionary induction, document classification etc.), that required

capturing symmetric relationships (e.g., translational similarity) between words in differ-

ent languages. While translational similarity helps identify correspondences, identifying

other asymmetric semantic relationships can improve language understanding where exact

equivalence does not exist. One such relationship is hypernymy — a word x is said to be

the hypernym of a word y (referred to as the hyponym) if y is a kind of x (e.g., dog is a

hypernym of pitbull).

In this chapter, I will discuss how we can detect asymmetric relations like hypernymy

across languages using cross-lingual word representations. That is, identifying that écureuil

(“squirrel” in French) is a kind of rodent, orագռավ (“crow” in Armenian) is a kind of bird.

Before examining the cross-lingual hypernymy detection problem, it is prudent to re-visit

previous work and approaches on the monolingual version and examine the challenges of

the cross-lingual version.

6.2. History of the Hypernymy Detection Task

The hypernymy detection problem involves predicting whether a given (x, y) pair is a

hyponym-hypernym pair (that is, is y the hypernym of x?) or not. For instance, de-

tecting that the word pair (dolphin,mammal) is a hyponym-hypernym pair while the pair

(dolphin, reptile) is not.

The ability to detect lexical relations like hypernymy has a wide range of applications —

as a component in textual entailment systems (Dagan et al., 2005; Sammons et al., 2012;

Dagan et al., 2013), building semantic ontologies (Riloff and Shepherd, 1997; Chklovski

and Pantel, 2004; Snow et al., 2006; Kozareva and Hovy, 2010), a feature in coreference
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resolution (Ponzetto and Strube, 2006), developing question answering systems (Prager

et al., 2001; Yih et al., 2013), or simply doing information extraction (Etzioni et al., 2005;

Demeester et al., 2016).

6.2.1. Hypernymy Detection in English

Hypernymy detection in English is a well studied problem, with three prominent threads in

the literature — path-based approaches, distributional approaches, and hybrid approaches

that combine the two. I discuss them briefly below.

Path-based Approaches. Path-based approaches identify lexico-syntactic patterns (or

paths) between x and y in a sentence that indicate lexical relationships like hypernymy (Hearst,

1992; Snow et al., 2004), synonymy (Lin et al., 2003), or meronymy (Girju et al., 2006). In-

stances of such patterns indicative of hypernymy include “x such as y” (as in “animals such

as dogs”), “x and other y” (as in “squirrel and other rodents”) among others. Statistics over

these patterns are computed for each candidate pair (x, y) over a large corpus, and weights

learnt for each pattern to determine hypernymy. As these patterns are quite specific, their

presence is a precise and accurate indicator of hypernmy.

The key drawback of path-based approaches is that they requires co-occurrence of both

x and y in the same sentence, exactly as in the predefined pattern. As a result, reliable

statistics are often hard to obtain for word pairs that co-occur rarely, a problem that is

exacerbated in limited size corpus. Consequently, while such path-based approaches have

been effective in terms of precision, they leave much to be desired in recall.

Distributional Approaches. Distributional approaches (Lin, 1998a; Weeds and Weir,

2003; Lenci and Benotto, 2012) probe the distributional representations of x and y to de-

termine if the hypernymy relation holds between them. The distributional representations

x and y for x and y are probed using a similarity measure Sim(x, y), that is either learnt

or unsupervised. Different distributional approaches differ either in the choice of the rep-

resentations for x and y, or the unsupervised similarity measure Sim.
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Dependency-based distributional representation (Lin, 1998a; Levy and Goldberg, 2014b)

have emerged as a popular representation used in distributional approaches. On the other

hand, a myriad of supervised and unsupervised measures are available to determine if an

asymmetric relation like hypernymy holds between a (x, y) pair. Supervised measures learn

classifiers using distributional features for a (x, y) pair, which can be any of the following:

concatenation x ⊕ y (Baroni et al., 2012), difference y − x (Fu et al., 2014), dot product

y⊺x, or a combination of f = y
∥y∥ −

x
∥x∥ and f2 as in Roller et al. (2014). Such approaches

suffer from two major drawbacks — firstly, there exist limited resources that can serve as

supervision for the similarity measure, and secondly, many of these approaches are shown to

be prone to lexical memorization (Levy et al., 2015).1 In contrast, unsupervised measures

probe the features in word embeddings to determine hypernymy. There exist a variety of

similarity measures that can be used to quantify the directional relationship between two

words (Lin, 1998a; Weeds and Weir, 2003; Lenci and Benotto, 2012). One such unsupervised

similarity measure, named Balanced Average Precision Inclusive (or BalAPinc), will be

discussed in detail in Section 6.3.

Hybrid Approaches. Hybrid approaches (Mirkin et al., 2006; Kaji and Kitsuregawa,

2008) attempt to combine the path-based and distributional signals to identify lexical re-

lationships. By combining a high-precision but low-recall path-based approach and a low-

precision but high-recall distributional approach, hybrid approaches combine the benefits of

both. The most recent work in this thread is that of Shwartz et al. (2016), who encoded the

paths using a RNN into a dense vector, and combined it with the distributional vectors x

and y. The network was supervised using hyponym-hypernym pairs and negative examples

sourced from lexical resources like WordNet (Miller, 1995) and WikiData (Vrandečić, 2012).

6.2.2. Cross-lingual Hypernymy Detection

The cross-lingual hypernymy detection problem involves determining if (x, y), where x and y

are in different languages, constitutes a hyponym-hypernym pair. For instance, determining
1That is, memorizing that words like mammal are hypernyms of x, regardless of x.
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if (écureuil, rodent) constitutes a hyponym-hypernym pair, where écureuil is the French word

for squirrel. The rest of the chapter assumes that y is always a word in English.

The ability to detect hypernyms across languages would have benefits similar to monolingual

hypernymy detection. For instance, it could serve as a building block in cross-lingual tasks,

like cross-lingual textual entailment tasks (Negri et al., 2012, 2013), constructing multilin-

gual taxonomies (Fu et al., 2014), event coreference in multilingual news sources (Vossen

et al., 2015), evaluating Machine Translation via entailment (Pado et al., 2009) or detecting

semantic divergence in parallel text (Carpuat et al., 2017).

At first glance, translating words to English and then identifying hypernyms in a monolin-

gual setting may appear to be a sufficient solution. However, this approach cannot capture

many phenomena. For instance, the English words cook, leader, supervisor can all be hyper-

nyms of the French word chef, as it does not have an exact translation in English covering

its possible usages in French. But translating chef to cook precludes identifying leader or

supervisor as a hypernym. Similarly, language-specific usage patterns can also influence

hypernymy decisions. For instance, the French word chroniqueur translates to chronicler

in English, but is more frequently used in French to refer to journalists (making journalist

its hypernym). This motivates approaches that extend distributional methods for detecting

monolingual hypernymy to cross-lingual settings.

Building models that can robustly identify hypernymy across languages is a challenging

problem. Firstly, in the cross-lingual setting is that there is no direct approach to incorpo-

rate path-based features, because x and y belong to different languages, and are unlikely to

appear together in the same sentence. This precludes path-based or hybrid approaches that

have been used for monolingual settings. As a result, purely distributional approaches seem

to be the only option for detecting cross-lingual hypernymy relationships. However, state-

of-the-art distributional approaches for detecting monolingual hypernymy require syntactic

analysis (Roller and Erk, 2016; Shwartz et al., 2017) (e.g., dependency parsing) to learn

word representations, which may not available for many languages.
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Figure 11: The BiSparse-Dep Approach, that learns sparse bilingual embeddings using
dependency-based contexts. The resulting sparse embeddings, together with an unsuper-
vised hypernymy detection measure, can detect hypernyms across languages (e.g., pomme
is a fruit).

6.3. The BiSparse-Dep Approach

This section proposes BiSparse-Dep, a family of approaches that uses bilingual, depen-

dency based word embeddings to detect hypernymy between words in different languages.

An overview of BiSparse-Dep is in Figure 11. BiSparse-Dep has two key components:

(a) Dependency-based word representations, that enable generalization across different lan-

guages with minimal customization by abstracting away language-specific word order. (b)

Bilingual sparse coding, that allow us to align dependency-based word representation in a

shared semantic space using a small bilingual dictionary. The resulting sparse bilingual em-

beddings can then be used with an unsupervised hypernymy detection measure (Section 6.3)

to determine hypernymy between word pairs.

Dependency-based Word Representations

As discussed in Chapter 2, the context of a word can be described in multiple ways when

learning distributional representations. One such context is defined using the syntactic

neighborhood of the word in a dependency graph. For instance, for the sentence in Figure 12,
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The tired traveler roamed the sandy desert, seeking food

det

amod

nsubj
dobj

advcl
amod

det dobj

Figure 12: Dependency tree for “The tired traveler roamed the sandy desert, seeking food”.

the syntactic neighborhood for the target word traveler can be described in the following

two ways:

• Full context (Padó and Lapata, 2007; Baroni and Lenci, 2010; Levy and Goldberg,

2014b): Children and parent words, concatenated with the label and direction of the

relation (e.g., roamed#nsubj−1 and tired#amod are contexts for traveler).

• Joint context (Chersoni et al., 2016): Parent concatenated with each of its siblings

(e.g., roamed#desert and roamed#seeking are contexts for traveler).

Both context types encode directionality into the context, either through label direction or

through sibling-parent relations. The two contexts exploit different amounts of syntactic

information — Joint does not require labeled parses unlike Full. Joint context combines

parent and sibling information, while Full keeps them as distinct contexts.

Word representations learnt using the syntactic neighborhood of a word (such as the ones

described above) are popularly called dependency-based word representations. Dependency

context based word representations capture functional similarity (e.g., singing and rapping),

in contrast to topical similarity (e.g., singing and dancing) as captured by lexical con-

text (Levy and Goldberg, 2014b). Such dependency based embeddings have been shown to

outperform window based embeddings on many tasks (Bansal et al., 2014; Hill et al., 2014;

Melamud et al., 2016). In fact, for the monolingual hypernmy detection task, it has been

shown that dependency embeddings can recover Hearst patterns (Roller and Erk, 2016),

and are almost always superior to window based embeddings (Shwartz et al., 2017).
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Dependency Contexts without a Treebank

Using dependency contexts in multilingual settings may not always be possible, as large

dependency-parsed corpora are hard to obtain. One can parse a raw corpus in the language

of interest using a dependency parser, but pre-trained dependency parsers are available for

a handful of languages. Training a parser is also not feasible, as dependency treebanks used

to supervise these parsers are not available for many languages. To circumvent these issues,

a weak dependency parser is trained on languages related to the language of interest.

Specifically, a delexicalized parser is trained using treebanks of related languages, where the

word form features are turned off, so that the parser is trained on purely non-lexical features

(e.g., POS tags). The rationale behind this is that related languages show common syntactic

structure that can be transferred to another language via delexicalized parsing (Zeman and

Resnik, 2008; McDonald et al., 2011, inter alia).

Unsupervised Hypernymy Detection Measure

When can one assert that word y is a hypernym of a word x using their distributional

representations? To answer this question a hypothesis was formalized by Weeds et al.

(2004) and Geffet and Dagan (2005),

The Distributional Inclusion Hypothesis

The distributional inclusion hypothesis (DIH) states that if a word y is a hypernym

of a word x, then the set of distributional features of x are included in the set of

distributional features of y (Weeds et al., 2004; Geffet and Dagan, 2005). That is,

the contexts in which x occurs are a subset of those in which y occurs.

DIH was introduced in (Weeds et al., 2004) as distributional generality for hypernymy de-

tection, and was stated more generally for determining lexical entailment in (Geffet and

Dagan, 2005). Intuitively, DIH states that a hypernym y can replace appearances of its

hyponym x. For example, rodent can replace squirrel in the sentence “the squirrel is hiber-
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nating for the winter”. Notice that the reverse is not true — squirrel cannot replace rodent

in a sentence like “The capybara is the largest living rodent”. To apply DIH to detect

hypernymy, one needs to quantify the amount of overlap in the co-occurrences of x and y

with other contexts.

Known Limitations. The intuition behind DIH is not always correct. For instance, Kart-

saklis and Sadrzadeh (2016) noted that in sentences with quantifiers (e.g., “all”, “none”),

replacing word with its hypernym is not always appropriate. For instance, changing “all

squirrels hibernate” to “all animals hibernate”. In such contexts, DIH fails. Similarly,

Rimell (2014) noted that DIH is not correct in contexts that are collocational (e.g., “hot

dog” to “hot animal”), highly specific (“squirrels eat nuts” to “animals eat nuts”), or when

the hypernym being considered is too general (e.g., entity and squirrel).

Despite these limitations, DIH has enjoyed success in many lexical entailment applications,

and several unsupervised hypernymy detection measures have been developed that appeal

to it (Weeds and Weir, 2003; Weeds et al., 2004; Clarke, 2009; Lenci and Benotto, 2012).

The BalAPinc Measure. In this work, we use one such measure, named BalAPinc,

first described by Kotlerman et al. (2009), to score word pairs for hypernymy. BalAPinc is

defined using two other measures: LIN (Lin, 1998b) and APinc (Kotlerman et al., 2009).

The LIN measure defines a symmetric similarity score for a word pair (x,y),

LIN(x, y) =

∑
f∈x∩y x[f ] + y[f ]∑

f∈x x[f ] +
∑

f∈y y[f ]
(6.1)

where x and y are representations of x and y respectively, f ∈ x and f ∈ y are feature

indices active in x and y respectively, and f ∈ x ∩ y are features indices that are active

(non-zero values) in both x and y. The value of a feature at index f is x[f ]. The LIN

measure computes the amount of information needed to describe the commonality of x and

y, relative to the information needed to fully describe x and y.
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On the other hand, APinc is an asymmetric score measuring a relevance-weighted overlap

in context co-occurrences of x and y, computed using modified version of average precision2

APinc(x→ y) =

∑
r P (r) · rel(f)
|x|

where rel(f) =


1− rank(f,y)

|y|+1 f ∈ y

0 otherwise

(6.2)

here rel(f) is a measure of feature f ’s relevance, rank(f,y) is rank of feature f (among

all active features) in the representation of y, and P (r) is the precision at rank r for the

features y with respect to features of x (i.e., ratio of the number of included features of

x in y from rank 1 to r, and r). APinc computes the proportion of the included (active)

features of y, weighted by their relevance score rel(f), with respect to all active features of

x. BalAPinc is defined as the geometric mean of these measures,

BalAPinc(x→ y) =
√
LIN(x, y) ·APinc(x→ y) (6.3)

Bilingual Sparse Coding

To compare the features of words x and y belonging to different languages, one has to

first align the independently learnt dependency representations. Moreover, the BalAPinc

metric described above requires word representations that are sparse, so that active features

for computing the score can be identified. To achieve this, we generate BiSparse-Dep

embeddings using the BiSparse framework from Vyas and Carpuat (2016). BiSparse

generates sparse, bilingual word embeddings using a dictionary learning objective with a

sparsity inducing l1 penalty. Appendix A.2 describes the learning objective in detail.

BiSparse takes as input pre-computed monolingual embeddings Xe, Xf for two languages

along with a translation matrix S, and outputs sparse matricesAe andAf that are bilingual

representations in a shared semantic space. The translation matrix S (of size ve × vf )
2A metric used for ranking evaluation.
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captures correspondences between the vocabularies (of size ve and vf ) of two languages.

For instance, each row of S can be a one-hot vector that identifies the word in vf that is

most frequently aligned with the word in ve for that row in a large parallel corpus, thus

building a one-to-many mapping between the two languages.

6.4. Crowd-Sourcing Annotations

There is no publicly available dataset to evaluate models of hypernymy detection across

multiple languages. While ontologies like Open Multilingual WordNet (OMW) (Bond

and Foster, 2013) and BabelNet (Navigli and Ponzetto, 2012) contain cross-lingual links,

these resources are semi-automatically generated and hence contain noisy edges. To make

consistent claims about a hypernymy detection model, it is crucial to carefully design a

dataset (Carmona and Riedel, 2017). To get reliable and high-quality test beds, evaluation

datasets were collected using CrowdFlower.3 The datasets span four languages from distinct

families — French (fr), Russian (ru), Arabic (ar) and Chinese (zh) — paired with English.

Annotation Setup for Cross-lingual Hypernymy. To begin the annotation process,

candidate pairs are first pooled using hypernymy edges across languages from OMW and

BabelNet, along with translations from monolingual hypernymy datasets (Kotlerman et al.,

2010; Baroni and Lenci, 2011; Baroni et al., 2012).

The annotation task requires annotators to be fluent in both English and the non-English

language. To ensure only fluent speakers perform the task, task instructions are provided in

the non-English language itself, and the task is restricted to annotators verified by Crowd-

Flower to have the respective language skills. Annotators also need to pass a quiz based on

a small amount of gold standard data to gain access to the task.

Annotators choose between three options for each word pair (pf , qe), where pf is a non-

English word and qe is an English word: “pf is a kind of qe”, “qe is a part of pf” and “none

of the above”. Word pairs labeled with the first option are considered as positive examples
3A crowd-sourcing platform, www.figure-eight.com.
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while those labeled as “none of the above” are considered as negative.4 The second option

was included to filter out meronymy examples that were part of the noisy pool. It is left to

the annotator to infer whether the relation holds between any senses of pf or qe, if either

of them are polysemous.

For every candidate hypernym pair (pf , qe), annotators are also asked to judge its reversed

and translated hyponym pair (qf , pe). That is, if (citron, food) is a hypernym candidate, an-

notators are also shown (aliments, lemon) that is a potential hyponym candidate (potential,

because as mentioned in Section 6.2.2, translation need not preserve semantic relationships).

The purpose of presenting the hyponym pair, (qf , pe), is two-fold. First, it emphasizes the

directional nature of the task to the annotators. Second, it also identifies hyponym pairs,

which we use as negative examples. The hyponym pairs are challenging since differentiating

them from hypernyms truly requires detecting asymmetry.

Each pair was judged by at least 5 annotators, and judgments with 80% agreement (at least

4 annotators agree) are considered for the final dataset. This is a stricter condition than

certain monolingual hypernymy datasets - for instance, EVALution (Santus et al., 2015) -

where agreement by 3 annotators is deemed enough. Inter-annotator agreement measured

using Fleiss’ Kappa (Fleiss, 1971) was 58.1 (French), 53.7 (Russian), 53.2 (Arabic) and 55.8

(Chinese). This indicates moderate agreement, at par with agreement obtained on related

fine-grained semantic tasks (Pavlick et al., 2015). Comparison with monolingual hypernymy

annotator agreement is not possible as, to the best of our knowledge, such numbers are not

available for existing test sets. Dataset statistics are shown in Table 17.

It was observed that annotators were able to agree on pairs containing polysemous words

where hypernymy holds for some sense. For instance, for the French-English pair (avocat,

professional), the French word avocat can either mean lawyer or avocado, but the pair was

annotated as a positive example.

4The extra negative pairs were sub-sampled so as to keep a balanced dataset for evaluation.
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Lang. Pair #crowd-sourced #pos (= #neg)
French–English 2115 763
Russian–English 2264 706
Arabic–English 2144 691
Chinese–English 2165 806

Table 17: Crowd-sourced dataset statistics. #pos (#neg) denote the number of positives
(negatives) in the evaluation set, and #crowd-sourced denote the number of crowd-sourced
pairs. Negatives were deliberately under-sampled to have a balanced evaluation set. Some
examples for positive and negative instances in French and Russian are: (pêcheur (en:fisher),
worker) (vêtement (en:clothing), jeans) (замок (en:castle), structure) (флора (en:flora),
sunflower)

Two Evaluation Sets. To verify if the crowd-sourced hyponyms are challenging negative

examples we create two evaluation sets. Both share the (crowd-sourced) positive examples,

but differ in the nature of the negative examples:

• Hyper-Hypo — negative examples are the crowd-sourced hyponyms.

• Hyper-Cohypo — negative examples are cohyponyms drawn from OMW.

Cohyponyms are words sharing a common hypernym. For instance, bière (“beer” in French)

and vodka are cohyponyms since they share a common hypernym in alcool/alcohol. Cohy-

ponyms were chosen for the second test set for two reasons. First, to perform well on the

test set requires differentiating between a symmetric (word similarity) and an asymmetric

relation (hypernymy). For instance, bière and vodka are similar words, yet, they do not have

a hypernymy relationship. Second, cohyponyms are a popular choice of negative examples

in other monolingual entailment datasets (Baroni and Lenci, 2011).

6.5. Experimental Setup

Training BiSparse-Dep requires a dependency parsed monolingual corpus, and a transla-

tion matrix for jointly aligning the monolingual vectors. The translation matrix is computed

using word alignments derived from parallel corpora. The corpus statistics for both mono-

lingual and parallel corpora are in Table 18. While we use parallel corpora to generate the
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translation matrix to be comparable to baselines (Section 6.5), we do not require it — the

matrix can be obtained from any bilingual dictionary.

Computing Dependency Co-occurrences. The monolingual corpora are parsed using

Yara Parser (Rasooli and Tetreault, 2015), trained on the corresponding treebank from

version 1.4 of the Universal Dependency Treebank (McDonald et al., 2013). Yara Parser

was chosen as it is fast, and competitive with state-of-the-art parsers (Choi et al., 2015).

The monolingual corpora was POS-tagged using TurboTagger (Martins et al., 2013). De-

pendency contexts for words are induced by first thresholding the language vocabulary to

the top 50,000 nouns, verbs and adjectives. A co-occurrence matrix is then computed over

this vocabulary using the context types in Section 6.3.

Inducing BiSparse-Dep Embeddings. The entries of the word-context co-occurrence

matrix are re-weighted using PPMI (Bullinaria and Levy, 2007) from Section 2.6. The

resulting matrix is reduced to 1000 dimensions using SVD (Golub and Kahan, 1965). The

embedding dimensionality was chosen based on preliminary experiments with {500, 1000,

2000, 3000} dimensional vectors for English–French. The output matrices are used asXe,Xf

in the setup from Section 6.3 to generate 100 dimensional sparse bilingual embeddings.

Evaluation. Accuracy is used as the evaluation metric in all experiments, as it is easy to

interpret when the classes are balanced (Turney and Mohammad, 2015). Both evaluation

datasets — Hyper-Hypo and Hyper-Cohypo — are split into a development and a test

set in the ratio 1:2 respectively.

Tuning. BalAPinc has two tunable parameters — 1) a threshold that indicates the

BalAPinc score above which all examples are labeled as positive, 2) the maximum number

of features to consider for each word. The tuning set is used to tune the two parameters as

well as the various hyper-parameters associated with the models.
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Lang. Parallel Data #sent. Monolingual Data #sent.

English – – Wackypedia (Baroni et al.,
2009) 43M

French Europarl (Koehn, 2005) 2.7M Wikipedia 20MNewsCommentary,
Wikipedia (Tiedemann, 2012)

Russian Yandex-1M 1.6M Wikipedia 22M

Arabic
ISI (Munteanu and Marcu,
2007) 1.1M Gigaword 3.0 (Graff, 2007) 17M
NewsCommentary,
Wikipedia (Tiedemann, 2012)

Chinese FBIS (LDC2003E14) 9.5M Gigaword 5.0 (Parker, 2011) 58M

Table 18: Training data statistics for different languages. While we use parallel corpora for
computing translation dictionaries, our approach can work with any bilingual dictionary.

Contrastive Approaches

The BiSparse-Dep approach is compared with the following approaches:

(a) Mono-Dep (Translation Baseline) For a word pair (pf , qe) in the test data, pf is

translated to English using the most common translation in the translation matrix.

Entailment is then determined using sparse, dependency based embeddings in English.

(b) BiSparse-Lex (Window-Based) Predecessor of the BiSparse-Dep model from

Vyas and Carpuat (2016). This model induces sparse, cross-lingual embeddings using

window based context using the bilingual sparse coding objective.

(c) Bivec+ (Window-Based) Extension of the Bivec model of Luong et al. (2015b).

Bivec generates dense, cross-lingual embeddings using window based context by sub-

stituting aligned word pairs within a window in parallel sentences. By default, Bivec

only trains using parallel data, so to ensure fair comparison it is initialized with mono-

lingually trained window based embeddings .
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(d) Cl-Dep (Dependency-Based) The model from Vulić (2017), that induces dense,

dependency-based cross-lingual embeddings using the word2vecf5 toolkit, by trans-

lating syntactic word-context pairs using the most common translation.

Evaluating Robustness of BiSparse-Dep

This set of experiments investigates how robust BiSparse-Dep is when exposed to data

scarce settings. Evaluating on a truly low-resource language is complicated by the fact that

obtaining an evaluation dataset for such a language is difficult. Therefore, such settings are

simulated for the languages in our dataset in multiple ways.

No Treebank. If a treebank is not available in a language, dependency-contexts have to

be induced using treebanks from other languages (Section 6.3), which can affect the quality

of the dependency-based embeddings. To simulate this, a delexicalized parser is trained

for each of the four languages. We use treebanks from Slovenian, Ukrainian, Serbian,

Polish, Bulgarian, Slovak and Czech (40k sentences) for training the Russian parser, and

treebanks from English, Spanish, German, Portuguese, Swedish and Italian (66k sentences)

for training the French parser. UDT does not (yet) have languages in the same family as

Arabic or Chinese, so for the sake of completeness, Arabic and Chinese delexicalized parsers

are trained on treebanks of the language itself. After delexicalized training, the Labeled

Attachment Score (LAS) on the UDT test set dropped by several points for all languages

— from 76.6% to 60.0% for Russian, 83.7% to 71.1% for French, from 76.3% to 62.4% for

Arabic and from 80.3% to 53.3% for Chinese. The monolingual corpora are then parsed

with these weaker parsers, and dependency context co-occurrences are computed as before.

Sub-sampling Monolingual Data. To simulate low-resource behavior along another

axis, we sub-sample the monolingual corpora used by BiSparse-Dep to induce monolingual

vectors, Xe,Xf. Specifically, Xe and Xf are trained using progressively smaller corpora.
5bitbucket.org/yoavgo/word2vecf/
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Model ↓
en with → ru zh ar fr avg.

Translation Baseline

Mono-Dep 50.1 52.3 51.8 54.5 52.2
Window Based

BiSparse-Lex 56.6 53.7 50.9 52.0 53.3
Bivec+ 55.8 52.0 51.5 53.4 53.2

Dependency Based

Cl-Dep 60.2 54.4 56.7* 53.8 56.3
BiSparse-Dep (Full) 59.0 55.9 52.6 56.6 56.0
BiSparse-Dep (Joint) 53.8 57.0* 52.4 59.9* 55.8
BiSparse-Dep (Unlab) 55.9 51.2 53.3 55.9 54.1

Table 19: Comparing the different approaches from Section 6.5 with our BiSparse-Dep
approach on Hyper-Hypo (random baseline= 0.5). Bold denotes the best score for each
language, and the * on the best score indicates a statistically significant (p < 0.05) im-
provement over the next best score, using McNemar’s test (McNemar, 1947).

Quality of Bilingual Dictionary. We study the impact of the quality of the bilingual

dictionary used to create the translation matrix S. This experiment involves using increas-

ingly smaller parallel corpora to induce the translation dictionary.

6.6. Experiments

The experiments aim to answer the following questions — (a) Are dependency based embed-

dings superior to window based embeddings for cross-lingual hypernymy? (Section 6.6.1)

(b) Are our models robust in data scarce settings? (Section 6.7) (c) Does directionality in

the dependency context help cross-lingual hypernymy detection? (d) Is the answer to (a)

predicated on choice of hypernymy detection measure?

6.6.1. Dependency v/s Window Contexts

We compare the performance of models described in Section 6.5 with the BiSparse-Dep

(Full and Joint) models. We evaluate the models on the two test splits described in

Section 6.4 — Hyper-Hypo and Hyper-Cohypo.
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Model ↓
en with → ru zh ar fr avg.

Translation Baseline

Mono-Dep 58.7 50.0 65.1 56.9 57.7
Window Based

BiSparse-Lex 63.8 55.8 65.8 63.2 62.2
Bivec+ 55.9 64.9 62.2 54.1 58.3

Dependence Based

Cl-Dep 56.2 62.7 63.1 61.0 60.0
BiSparse-Dep (Full) 63.6 67.3 66.8* 66.7* 66.1
BiSparse-Dep (Joint) 60.6 63.6 65.9 64.9 63.8
BiSparse-Dep (Unlab) 58.6 66.7 62.4 61.5 62.4

Table 20: Comparing the different approaches from Section 6.5 with our BiSparse-Dep
approach on Hyper-Cohypo (random baseline= 0.5). Bold denotes the best score for
each language, and the * on the best score indicates a statistically significant (p < 0.05)
improvement over the next best score, using McNemar’s test (McNemar, 1947).

Hyper-Hypo Results. Table 19 shows the results on the Hyper-Hypo set. The ben-

efit of directly modeling the cross-lingual relationship between words (as opposed to first

translating to English) is evident in that almost all models (except Cl-Dep on French)

outperform the translation baseline. Among dependency based models, BiSparse-Dep

(Full) and Cl-Dep consistently outperform both window models, while BiSparse-Dep

(Joint) outperforms them on all except Russian. This confirms that dependency context

are more effective than window context for cross-lingual hypernymy detection. BiSparse-

Dep (Joint) and Cl-Dep are the best models for French, Chinese and Arabic, with no

statistically significant difference between them for Russian.

Hyper-Cohypo Results. The trends observed on Hyper-Hypo also hold on Hyper-

Cohypo, i.e., dependency based models continue to outperform window based models

(Table 20). Overall, BiSparse-Dep (Full) performs best in this setting, followed closely

by BiSparse-Dep (Joint). This suggests that the sibling information encoded in Joint

is useful to distinguish hypernyms from hyponyms (Hyper-Hypo results), while the de-
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pendency labels encoded in Full help to distinguish hypernyms from co-hyponyms. Also,

all models improve significantly on the Hyper-Cohypo set, suggesting that discriminating

hypernyms from co-hyponyms is easier than discriminating hypernyms from hyponyms.

While the BiSparse-Dep models were generally performing better than window models

on both test sets, Cl-Dep was not as consistent (e.g., it was worse than the best window

model on Hyper-Cohypo). One reason for this is that BalAPinc is designed for sparse

embeddings and is likely to perform poorly with dense embeddings (Turney and Mohammad,

2015). This explains the relatively inconsistent performance of Cl-Dep.

6.6.2. Ablating Directionality in Context

The context described by the Full and Joint BiSparse models encodes directional infor-

mation (Section 6.3) either in the form of label direction (Full), or using sibling information

(Joint). Is directionality in the context useful to capture asymmetric relationship hyper-

nymy? To answer this, a third BiSparse model that uses Unlabeled dependency contexts

is evaluated. The Unlabeled context is similar to the Full context, except it does not

concatenate the label of the relation to the context word (parent or children). For instance,

for the word traveler in Figure 12, Unlabeled contexts are roamed and tired.

Experiments on both Hyper-Hypo and Hyper-Cohypo (bottom row, Tables 19 and 20)

highlight that directional information is essential — Unlabeled almost always performs

worse than Full and Joint, and in many cases worse than even window based models.

6.6.3. Qualitative Analysis

The predictions of the window and the dependency based models are analyzed qualitatively

by examining the common errors made by both BiSparse-Dep (Full) and BiSparse-Lex

models in Table 21. Often both models have difficulty capturing functional relations, such

as époux (spouse in French) is a relative or бас (bass in Russian) is an instrument, though

overall, the dependency based model makes fewer mistakes of this type. For false positives,
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False Negatives False Positives
(pêcheur (en:fisher), worker) (vêtement (en:clothing), jeans)
(époux (en:spouse), relative) (cercueil (en:coffin), casket)
(équipe (en:team), unit) (statut (en:status), barony)

(бас (en:bass), instrument) (ткань (en:tissue), nerve)
(замок (en:castle), structure) (флора (en:flora), sunflower)
(трейлер (en:trailer), vehicle) (чувство (en:feeling), cynicism)

Table 21: Common errors made by the different models described in Section 6.3.

both models often ignore the directional nature, predicting vêtement (clothing in French)

is a jeans or ткань (Russian for tissue) is a nerve as positive instances.

Many test pairs were hard for both models due to translation ambiguity. For instance, in

(dessous, garment) from the French dataset, dessous can be translated to underneath, how-

ever the apt translation (i.e., under which hypernymy holds) is underwear in this example.

For another French pair (poire, fruit), the word poire can be translated to perry, which is a

drink, but the apt translation is pear. Similarly, for the Russian pair (лук, produce), лук

can be translated to bow, but the apt translation is onion. In (глава, leader), глава can

be incorrectly translated to chapter, but the apt translation is head.

6.7. Evaluating Robustness of BiSparse-Dep

The experiments in the previous section highlight the robust behavior of the BiSparse

models across languages when exposed to all available information. The experiments in

this section investigate how the BiSparse-Dep models behave when exposed to various

data scarce conditions. Three different settings are examined: (a) no dependency treebank

in a language (b) small monolingual corpus (c) lower quality bilingual dictionary.

6.7.1. No Treebank

These experiments are conducted with a version of BiSparse-Dep that used the Full

context type for both English and the non-English (target) language, but the target language

contexts are derived from a corpus parsed using a delexicalized parser (Section 6.5). This

BiSparse-Dep model is compared against the best window-based model and the best
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Model ↓

en with → ru zh ar fr avg.

Hyper-Hypo

Best Win. 56.6 53.7 51.5 53.4 53.8
Delex. 59.1* 55.1* 54.6* 56.1* 56.2
Best Dep. 60.2 57.0* 56.7* 59.9* 58.5

Hyper-Cohypo

Best Win. 63.8 64.9 65.8 63.2 64.4
Delex. 59.4 65.7* 67.5* 66.3* 64.7
Best Dep. 63.6* 67.3* 66.8* 66.7 66.1

Table 22: Robustness to absence of a treebank: The delexicalized model is competitive
to the best dependency based and the best window based models on both test sets. For
each dataset, * indicates a statistically significant (p < 0.05) improvement over the next
best model in that column, using McNemar’s test (McNemar, 1947).

dependency-based model from the previous section. Results are in in Table 22.

The results show that this version of BiSparse-Dep compares favorably on all language

pairs against the best window based and the best dependency based model. In fact, it

almost consistently outperforms the best window based model by several points, and is

only slightly worse than the best dependency-based model.

Further analysis revealed that the good performance of the delexicalized model is due to

the relative robustness of the delexicalized parser on frequent contexts in the co-occurrence

matrix. In French and Russian, the most frequent contexts were derived from amod, nmod,

nsubj and dobj edges.6 Of these, the nmod edge appears in 44% and 33% of the Russian and

French contexts respectively. The delexicalized parser predicts both the label and direction

of the nmod edge correctly with an F1 of 68.6 for Russian and 69.6 for French, compared to

a fully-trained parser (76.7 F1 for Russian, 76.8 F1 for French).
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Figure 13: Robustness to small corpus: For most languages, BiSparse-Dep outper-
forms the corresponding best window based model on Hyper-Hypo, with about 40% of
the monolingual corpora.

6.7.2. Small Monolingual Corpus

In this experiment, increasingly smaller monolingual corpora (10%, 20%, 40%, 60% and

80%) sampled at random are used to induce the monolingual vectors for BiSparse-Dep

(Full) model to evaluate its robustness to small corpora. Trends in Figure 13 indicate

that BiSparse-Dep models that use only 40% of the original data remain competitive with

the BiSparse-Lex model that has uses all the data. Robust performance with smaller

monolingual corpora is desirable since large corpora are not always easily available.

6.7.3. Quality of Bilingual Dictionary

Bilingual dictionaries derived from smaller amounts of parallel data are likely to be of lower

quality compared to those derived from larger corpora. To analyze the impact of dictionary

quality on BiSparse-Dep (Full), increasingly smaller parallel corpora are used to induce

bilingual dictionaries as the score matrix S (Section 6.3). For this experiment, the top 10%,
6Together they make up at least 70% of the contexts.
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Figure 14: Robustness to low quality dictionary: For most languages, BiSparse-Dep
outperforms the corresponding best window based model on Hyper-Hypo, with increas-
ingly lower quality dictionaries.

20%, 40%, 60% and 80% sentences from the parallel corpora are used. Figure 14 show that

even with a lower quality dictionary, BiSparse-Dep performs better than BiSparse-Lex.

6.7.4. Choice of Hypernymy Detection Measure

To see if the conclusions drawn depend on the choice of the hypernymy detection measure,

the measure is changed from BalAPinc to SLQS (Santus et al., 2014) and the experiments

from Section 6.6.1 are redone. SLQS is based on the distributional informativeness hypoth-

esis, that states that hypernyms are less “informative” than hyponyms because they occur

in more general contexts. The informativeness Eu of a word u is defined to be the median

entropy of its top N dimensions, Eu = medianNk=1H(ck), where H(ci) denotes the entropy

of dimension ci. The SLQS score for a pair (u, v) is the relative difference in entropies,

SLQS(u→ v) = 1− Eu

Ev
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Recent work from Shwartz et al. (2017) has found SLQS to be more successful than other

measures in monolingual hypernymy detection.

The results with SLQS are consistent with those in Section 6.6.1 — both BiSparse-Dep

models still outperform window-based models. Also, the delexicalized version of BiSparse-

Dep outperforms the window-based models, showing that the robust behavior demonstrated

in Section 6.7 is also invariant across measures. It was found that using BalAPinc led to

better results than SLQS. For both BiSparse-Dep models, BalAPinc wins across the

board for two languages (Russian and Chinese), and wins half the time for the other two

languages compared to SLQS.

6.8. Summary

This chapter demonstrated that cross-lingual representations can also reveal asymmetric

relationships like hypernymy between words in different languages. This was shown using

a new distributional approach, namely BiSparse-Dep, based on cross-lingual embeddings

derived from dependency contexts. By appealing to the distributional inclusion hypothesis

to probe these representations, hypernymy relationships between words in different lan-

guages was determined. Experimental results show that using BiSparse-Dep is superior

to standard window based models and a translation baseline. The approach was also shown

to be robust to various low-resource scenarios, especially when the syntactic contexts were

derived using a weak dependency parser, an encouraging result for low-resource languages.

Several interesting future directions remain open — incorporating path-based information

indirectly into the representation, or replacing the delexicalized parser with more sophis-

ticated transfer strategies (Rasooli and Collins, 2017; Aufrant et al., 2016) might prove

beneficial. It remains to be seen how our approach performs for other language pairs

beyond simulated low-resource settings. The approach has the potential to complement ex-

isting work on creating cross-lingual ontologies such as BabelNet and the Open Multilingual

WordNet, which are noisy because they are compiled semi-automatically, and have limited
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language coverage. In such settings, distributional approaches can help refine ontology

construction for any language where sufficient resources are available.

This chapter assumed that the hypernymy relationship can be detected out-of-context, i.e.,

without paying heed to the context in which the words appear. This is a common assumption

made in most monolingual lexical semantic tasks (Kotlerman et al., 2010; Baroni and Lenci,

2011; Baroni et al., 2012). However, this may not be true for polysemous words like bat

(that can take both mammal and equipment as hypernyms). This criticism is related to that

of static word representations discussed in Section 5.8. An important future direction is

considering the cross-lingual hypernymy detection task in context, as has been done recently

in the monolingual setting by Shwartz and Dagan (2015) and Vyas and Carpuat (2017).
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CHAPTER 7 : Multilingual Supervision for Cross-lingual Entity Linking

7.1. Introduction

The web is a valuable source of knowledge, expressed through text written either in English

or other languages.1 As most of text on the web is unstructured, information extraction

tasks (e.g., coreference resolution, named entity recognition etc.) have been developed

to extract structured information to facilitate better text understanding. Additionally,

collective efforts to organize knowledge about entities and concepts have lead to creation

of knowledge bases (KB) like Wikipedia, DBPedia (Auer et al., 2007), Freebase (Bollacker

et al., 2008), and YAGO (Hoffart et al., 2013). Nevertheless, to be able to keep up with

continuously generated new information about entities (old and new), one has to find a way

to bridge the unstructured raw text and the structured knowledge bases.

A key step to bridging this gap is to identify and ground named entities expressed in raw text

to their corresponding entries in the KB. This task is fraught with ambiguity and variability

of natural language — the same string can refer to multiple entities (e.g., St. Mary’s Church

can refer to over 500 different churches over the world) and the same entity can be described

in many ways (e.g., New York City, the Big Apple, NYC, The Five Boroughs all refer to the

entity New_York). Furthermore, grounding entities in multilingual text adds the difficulty

of comparing contexts in different languages. Developing approaches to facilitate this task

in multilingual texts is the focus of this and the next chapter.

In this chapter, I will discuss how we can leverage cross-lingual representations to share su-

pervision between languages, to perform a downstream information extraction task, namely,

entity linking in the cross-lingual setting.

I will first briefly describe the entity linking task and its history, including a discussion of

the challenges involved in the cross-lingual version of the task.
1>40% of the Web is non-English content (en.wikipedia.org/wiki/Internet_languages).
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7.2. History of the Entity Linking Task

The task of entity linking involves grounding a span of text in a document to some back-

ground structured knowledge representation. More formally, given a mention m in a

document D, entity linking (EL) involves linking m to its gold entity e∗ in a KB, K =

{e1, · · · , en}, for all mentions m ∈ D. For instance, for the following document contain-

ing mentions Jay Cutler and Dolphin and the English Wikipedia as the target KB, EL

involves grounding Jay Cutler to the Wikipedia article https://en.wikipedia.org/wiki/

Jay_Cutler and Dolphin to https://en.wikipedia.org/wiki/Miami_Dolphins.

[Jay Cutler] passed his physical and is officially a [Dolphin].

Understanding raw text often requires appealing to background knowledge about entities.

For instance, in the example above, we need to know that Dolphin is the nickname for a

player of the Miami Dolphins football team, and not (say) the aquatic mammal.

By augmenting a piece of text with such background knowledge, EL helps a human reader

access relevant factual knowledge to complement the information expressed in the text.

This not only aids understanding, but also serves as a useful component in other NLP

systems. For instance, EL has been used for building question answering systems (Khalid

et al., 2008; Yih et al., 2015; Sun et al., 2015), incorporating knowledge into coreference

resolution systems (Ratinov and Roth, 2012; Hajishirzi et al., 2013; Rahman and Ng, 2011)

and extracting new facts for knowledge base population (Ji and Grishman, 2011).

Relation to Other NLP Tasks. Entity linking is a closely related task to (a) Cross-

Document Coreference Resolution (CDCR) (Mayfield et al., 2009) that aims to resolve

coreference relationships between entity mentions across documents, and (b) Word Sense

Disambiguation (WSD) (Navigli, 2009) discussed earlier in Chapter 5. The relationship

with CDCR can be seen when we consider the union of the KB K and document D as a

collection of documents — entity linking now reduces to resolving coreference relationships
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between entities across documents. The relation with WSD is more obvious one; the object

to be disambiguated in WSD is a word instead of an entity mention, and the KB is a

sense inventory instead of an encyclopedic resource like Wikipedia. In principle, both EL

and WSD are dealing with the ambiguity problem in natural language. A major difference

between the tasks is that named entities are often ambiguous, whereas most words assume

only a single sense (i.e., monosemous) (Hachey et al., 2013). In this respect, EL is a harder

disambiguation task that WSD.

7.2.1. Monolingual Entity Linking

Previous work on entity linking has predominantly examined the problem with respect to

English documents and an English KB like Wikipedia or Freebase (Bunescu and Paşca,

2006; Mihalcea and Csomai, 2007; Ratinov et al., 2011; Hoffart et al., 2011; Cheng and

Roth, 2013; Shen et al., 2015, inter alia). All such entity linking systems involve two steps:

candidate generation and context-sensitive inference, that together deal with ambiguity and

variability of entities in text. I describe them below.

Candidate Generation

Considering all entities in the knowledge base as possible disambiguation for a mention m

is impractical, as the KB K can contain millions of entities. Therefore, it is prudent to

filter out irrelevant entities that the mention is unlikely to refer to. Candidate Generation

identifies a small set C(m) of plausible entities that a given mention m can link to. Given

m, candidate generation outputs a list of candidate entities C(m) = {e1, e2, · · · , eK} of size

at most K, each associated with a prior probability Prprior(ei | m) indicating the probability

of m referring to ei, given only m’s surface.

To do this, first a dictionary mapping mention surfaces (strings) to entities that they can

refer to, is compiled. For instance, such a dictionary will map chicago to the set of entities

{Chicago, University_of_Chicago, Chicago_Cubs, · · · }. One approach to compile such

a dictionary is to crawl a large collection of hyperlinked documents and computing the fre-
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String Entity (e) Prprior(e | m) counts/total
chicago Chicago 0.275 62939/228690
chicago University_of_Chicago 0.075 17186/228690
chicago Chicago_Cubs 0.045 10332/228690
chicago Chicago_Tribune 0.041 9457/228690
· · · Chicago_White_Sox 0.040 9184/228690
· · · Chicago_Bears 0.039 9018/228690
· · · Art_Institute_of_Chicago 0.015 3538/228690
· · · Chicago_(band) 0.005 1225/228690
chicago Loyola_University_Chicago 0.005 1057/228690

Table 23: Part of a dictionary compiled from Wikipedia hyperlinks showing the entities that
the string chicago can refer to, along with the respective prior probabilities and counts.

quency with which an anchor text (or mention surface) links to a page in Wikipedia, such

as the one shown in Table 23. From the frequencies, one can estimate the conditional prob-

ability Prprior. For instance, if the string chicago appears hyperlinked 228690 times in the

document collection, and links to Chicago and University_of_Chicago 62939 and 17186

times respectively, then the probability of a mention [chicago] referring to Chicago and

University_of_Chicago is 0.275 and 0.075 respectively. In the literature, this collection

of documents can either be hyperlinked text from the Web (Spitkovsky and Chang, 2012),

or simply the articles in Wikipedia itself (Ratinov et al., 2011).

Context-Sensitive Inference

Having identified a small set of plausible entities, the context-sensitive inference step predicts

one of ê ∈ C(m) as the disambiguation for mention m. For this, a compatibility score

ϕ(m→ e) of the m grounding to a candidate entity e is computed using features extracted

from the context of m and information about e expressed in the KB K. The compatibility

score is trained using grounded mentions, i.e., mentions of entities that are grounded, as

supervision, such that the one shown in Figure 15. An inference problem is then solved to

find the best assignment for m. The different approaches for performing context-sensitive

inference vary in these two steps: choice of the features in compatibility score (hand-crafted

or learnt) and inference strategy (local inference or global inference).
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Choice of Features in ϕ(m → e). The score ϕ(m → e) can be computed using hand-

crafted or learnt features. Ratinov et al. (2011) use hand-crafted features comparing the

content of entity e’s page and mention m’s context. For instance, the cosine similarity of

the TF-IDF vectors of e’s page and m’s context All these manually defined features are

compiled into a feature vector f(e,m), such that ϕ(m → e) = w⊺f(e,m) where w is a

learnt weight vector.2 On the other hand, approaches like (Gupta et al., 2017; Sil et al.,

2018) learn feature representations e for the entity and g for the mention’s context, so that

ϕ(m → e) = e⊺g. The representations e and g are learnt end-to-end by optimizing a loss

defined for the disambiguation task using back-propagation (Rumelhart et al., 1986).

Local Inference. Local inference resolves each mention m ∈ D in isolation, with the

assignment to mention mi having no influence to assignment to mention mj where i ̸= j.

êi = argmax
ei∈C(mi)

ϕ(mi → ei) ∀mi ∈ D (7.1)

Local inference is a popular approach (Mihalcea and Csomai, 2007; Durrett and Klein, 2014;

Lazic et al., 2015; Francis-Landau et al., 2016), owing to its simplicity.

Global Inference. The local inference approach does not take into account relationship

between candidate entities of different mentions in the same document. For instance, if

Steven_Gerrard is a candidate for mention mi ∈ D and Liverpool_F.C. is a candidate for

mention mj ∈ D, then assigning mi → Steven_Gerrard,mj → Liverpool_F.C. is coher-

ent because these two entities are related.3 This correlation between entities is expressed

through a pairwise coherence score ψ(mi → ei,mj → ej) that is used along with the learnt

compatibility score ϕ(m→ e) to formulate a global inference problem,

(ê1, ê2, · · · , ên) = argmax
ei∈C(mi)

∑
i

ϕ(mi, ei) +
∑
i ̸=j

ψ(mi → ei,mj → ej) ∀mi ∈ D (7.2)

2A non-linear kernel (e.g., polynomial kernel) can also be used.
3Steven_Gerrard captained Liverpool_F.C. from 2003-15.
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Everton won against [Liverpool] in an FA Cup match.

Figure 15: Tamil and English mention contexts containing [mentions] of the entity
Liverpool_F.C. from the respective Wikipedias. Tamil Wikipedia only has 9 mentions
referring to Liverpool_F.C., whereas English Wikipedia has 5303 such mentions. Clearly,
there is a need to augment the limited contextual evidence in low-resource languages (like
Tamil) with evidence from high-resource languages (like English). The Tamil sentence
translates to “Suarez plays for [Liverpool] and Uruguay.”

This global inference problem is NP-hard (Cucerzan, 2007), so approximate inference ap-

proaches have been proposed that decompose the inference problem to smaller but tractable

inference problems using a technique like message passing (Globerson et al., 2016; Ganea

and Hofmann, 2017). The pairwise coherence score ψ itself can either be hand crafted re-

lational scores between entities imposed only at inference time (Cheng and Roth, 2013) or

learnt end-to-end with the rest of the model (Ganea and Hofmann, 2017).

7.2.2. Cross-lingual Entity Linking

The task of Cross-lingual Entity Linking (XEL) (McNamee et al., 2011; Ji et al., 2015;

Tsai and Roth, 2016) involves grounding entity mentions written in any language (i.e., the

document D containing the query mention m) to an English Knowledge Base (e.g., the

English Wikipedia). For instance, Figure 15 shows a Tamil (a language with >70 million

speakers) and an English mention (shown [enclosed]) and their mention contexts. XEL

involves grounding the Tamil mention (which translates to ‘Liverpool’) to the football club

Liverpool_F.C., and not the city or the university. XEL enables knowledge acquisition

directly from documents in any language, without resorting to machine translation.

Unlike monolingual entity linking for English, the cross-lingual entity linking is relatively less

explored. The cross-lingual nature of the problem introduces new challenges to the entity

linking problem. Firstly, candidate generation has to operate with mention whose surfaces

are in a different writing script. For instance, in Figure 15, candidates have to be generated

for the Tamil surface form (written in the Tamil script) that translates to Liverpool. Another
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challenge in the cross-lingual setting is to find supervision for the context-sensitive inference

component. In this chapter, I will examine the latter challenge, and discuss an approach to

address the former challenge in Chapter 8.

Existing approaches have taken two main directions to obtain supervision for learning XEL

models — (a) using mention contexts appearing in the target language (McNamee et al.,

2011; Tsai and Roth, 2016), or (b) using mention contexts appearing only in English (Pan

et al., 2017; Sil et al., 2018). We describe these directions and their limitations below.

Target Supervision Only. The first direction, exemplified by approaches like McNamee

et al. (2011) and Tsai and Roth (2016) utilizes supervision available in the target language

to train the XEL model. McNamee et al. (2011) use annotation projection via parallel

corpora to generate supervision in the target language. They generate mention contexts

in the target language by first running an entity linking system on the English side of a

parallel corpus, and then projecting the resulting annotations via word alignments to the

target language. Such annotation projection approaches are not scalable as parallel data is

expensive to obtain. On the other hand, Tsai and Roth (2016) uses mention contexts from

the target language Wikipedia to learns separate XEL models for each language. Both these

approach have scalability issues for languages with limited resources. Another limitation of

these approaches is that they train separate models for each language, which is inefficient

when working with multiple languages.

English Supervision Only. Other approaches, like that of Pan et al. (2017) and Sil et al.

(2018) only use mention contexts from English. While Pan et al. (2017) compute entity

coherence statistics from English Wikipedia, and uses other mentions in the document to

jointly rank candidate entities in an unsupervised manner. Similarly, Sil et al. (2018) per-

form zero-shot XEL for Chinese and Spanish by using multilingual embeddings to transfer a

pre-trained English EL model. Sil et al. (2018) use the term zero-shot in the sense that the

model was not trained on the target language. However, intuitively, mention contexts in
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the target language are a valuable source of language-specific contextual information, and

should also be used if available. Indeed, a recent study (Lewoniewski et al., 2017) found

that for language sensitive topics, the quality of information can be better in the relevant

language version of Wikipedia than the English version.

7.2.3. Our Work

As discussed earlier, training an EL model requires grounded mentions, i.e., mentions of

entities that are grounded to a Knowledge Base (KB), as supervision (Figure 15). While

millions of such mentions are available in English, by virtue of hyperlinks in the English

Wikipedia, this is not the case for most languages. This makes learning XEL models

challenging, especially for languages with limited resources (e.g., the Tamil Wikipedia is

only 1% of the English Wikipedia in size). To overcome this, it is desirable to augment

the limited contextual evidence available in the language with evidence from high-resource

languages like English.

In this chapter, I will describe Xelms (XEL with Multilingual Supervision) (Section 7.3),

the first approach that fulfills the above desiderata by using multilingual supervision to

train an XEL model. Xelms represents the mention contexts of the same entity from dif-

ferent languages in the same semantic space using a single context encoder (Section 7.3.1).

Language-agnostic entity representations are jointly learned with the relevant mention con-

text representations, so that an entity and its context share similar representations. Addi-

tionally, by encoding freely available structured knowledge, like fine-grained entity types,

the entity and context representations can be further improved (Section 7.3.2). The archi-

tecture of Xelms is inspired by several monolingual entity linking systems (Francis-Landau

et al., 2016; Nguyen et al., 2016b; Gupta et al., 2017), approaches that use type information

to aid entity linking (Ling et al., 2015; Gupta et al., 2017; Raiman and Raiman, 2018),

and the recent success of multilingual embeddings for several tasks (Ammar et al., 2016a;

Duong et al., 2017b).
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The ability to use multilingual supervision enables Xelms to learn XEL models for target

languages with limited resources by exploiting freely available supervision from high resource

languages (like English). The experiments show that Xelms outperforms existing state-of-

the-art approaches that only use target language supervision, across 3 benchmark datasets

in 8 languages (Section 7.6.1). Moreover, while previous XEL models (McNamee et al.,

2011; Tsai and Roth, 2016) train separate models for different languages, Xelms can train

a single model for performing XEL in multiple languages (Section 7.6.2).

One of the goals of XEL is to enable understanding of languages with limited resources. To

evaluate this, experiments are performed in two such settings. Experiments in the zero-shot

setting (Section 7.7.1), where no supervision is available in the target language, show that

the good performance of zero-shot XEL approaches (Sil et al., 2018) can be attributed to

the use of prior probabilities. As described earlier (Section 7.2.1), these probabilities are

computed from large amount of grounded mentions, which are not available in realistic

zero-shot settings. Experiments in the low-resource setting (Section 7.7.2), where some

supervision is available in the target language, show that even when only a fraction of the

available supervision in the target language is provided, Xelms can achieve competitive

performance by exploiting supervision from English.

7.3. Cross-lingual EL with Xelms

An overview of Xelms is shown in Figure 16a. Xelms computes the conditional probability,

Prcontext(e | m), of a mention m referring to entity e ∈ K using a mention context vector

g ∈ Rh representing m’s context, and an entity vector e ∈ Rh, representing the entity

e ∈ K (one vector per entity). Xelms can also incorporate structured knowledge like fine-

grained entity types (Section 7.3.2) using a multi-task learning approach (Caruana, 1998),

by learning a type vector t ∈ Rh for each possible type t (e.g., sports_team) associated with

the entity e. The entity vector e, context vector g and the type vector t are jointly trained,

and interact through appropriately defined pairwise loss terms — an Entity-Context loss

(EC-Loss), Type-Entity loss (TE-Loss) and a Type-Context loss (TC-Loss).
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…, Everton, 
FA_Cup, …

…, ! ரே s, 
உ&' வே , …

Everton won against 
[Liverpool] in a FA 

Cup match.

Everton won against 
[Liverpool] in a FA 

Cup match.

Everton won against 
[Liverpool] in a FA 

Cup match.

! ரே s [!வr$l] 
ம*+m உ&' வே  
- ளை யா23றாr.

t<latexit sha1_base64="5stcGrXqsoASK8xcqONY8G/32M8=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhhrNBtebW3TnIKvEKUoMCzUH1qz+MWRpxhUxSY3qem6CfUY2CST6r9FPDE8omdMR7lioaceNn88QzcmaVIQljbZ9CMld/b2Q0MmYaBXYyT2iWvVz8z+ulGF77mVBJilyxxUdhKgnGJD+fDIXmDOXUEsq0sFkJG1NNGdqSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWCg4Ble4c0xzovz7nwsRktOsXMMf+B8/gD3JZEY</latexit><latexit sha1_base64="5stcGrXqsoASK8xcqONY8G/32M8=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhhrNBtebW3TnIKvEKUoMCzUH1qz+MWRpxhUxSY3qem6CfUY2CST6r9FPDE8omdMR7lioaceNn88QzcmaVIQljbZ9CMld/b2Q0MmYaBXYyT2iWvVz8z+ulGF77mVBJilyxxUdhKgnGJD+fDIXmDOXUEsq0sFkJG1NNGdqSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWCg4Ble4c0xzovz7nwsRktOsXMMf+B8/gD3JZEY</latexit><latexit sha1_base64="5stcGrXqsoASK8xcqONY8G/32M8=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhhrNBtebW3TnIKvEKUoMCzUH1qz+MWRpxhUxSY3qem6CfUY2CST6r9FPDE8omdMR7lioaceNn88QzcmaVIQljbZ9CMld/b2Q0MmYaBXYyT2iWvVz8z+ulGF77mVBJilyxxUdhKgnGJD+fDIXmDOXUEsq0sFkJG1NNGdqSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWCg4Ble4c0xzovz7nwsRktOsXMMf+B8/gD3JZEY</latexit><latexit sha1_base64="5stcGrXqsoASK8xcqONY8G/32M8=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhhrNBtebW3TnIKvEKUoMCzUH1qz+MWRpxhUxSY3qem6CfUY2CST6r9FPDE8omdMR7lioaceNn88QzcmaVIQljbZ9CMld/b2Q0MmYaBXYyT2iWvVz8z+ulGF77mVBJilyxxUdhKgnGJD+fDIXmDOXUEsq0sFkJG1NNGdqSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWCg4Ble4c0xzovz7nwsRktOsXMMf+B8/gD3JZEY</latexit>

e
<latexit sha1_base64="7qc84Cdo+wz8L3G9wVRAa1jLUmI=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGY4WxQrbl1dw6ySryC1KBAc1D96g9jlkYoDRNU657nJsbPqDKcCZxV+qnGhLIJHWHPUkkj1H42TzwjZ1YZkjBW9klD5urvjYxGWk+jwE7mCfWyl4v/eb3UhNd+xmWSGpRs8VGYCmJikp9PhlwhM2JqCWWK26yEjamizNiSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWAg4Rle4c3Rzovz7nwsRktOsXMMf+B8/gDgWpEJ</latexit><latexit sha1_base64="7qc84Cdo+wz8L3G9wVRAa1jLUmI=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGY4WxQrbl1dw6ySryC1KBAc1D96g9jlkYoDRNU657nJsbPqDKcCZxV+qnGhLIJHWHPUkkj1H42TzwjZ1YZkjBW9klD5urvjYxGWk+jwE7mCfWyl4v/eb3UhNd+xmWSGpRs8VGYCmJikp9PhlwhM2JqCWWK26yEjamizNiSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWAg4Rle4c3Rzovz7nwsRktOsXMMf+B8/gDgWpEJ</latexit><latexit sha1_base64="7qc84Cdo+wz8L3G9wVRAa1jLUmI=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGY4WxQrbl1dw6ySryC1KBAc1D96g9jlkYoDRNU657nJsbPqDKcCZxV+qnGhLIJHWHPUkkj1H42TzwjZ1YZkjBW9klD5urvjYxGWk+jwE7mCfWyl4v/eb3UhNd+xmWSGpRs8VGYCmJikp9PhlwhM2JqCWWK26yEjamizNiSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWAg4Rle4c3Rzovz7nwsRktOsXMMf+B8/gDgWpEJ</latexit><latexit sha1_base64="7qc84Cdo+wz8L3G9wVRAa1jLUmI=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGY4WxQrbl1dw6ySryC1KBAc1D96g9jlkYoDRNU657nJsbPqDKcCZxV+qnGhLIJHWHPUkkj1H42TzwjZ1YZkjBW9klD5urvjYxGWk+jwE7mCfWyl4v/eb3UhNd+xmWSGpRs8VGYCmJikp9PhlwhM2JqCWWK26yEjamizNiSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWAg4Rle4c3Rzovz7nwsRktOsXMMf+B8/gDgWpEJ</latexit>

g
<latexit sha1_base64="vmPs/L4DTQ+031t4ylAOlX3U35Q=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNpoNqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfjZJEL</latexit><latexit sha1_base64="vmPs/L4DTQ+031t4ylAOlX3U35Q=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNpoNqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfjZJEL</latexit><latexit sha1_base64="vmPs/L4DTQ+031t4ylAOlX3U35Q=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNpoNqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfjZJEL</latexit><latexit sha1_base64="vmPs/L4DTQ+031t4ylAOlX3U35Q=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNpoNqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfjZJEL</latexit>

Mention Context Encoder

Tamil Mention Contexts (low-resource)

English Mention Contexts (high-resource)

TE-Loss

<latexit sha1_base64="9EVnzPTNABZ8pAfSF5ND/TzHLbA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LInjwUKFf0ISy2W7bpZtN2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820V1tY3NreK26Wd3b39A/uw3NJRoihr0khEqhMQzQSXrAkcBOvEipEwEKwdjG9nfvuJKc0j2YBpzPyQDCUfcErASD277AGbQOppiht35w+R1lnPrjhVZw68StycVFCOes/+8voRTUImgQqiddd1YvBTooBTwbKSl2gWEzomQ9Y1VJKQaT+d357hU6P08SBSpiTgufp7IiWh1tMwMJ0hgZFe9mbif143gcG1n3IZJ8AkXSwaJAJDhGdB4D5XjIKYGkKo4uZWTEdEEQomrpIJwV1+eZW0LqquU3UfLyu1mzyOIjpGJ+gMuegK1dA9qqMmomiCntErerMy68V6tz4WrQUrnzlCf2B9/gCut5Qx</latexit><latexit sha1_base64="9EVnzPTNABZ8pAfSF5ND/TzHLbA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LInjwUKFf0ISy2W7bpZtN2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820V1tY3NreK26Wd3b39A/uw3NJRoihr0khEqhMQzQSXrAkcBOvEipEwEKwdjG9nfvuJKc0j2YBpzPyQDCUfcErASD277AGbQOppiht35w+R1lnPrjhVZw68StycVFCOes/+8voRTUImgQqiddd1YvBTooBTwbKSl2gWEzomQ9Y1VJKQaT+d357hU6P08SBSpiTgufp7IiWh1tMwMJ0hgZFe9mbif143gcG1n3IZJ8AkXSwaJAJDhGdB4D5XjIKYGkKo4uZWTEdEEQomrpIJwV1+eZW0LqquU3UfLyu1mzyOIjpGJ+gMuegK1dA9qqMmomiCntErerMy68V6tz4WrQUrnzlCf2B9/gCut5Qx</latexit><latexit sha1_base64="9EVnzPTNABZ8pAfSF5ND/TzHLbA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LInjwUKFf0ISy2W7bpZtN2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820V1tY3NreK26Wd3b39A/uw3NJRoihr0khEqhMQzQSXrAkcBOvEipEwEKwdjG9nfvuJKc0j2YBpzPyQDCUfcErASD277AGbQOppiht35w+R1lnPrjhVZw68StycVFCOes/+8voRTUImgQqiddd1YvBTooBTwbKSl2gWEzomQ9Y1VJKQaT+d357hU6P08SBSpiTgufp7IiWh1tMwMJ0hgZFe9mbif143gcG1n3IZJ8AkXSwaJAJDhGdB4D5XjIKYGkKo4uZWTEdEEQomrpIJwV1+eZW0LqquU3UfLyu1mzyOIjpGJ+gMuegK1dA9qqMmomiCntErerMy68V6tz4WrQUrnzlCf2B9/gCut5Qx</latexit><latexit sha1_base64="9EVnzPTNABZ8pAfSF5ND/TzHLbA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LInjwUKFf0ISy2W7bpZtN2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820V1tY3NreK26Wd3b39A/uw3NJRoihr0khEqhMQzQSXrAkcBOvEipEwEKwdjG9nfvuJKc0j2YBpzPyQDCUfcErASD277AGbQOppiht35w+R1lnPrjhVZw68StycVFCOes/+8voRTUImgQqiddd1YvBTooBTwbKSl2gWEzomQ9Y1VJKQaT+d357hU6P08SBSpiTgufp7IiWh1tMwMJ0hgZFe9mbif143gcG1n3IZJ8AkXSwaJAJDhGdB4D5XjIKYGkKo4uZWTEdEEQomrpIJwV1+eZW0LqquU3UfLyu1mzyOIjpGJ+gMuegK1dA9qqMmomiCntErerMy68V6tz4WrQUrnzlCf2B9/gCut5Qx</latexit>

TC-Loss

<latexit sha1_base64="ILdXp4IXvXZpzw/tlJ3GmKxXa3s=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LvXjwUKFf0ISy2W7bpZts2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820VNja3tneKu6W9/YPDI/u43NYyUZS1qBRSdQOimeARawEHwbqxYiQMBOsEk/rc7zwxpbmMmjCLmR+SUcSHnBIwUt8ue8CmkHqa4mb98kFqnfXtilN1FsDrxM1JBeVo9O0vbyBpErIIqCBa91wnBj8lCjgVLCt5iWYxoRMyYj1DIxIy7aeL2zN8bpQBHkplKgK8UH9PpCTUehYGpjMkMNar3lz8z+slMLz1Ux7FCbCILhcNE4FB4nkQeMAVoyBmhhCquLkV0zFRhIKJq2RCcFdfXiftq6rrVN3H60rtLo+jiE7RGbpALrpBNXSPGqiFKJqiZ/SK3qzMerHerY9la8HKZ07QH1ifP6ujlC8=</latexit><latexit sha1_base64="ILdXp4IXvXZpzw/tlJ3GmKxXa3s=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LvXjwUKFf0ISy2W7bpZts2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820VNja3tneKu6W9/YPDI/u43NYyUZS1qBRSdQOimeARawEHwbqxYiQMBOsEk/rc7zwxpbmMmjCLmR+SUcSHnBIwUt8ue8CmkHqa4mb98kFqnfXtilN1FsDrxM1JBeVo9O0vbyBpErIIqCBa91wnBj8lCjgVLCt5iWYxoRMyYj1DIxIy7aeL2zN8bpQBHkplKgK8UH9PpCTUehYGpjMkMNar3lz8z+slMLz1Ux7FCbCILhcNE4FB4nkQeMAVoyBmhhCquLkV0zFRhIKJq2RCcFdfXiftq6rrVN3H60rtLo+jiE7RGbpALrpBNXSPGqiFKJqiZ/SK3qzMerHerY9la8HKZ07QH1ifP6ujlC8=</latexit><latexit sha1_base64="ILdXp4IXvXZpzw/tlJ3GmKxXa3s=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LvXjwUKFf0ISy2W7bpZts2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820VNja3tneKu6W9/YPDI/u43NYyUZS1qBRSdQOimeARawEHwbqxYiQMBOsEk/rc7zwxpbmMmjCLmR+SUcSHnBIwUt8ue8CmkHqa4mb98kFqnfXtilN1FsDrxM1JBeVo9O0vbyBpErIIqCBa91wnBj8lCjgVLCt5iWYxoRMyYj1DIxIy7aeL2zN8bpQBHkplKgK8UH9PpCTUehYGpjMkMNar3lz8z+slMLz1Ux7FCbCILhcNE4FB4nkQeMAVoyBmhhCquLkV0zFRhIKJq2RCcFdfXiftq6rrVN3H60rtLo+jiE7RGbpALrpBNXSPGqiFKJqiZ/SK3qzMerHerY9la8HKZ07QH1ifP6ujlC8=</latexit><latexit sha1_base64="ILdXp4IXvXZpzw/tlJ3GmKxXa3s=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LvXjwUKFf0ISy2W7bpZts2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820VNja3tneKu6W9/YPDI/u43NYyUZS1qBRSdQOimeARawEHwbqxYiQMBOsEk/rc7zwxpbmMmjCLmR+SUcSHnBIwUt8ue8CmkHqa4mb98kFqnfXtilN1FsDrxM1JBeVo9O0vbyBpErIIqCBa91wnBj8lCjgVLCt5iWYxoRMyYj1DIxIy7aeL2zN8bpQBHkplKgK8UH9PpCTUehYGpjMkMNar3lz8z+slMLz1Ux7FCbCILhcNE4FB4nkQeMAVoyBmhhCquLkV0zFRhIKJq2RCcFdfXiftq6rrVN3H60rtLo+jiE7RGbpALrpBNXSPGqiFKJqiZ/SK3qzMerHerY9la8HKZ07QH1ifP6ujlC8=</latexit>

EC-Loss

<latexit sha1_base64="yWgfIQ3Qy5EO0yvNb3qfkwPc3N8=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LRfDgoYL9gCaUzXbbLt1swu5EWkL+ihcPinj1j3jz37htc9DWBwOP92aYmRfEgmtwnG+rsLa+sblV3C7t7O7tH9iH5ZaOEkVZk0YiUp2AaCa4ZE3gIFgnVoyEgWDtYFyf+e0npjSP5CNMY+aHZCj5gFMCRurZZQ/YBFJPU3xbP7+PtM56dsWpOnPgVeLmpIJyNHr2l9ePaBIyCVQQrbuuE4OfEgWcCpaVvESzmNAxGbKuoZKETPvp/PYMnxqljweRMiUBz9XfEykJtZ6GgekMCYz0sjcT//O6CQyu/ZTLOAEm6WLRIBEYIjwLAve5YhTE1BBCFTe3YjoiilAwcZVMCO7yy6ukdVF1nar7cFmp3eRxFNExOkFnyEVXqIbuUAM1EUUT9Ixe0ZuVWS/Wu/WxaC1Y+cwR+gPr8weUfpQg</latexit><latexit sha1_base64="yWgfIQ3Qy5EO0yvNb3qfkwPc3N8=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LRfDgoYL9gCaUzXbbLt1swu5EWkL+ihcPinj1j3jz37htc9DWBwOP92aYmRfEgmtwnG+rsLa+sblV3C7t7O7tH9iH5ZaOEkVZk0YiUp2AaCa4ZE3gIFgnVoyEgWDtYFyf+e0npjSP5CNMY+aHZCj5gFMCRurZZQ/YBFJPU3xbP7+PtM56dsWpOnPgVeLmpIJyNHr2l9ePaBIyCVQQrbuuE4OfEgWcCpaVvESzmNAxGbKuoZKETPvp/PYMnxqljweRMiUBz9XfEykJtZ6GgekMCYz0sjcT//O6CQyu/ZTLOAEm6WLRIBEYIjwLAve5YhTE1BBCFTe3YjoiilAwcZVMCO7yy6ukdVF1nar7cFmp3eRxFNExOkFnyEVXqIbuUAM1EUUT9Ixe0ZuVWS/Wu/WxaC1Y+cwR+gPr8weUfpQg</latexit><latexit sha1_base64="yWgfIQ3Qy5EO0yvNb3qfkwPc3N8=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LRfDgoYL9gCaUzXbbLt1swu5EWkL+ihcPinj1j3jz37htc9DWBwOP92aYmRfEgmtwnG+rsLa+sblV3C7t7O7tH9iH5ZaOEkVZk0YiUp2AaCa4ZE3gIFgnVoyEgWDtYFyf+e0npjSP5CNMY+aHZCj5gFMCRurZZQ/YBFJPU3xbP7+PtM56dsWpOnPgVeLmpIJyNHr2l9ePaBIyCVQQrbuuE4OfEgWcCpaVvESzmNAxGbKuoZKETPvp/PYMnxqljweRMiUBz9XfEykJtZ6GgekMCYz0sjcT//O6CQyu/ZTLOAEm6WLRIBEYIjwLAve5YhTE1BBCFTe3YjoiilAwcZVMCO7yy6ukdVF1nar7cFmp3eRxFNExOkFnyEVXqIbuUAM1EUUT9Ixe0ZuVWS/Wu/WxaC1Y+cwR+gPr8weUfpQg</latexit><latexit sha1_base64="yWgfIQ3Qy5EO0yvNb3qfkwPc3N8=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LRfDgoYL9gCaUzXbbLt1swu5EWkL+ihcPinj1j3jz37htc9DWBwOP92aYmRfEgmtwnG+rsLa+sblV3C7t7O7tH9iH5ZaOEkVZk0YiUp2AaCa4ZE3gIFgnVoyEgWDtYFyf+e0npjSP5CNMY+aHZCj5gFMCRurZZQ/YBFJPU3xbP7+PtM56dsWpOnPgVeLmpIJyNHr2l9ePaBIyCVQQrbuuE4OfEgWcCpaVvESzmNAxGbKuoZKETPvp/PYMnxqljweRMiUBz9XfEykJtZ6GgekMCYz0sjcT//O6CQyu/ZTLOAEm6WLRIBEYIjwLAve5YhTE1BBCFTe3YjoiilAwcZVMCO7yy6ukdVF1nar7cFmp3eRxFNExOkFnyEVXqIbuUAM1EUUT9Ixe0ZuVWS/Wu/WxaC1Y+cwR+gPr8weUfpQg</latexit>
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s Everton won against 

[Liverpool] in a FA 
Cup match.

! ரே s [!வr$l] 
ம*+m உ&' வே  
- ளை யா23றாr.

Liverpool F.C.

<latexit sha1_base64="TwSIEjixfw47RyeJLAjpqXQA4Pc=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUhE0GWxIC5cVLAPaEKZTKft0EkmzNyIJRTc+CtuXCji1p9w5984bbPQ1gMDh3PO5c49YSK4Btf9tgpLyyura8X10sbm1vaOvbvX0DJVlNWpFFK1QqKZ4DGrAwfBWoliJAoFa4bD6sRv3jOluYzvYJSwICL9mPc4JWCkjn3gA3uAzAfAN9wEEymF37lyqs64Y5ddx50CLxIvJ2WUo9axv/yupGnEYqCCaN323ASCjCjgVLBxyU81Swgdkj5rGxqTiOkgm94wxsdG6eKeVObFgKfq74mMRFqPotAkIwIDPe9NxP+8dgq9iyDjcZICi+lsUS8VGCSeFIK7XDEKYmQIoYqbv2I6IIpQMLWVTAne/MmLpHHqeK7j3Z6VK5d5HUV0iI7QCfLQOaqga1RDdUTRI3pGr+jNerJerHfrYxYtWPnMPvoD6/MHte2XiA==</latexit><latexit sha1_base64="TwSIEjixfw47RyeJLAjpqXQA4Pc=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUhE0GWxIC5cVLAPaEKZTKft0EkmzNyIJRTc+CtuXCji1p9w5984bbPQ1gMDh3PO5c49YSK4Btf9tgpLyyura8X10sbm1vaOvbvX0DJVlNWpFFK1QqKZ4DGrAwfBWoliJAoFa4bD6sRv3jOluYzvYJSwICL9mPc4JWCkjn3gA3uAzAfAN9wEEymF37lyqs64Y5ddx50CLxIvJ2WUo9axv/yupGnEYqCCaN323ASCjCjgVLBxyU81Swgdkj5rGxqTiOkgm94wxsdG6eKeVObFgKfq74mMRFqPotAkIwIDPe9NxP+8dgq9iyDjcZICi+lsUS8VGCSeFIK7XDEKYmQIoYqbv2I6IIpQMLWVTAne/MmLpHHqeK7j3Z6VK5d5HUV0iI7QCfLQOaqga1RDdUTRI3pGr+jNerJerHfrYxYtWPnMPvoD6/MHte2XiA==</latexit><latexit sha1_base64="TwSIEjixfw47RyeJLAjpqXQA4Pc=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUhE0GWxIC5cVLAPaEKZTKft0EkmzNyIJRTc+CtuXCji1p9w5984bbPQ1gMDh3PO5c49YSK4Btf9tgpLyyura8X10sbm1vaOvbvX0DJVlNWpFFK1QqKZ4DGrAwfBWoliJAoFa4bD6sRv3jOluYzvYJSwICL9mPc4JWCkjn3gA3uAzAfAN9wEEymF37lyqs64Y5ddx50CLxIvJ2WUo9axv/yupGnEYqCCaN323ASCjCjgVLBxyU81Swgdkj5rGxqTiOkgm94wxsdG6eKeVObFgKfq74mMRFqPotAkIwIDPe9NxP+8dgq9iyDjcZICi+lsUS8VGCSeFIK7XDEKYmQIoYqbv2I6IIpQMLWVTAne/MmLpHHqeK7j3Z6VK5d5HUV0iI7QCfLQOaqga1RDdUTRI3pGr+jNerJerHfrYxYtWPnMPvoD6/MHte2XiA==</latexit><latexit sha1_base64="TwSIEjixfw47RyeJLAjpqXQA4Pc=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUhE0GWxIC5cVLAPaEKZTKft0EkmzNyIJRTc+CtuXCji1p9w5984bbPQ1gMDh3PO5c49YSK4Btf9tgpLyyura8X10sbm1vaOvbvX0DJVlNWpFFK1QqKZ4DGrAwfBWoliJAoFa4bD6sRv3jOluYzvYJSwICL9mPc4JWCkjn3gA3uAzAfAN9wEEymF37lyqs64Y5ddx50CLxIvJ2WUo9axv/yupGnEYqCCaN323ASCjCjgVLBxyU81Swgdkj5rGxqTiOkgm94wxsdG6eKeVObFgKfq74mMRFqPotAkIwIDPe9NxP+8dgq9iyDjcZICi+lsUS8VGCSeFIK7XDEKYmQIoYqbv2I6IIpQMLWVTAne/MmLpHHqeK7j3Z6VK5d5HUV0iI7QCfLQOaqga1RDdUTRI3pGr+jNerJerHfrYxYtWPnMPvoD6/MHte2XiA==</latexit>

sports team

<latexit sha1_base64="TE+2DbEyQJlHBLUSvDdIjyd+QjM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6MZlBfuAJoTJdNIOnUzCzI1YQjb+ihsXirj1M9z5N07bLLT1wMDhnHu4c0+YCq7Bcb6tysrq2vpGdbO2tb2zu2fvH3R0kinK2jQRieqFRDPBJWsDB8F6qWIkDgXrhuObqd99YErzRN7DJGV+TIaSR5wSMFJgH3nAHiH3ALBOEwXaC8DEi8CuOw1nBrxM3JLUUYlWYH95g4RmMZNABdG67zop+DlRwKlgRc3LNEsJHZMh6xsqScy0n88OKPCpUQY4SpR5EvBM/Z3ISaz1JA7NZExgpBe9qfif188guvJzLtMMmKTzRVEmMCR42gYecMUoiIkhhCpu/orpiChCwXRWMyW4iycvk855w3Ua7t1FvXld1lFFx+gEnSEXXaImukUt1EYUFegZvaI368l6sd6tj/loxSozh+gPrM8ftTOXGw==</latexit><latexit sha1_base64="TE+2DbEyQJlHBLUSvDdIjyd+QjM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6MZlBfuAJoTJdNIOnUzCzI1YQjb+ihsXirj1M9z5N07bLLT1wMDhnHu4c0+YCq7Bcb6tysrq2vpGdbO2tb2zu2fvH3R0kinK2jQRieqFRDPBJWsDB8F6qWIkDgXrhuObqd99YErzRN7DJGV+TIaSR5wSMFJgH3nAHiH3ALBOEwXaC8DEi8CuOw1nBrxM3JLUUYlWYH95g4RmMZNABdG67zop+DlRwKlgRc3LNEsJHZMh6xsqScy0n88OKPCpUQY4SpR5EvBM/Z3ISaz1JA7NZExgpBe9qfif188guvJzLtMMmKTzRVEmMCR42gYecMUoiIkhhCpu/orpiChCwXRWMyW4iycvk855w3Ua7t1FvXld1lFFx+gEnSEXXaImukUt1EYUFegZvaI368l6sd6tj/loxSozh+gPrM8ftTOXGw==</latexit><latexit sha1_base64="TE+2DbEyQJlHBLUSvDdIjyd+QjM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6MZlBfuAJoTJdNIOnUzCzI1YQjb+ihsXirj1M9z5N07bLLT1wMDhnHu4c0+YCq7Bcb6tysrq2vpGdbO2tb2zu2fvH3R0kinK2jQRieqFRDPBJWsDB8F6qWIkDgXrhuObqd99YErzRN7DJGV+TIaSR5wSMFJgH3nAHiH3ALBOEwXaC8DEi8CuOw1nBrxM3JLUUYlWYH95g4RmMZNABdG67zop+DlRwKlgRc3LNEsJHZMh6xsqScy0n88OKPCpUQY4SpR5EvBM/Z3ISaz1JA7NZExgpBe9qfif188guvJzLtMMmKTzRVEmMCR42gYecMUoiIkhhCpu/orpiChCwXRWMyW4iycvk855w3Ua7t1FvXld1lFFx+gEnSEXXaImukUt1EYUFegZvaI368l6sd6tj/loxSozh+gPrM8ftTOXGw==</latexit><latexit sha1_base64="TE+2DbEyQJlHBLUSvDdIjyd+QjM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6MZlBfuAJoTJdNIOnUzCzI1YQjb+ihsXirj1M9z5N07bLLT1wMDhnHu4c0+YCq7Bcb6tysrq2vpGdbO2tb2zu2fvH3R0kinK2jQRieqFRDPBJWsDB8F6qWIkDgXrhuObqd99YErzRN7DJGV+TIaSR5wSMFJgH3nAHiH3ALBOEwXaC8DEi8CuOw1nBrxM3JLUUYlWYH95g4RmMZNABdG67zop+DlRwKlgRc3LNEsJHZMh6xsqScy0n88OKPCpUQY4SpR5EvBM/Z3ISaz1JA7NZExgpBe9qfif188guvJzLtMMmKTzRVEmMCR42gYecMUoiIkhhCpu/orpiChCwXRWMyW4iycvk855w3Ua7t1FvXld1lFFx+gEnSEXXaImukUt1EYUFegZvaI368l6sd6tj/loxSozh+gPrM8ftTOXGw==</latexit>
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l<latexit sha1_base64="x65kFaBF/HZpH/Ng0a+ynMI2q6M=">AAACAnicbZDLSsNAFIZP6q3GW9SVuBksBVclEUGXRTcuK9gLNKFMppN26OTCzEQoIbjxVdy4UMStT+HOt3HSRtDWHwY+/nMOc87vJ5xJZdtfRmVldW19o7ppbm3v7O5Z+wcdGaeC0DaJeSx6PpaUs4i2FVOc9hJBcehz2vUn10W9e0+FZHF0p6YJ9UI8iljACFbaGlhHbojV2A8ynpv1H3Yp5/nAqtkNeya0DE4JNSjVGlif7jAmaUgjRTiWsu/YifIyLBQjnOamm0qaYDLBI9rXGOGQSi+bnZCjunaGKIiFfpFCM/f3RIZDKaehrzuLJeVirTD/q/VTFVx6GYuSVNGIzD8KUo5UjIo80JAJShSfasBEML0rImMsMFE6NVOH4CyevAyds4ZjN5zb81rzqoyjCsdwAqfgwAU04QZa0AYCD/AEL/BqPBrPxpvxPm+tGOXMIfyR8fENW+SXZQ==</latexit><latexit sha1_base64="x65kFaBF/HZpH/Ng0a+ynMI2q6M=">AAACAnicbZDLSsNAFIZP6q3GW9SVuBksBVclEUGXRTcuK9gLNKFMppN26OTCzEQoIbjxVdy4UMStT+HOt3HSRtDWHwY+/nMOc87vJ5xJZdtfRmVldW19o7ppbm3v7O5Z+wcdGaeC0DaJeSx6PpaUs4i2FVOc9hJBcehz2vUn10W9e0+FZHF0p6YJ9UI8iljACFbaGlhHbojV2A8ynpv1H3Yp5/nAqtkNeya0DE4JNSjVGlif7jAmaUgjRTiWsu/YifIyLBQjnOamm0qaYDLBI9rXGOGQSi+bnZCjunaGKIiFfpFCM/f3RIZDKaehrzuLJeVirTD/q/VTFVx6GYuSVNGIzD8KUo5UjIo80JAJShSfasBEML0rImMsMFE6NVOH4CyevAyds4ZjN5zb81rzqoyjCsdwAqfgwAU04QZa0AYCD/AEL/BqPBrPxpvxPm+tGOXMIfyR8fENW+SXZQ==</latexit><latexit sha1_base64="x65kFaBF/HZpH/Ng0a+ynMI2q6M=">AAACAnicbZDLSsNAFIZP6q3GW9SVuBksBVclEUGXRTcuK9gLNKFMppN26OTCzEQoIbjxVdy4UMStT+HOt3HSRtDWHwY+/nMOc87vJ5xJZdtfRmVldW19o7ppbm3v7O5Z+wcdGaeC0DaJeSx6PpaUs4i2FVOc9hJBcehz2vUn10W9e0+FZHF0p6YJ9UI8iljACFbaGlhHbojV2A8ynpv1H3Yp5/nAqtkNeya0DE4JNSjVGlif7jAmaUgjRTiWsu/YifIyLBQjnOamm0qaYDLBI9rXGOGQSi+bnZCjunaGKIiFfpFCM/f3RIZDKaehrzuLJeVirTD/q/VTFVx6GYuSVNGIzD8KUo5UjIo80JAJShSfasBEML0rImMsMFE6NVOH4CyevAyds4ZjN5zb81rzqoyjCsdwAqfgwAU04QZa0AYCD/AEL/BqPBrPxpvxPm+tGOXMIfyR8fENW+SXZQ==</latexit><latexit sha1_base64="x65kFaBF/HZpH/Ng0a+ynMI2q6M=">AAACAnicbZDLSsNAFIZP6q3GW9SVuBksBVclEUGXRTcuK9gLNKFMppN26OTCzEQoIbjxVdy4UMStT+HOt3HSRtDWHwY+/nMOc87vJ5xJZdtfRmVldW19o7ppbm3v7O5Z+wcdGaeC0DaJeSx6PpaUs4i2FVOc9hJBcehz2vUn10W9e0+FZHF0p6YJ9UI8iljACFbaGlhHbojV2A8ynpv1H3Yp5/nAqtkNeya0DE4JNSjVGlif7jAmaUgjRTiWsu/YifIyLBQjnOamm0qaYDLBI9rXGOGQSi+bnZCjunaGKIiFfpFCM/f3RIZDKaehrzuLJeVirTD/q/VTFVx6GYuSVNGIzD8KUo5UjIo80JAJShSfasBEML0rImMsMFE6NVOH4CyevAyds4ZjN5zb81rzqoyjCsdwAqfgwAU04QZa0AYCD/AEL/BqPBrPxpvxPm+tGOXMIfyR8fENW+SXZQ==</latexit>

r
<latexit sha1_base64="juw6eQUUFM3i37Bw8Ysq5tbV1Ao=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhpmeDas2tu3OQVeIVpAYFmoPqV38YszTiCpmkxvQ8N0E/oxoFk3xW6aeGJ5RN6Ij3LFU04sbP5oln5MwqQxLG2j6FZK7+3shoZMw0CuxkntAse7n4n9dLMbz2M6GSFLlii4/CVBKMSX4+GQrNGcqpJZRpYbMSNqaaMrQlVWwJ3vLJq6R9Uffcund/WWvcFHWU4QRO4Rw8uIIG3EETWsBAwTO8wptjnBfn3flYjJacYucY/sD5/AH0G5EW</latexit><latexit sha1_base64="juw6eQUUFM3i37Bw8Ysq5tbV1Ao=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhpmeDas2tu3OQVeIVpAYFmoPqV38YszTiCpmkxvQ8N0E/oxoFk3xW6aeGJ5RN6Ij3LFU04sbP5oln5MwqQxLG2j6FZK7+3shoZMw0CuxkntAse7n4n9dLMbz2M6GSFLlii4/CVBKMSX4+GQrNGcqpJZRpYbMSNqaaMrQlVWwJ3vLJq6R9Uffcund/WWvcFHWU4QRO4Rw8uIIG3EETWsBAwTO8wptjnBfn3flYjJacYucY/sD5/AH0G5EW</latexit><latexit sha1_base64="juw6eQUUFM3i37Bw8Ysq5tbV1Ao=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhpmeDas2tu3OQVeIVpAYFmoPqV38YszTiCpmkxvQ8N0E/oxoFk3xW6aeGJ5RN6Ij3LFU04sbP5oln5MwqQxLG2j6FZK7+3shoZMw0CuxkntAse7n4n9dLMbz2M6GSFLlii4/CVBKMSX4+GQrNGcqpJZRpYbMSNqaaMrQlVWwJ3vLJq6R9Uffcund/WWvcFHWU4QRO4Rw8uIIG3EETWsBAwTO8wptjnBfn3flYjJacYucY/sD5/AH0G5EW</latexit><latexit sha1_base64="juw6eQUUFM3i37Bw8Ysq5tbV1Ao=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhpmeDas2tu3OQVeIVpAYFmoPqV38YszTiCpmkxvQ8N0E/oxoFk3xW6aeGJ5RN6Ij3LFU04sbP5oln5MwqQxLG2j6FZK7+3shoZMw0CuxkntAse7n4n9dLMbz2M6GSFLlii4/CVBKMSX4+GQrNGcqpJZRpYbMSNqaaMrQlVWwJ3vLJq6R9Uffcund/WWvcFHWU4QRO4Rw8uIIG3EETWsBAwTO8wptjnBfn3flYjJacYucY/sD5/AH0G5EW</latexit>
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Figure 16: (a) Xelms uses grounded mentions from two or more languages (English and
Tamil shown) as supervision. The context g, entity e and type t vectors interact through
Entity-Context loss (EC-Loss), Type-Context loss (TC-Loss) and Type-Entity loss (TE-
Loss). The Tamil sentence is the same as in Figure 15, and other mentions in it translate
to [Suarez] and [Uruguay]. (b) The Mention Context Encoder (Section 7.3.1) encodes the
local context (neighboring words) and the document context (surfaces of other mentions in
the document) of the mention into g. Internal view of local context encoder is in Figure 17.

The mention context vector g is computed using a mention context encoder (Section 7.3.1),

shown in Figure 16b. The encoder is a function of the mention context of mention m in

a document D, which consists of: (a) neighboring words around the mention, which is

referred to as its local context and, (b) surfaces of other mentions appearing in D, which is

referred to as its document context.

Xelms is trained using grounded mentions in multiple languages (English and Tamil in

Figure 16a) that is derived from Wikipedia (Section 7.5).

7.3.1. Mention Context Representation

To learn from mention contexts in multiple languages, mention context representations are

generated using a language-agnostic mention context encoder. An overview of the mention
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context encoder is shown in Figure 16b. The components of the mention context encoder,

namely multilingual word embeddings, a local context encoder and a document context

encoder, are described below.

Multilingual Word Embeddings. Multilingual word embeddings jointly encode words

in multiple (≥2) languages in the same vector space such that semantically similar words

in the same language and translationally equivalent words in different languages are close

per cosine similarity (Ammar et al., 2016b; Smith et al., 2017; Duong et al., 2017b). These

embeddings generalize bilingual embeddings (such as those discussed in Chapter 3), which

do the same for two languages only.

Xelms uses FastText (Bojanowski et al., 2017; Smith et al., 2017) multilingual embed-

dings that aligns monolingual embeddings of multiple languages in the same space using a

small bilingual dictionary (∼2500 pairs) from each language to English. Both the embed-

dings and the dictionary can be easily obtained for languages with limited resources.

The multilingual word embeddings for tokens {w1, w2, · · · , wn} are denoted by w1:n =

{w1,w2, · · · ,wn}, where each wi ∈ Rd.

Local Context Representation. The local context of a mention m, spanning tokens i

to j, consists of left context (tokens i −W to j) and right context (tokens i to j +W ).

For example, for the mention [Liverpool] in Figure 16b, the left and right contexts are

“Everton won against Liverpool” and “Liverpool in a FA Cup match” respectively. The

local context encoder (Figure 17) encodes the left and the right contexts into vectors l ∈ Rh

and r ∈ Rh respectively, using a convolutional neural network (CNN). These two vectors

are then combined to generate the local context vector c ∈ Rh (Figure 16b).

The CNN convolves continuous spans of k tokens using a filter matrix F ∈ Rkd×h to project

the concatenation (⊕ operator) of the token embeddings in the span. The resulting vector

is passed through a ReLU unit4 to generate convolutional output Oi. The outputs {Oi}
4A ReLU activation unit (Nair and Hinton, 2010) is defined to be the function f(x) = max(0, x)
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Figure 17: Local Context Encoder, for the right context. Figure 16b shows how it fits inside
Mention Context Encoder.

are pooled by averaging (avg) to obtain the final encoding Enc(w1:n),

Oi = relu(F⊺(wi ⊕ · · · ⊕wi+k−1)) (7.3)

Enc(w1:n) = avg(O1, · · · ,On−k+1) (7.4)

Left and right context vectors l and r are computed using respective Enc(.) layers,

l = Encleft(wi−W · · ·wj) (7.5)

r = Encright(wi · · ·wj+W ) (7.6)

These vectors together generate the local context vector c = F2h,h(l⊕r). Here Fdi,do : vi →

vo denotes a feed-forward layer that takes vi ∈ Rdi as input, and outputs vo ∈ Rdo .

Document Context Representation. Presence of certain mentions in a document can

help disambiguate other mentions. For example, “Suarez”, “Everton” in a document can

help disambiguate “Liverpool”. To incorporate this, the document context dm of a mention

m appearing in document D is defined to be the bag of all other mentions in D. The

document context dm is encoded into a dense document context vector d ∈ Rh by a feed-

forward layer d = F|V |,h(dm). Here V is the set containing all mention surfaces seen during
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training. When training jointly over multiple languages, V consists of mention surfaces

seen in all languages (e.g., all English and Tamil mention surfaces) during training. This

enables parameter sharing by embedding mention surfaces in different languages in the same

low-dimensional space.

The local and document context vectors c and d are combined to get the mention context

vector g using a feed-forward layer g = F2h,h(c⊕ d).

Context Conditional Probability. The probability of a mention m linking to entity e

is computed using its context vector g and the entity vector e,

Prcontext(e | m) =
exp(g⊺e)∑

e′∈C(m)

exp(g⊺e′) (7.7)

where C(m) denotes candidate entities of the mention m (Section 7.4.1 explains how C(m)

is generated). The negative log-likelihood of Prcontext(e | m) is minimized with respect

to the gold entity e∗ against the candidate entities C(m). This loss term is called the

Entity-Context loss (EC-Loss) in the rest of the chapter,

EC-Loss=− log Prcontext(e∗ | m)∑
e′∈C(m)

Prcontext(e′ | m)
(7.8)

7.3.2. Including Type Information

Incorporating the fine-grained types of a mentionm can help rank entities of the appropriate

type higher than others (Ling et al., 2015; Gupta et al., 2017; Raiman and Raiman, 2018).

For instance, knowing sports_team is the type of [Liverpool] and constraining linking to

entities with the relevant type, encourages disambiguation to the correct entity.

To make the mention context representation g type-aware, the model predicts the set of fine-

grained types of m, T(m) = {t1, ..., t|T(m)|} using g. Each ti belongs to a pre-defined type
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vocabulary Γ.5 The probability of a type t belonging to T(m) given the mention context

is defined as Pr(t | m) = σ(t⊺g), where σ is the sigmoid function and t is the learnable

embedding for type t. For this task, a Type-Context loss (TC-Loss) can be defined as,

TC-Loss = BCE(T(m),Pr(t | m)) (7.9)

where BCE is the Binary Cross-Entropy loss,

−
∑

t∈T(m)

logPr(t | m)−
∑

t̸∈T(m)

log(1− Pr(t | m)) (7.10)

The entity-type information is also incorporated in the entity representations, by defining

a similar Type-Entity loss (TE-Loss).

To identify the gold types T(m) of a mention m, the model makes the distant supervision

assumption (same as Ling et al. (2015)) and assigns the types of the gold entity e∗ to be the

types of the mention. Gold fine-grained types of the entities can be acquired from resources

like Freebase (Bollacker et al., 2008) or YAGO (Hoffart et al., 2013).

7.4. Training and Inference

This section explains how Xelms generates candidate entities, performs inference, and

combines the different training losses.

7.4.1. Candidate Generation

Xelms adopts Tsai and Roth (2016)’s candidate generation strategy with some minor mod-

ifications. Prprior(e | m) is computed using a surface-title index by counting how often the

surface of m links to entity e in Wikipedia hyperlinks. Redirect title surfaces are also

treated as hyperlink surfaces and added to the surface to link counts. To generate candi-

dates for mentions in another language (e.g., Chinese), first candidates are generated as

described above in the Wikipedia of that language (Chinese Wikipedia), and then mapped
5The type vocabulary contains 112 fine-grained types from Ling and Weld (2012) (i.e., |Γ| = 112).
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Scoring Entities

13

லிவ$%&

Liverpool_(City)
Liverpool_F.C.

University_of_Liverpool
Liverpool_Cathedral

Tamil Wikipedia English Wikipedia
லிவ$%&

லிவ$%&_கா&ப*+, கழக.
லிவ$%&_ப&கைல,கழக.

லிவ$%&_ேபராலய.

P
prior

(e | m)
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<latexit sha1_base64="N9pP1ap3Fh5y8GiHYf7u/pLKtoM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LvXisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2Nza3invVvb2Dw6PqscnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaCWSvze09UaRbJRzOPqS/wRLKQEWwyqVUXl6NqzW24OdA68QpSgwLtUfVrOI5IIqg0hGOtB54bGz/FyjDC6aIyTDSNMZnhCR1YKrGg2k/zWxfowipjFEbKljQoV39PpFhoPReB7RTYTPWql4n/eYPEhLd+ymScGCrJclGYcGQilD2OxkxRYvjcEkwUs7ciMsUKE2PjqdgQvNWX10n3quG5De/huta8K+IowxmcQx08uIEm3EMbOkBgCs/wCm+OcF6cd+dj2VpyiplT+APn8wcmM42j</latexit><latexit sha1_base64="N9pP1ap3Fh5y8GiHYf7u/pLKtoM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LvXisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2Nza3invVvb2Dw6PqscnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaCWSvze09UaRbJRzOPqS/wRLKQEWwyqVUXl6NqzW24OdA68QpSgwLtUfVrOI5IIqg0hGOtB54bGz/FyjDC6aIyTDSNMZnhCR1YKrGg2k/zWxfowipjFEbKljQoV39PpFhoPReB7RTYTPWql4n/eYPEhLd+ymScGCrJclGYcGQilD2OxkxRYvjcEkwUs7ciMsUKE2PjqdgQvNWX10n3quG5De/huta8K+IowxmcQx08uIEm3EMbOkBgCs/wCm+OcF6cd+dj2VpyiplT+APn8wcmM42j</latexit><latexit sha1_base64="N9pP1ap3Fh5y8GiHYf7u/pLKtoM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LvXisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2Nza3invVvb2Dw6PqscnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaCWSvze09UaRbJRzOPqS/wRLKQEWwyqVUXl6NqzW24OdA68QpSgwLtUfVrOI5IIqg0hGOtB54bGz/FyjDC6aIyTDSNMZnhCR1YKrGg2k/zWxfowipjFEbKljQoV39PpFhoPReB7RTYTPWql4n/eYPEhLd+ymScGCrJclGYcGQilD2OxkxRYvjcEkwUs7ciMsUKE2PjqdgQvNWX10n3quG5De/huta8K+IowxmcQx08uIEm3EMbOkBgCs/wCm+OcF6cd+dj2VpyiplT+APn8wcmM42j</latexit><latexit sha1_base64="N9pP1ap3Fh5y8GiHYf7u/pLKtoM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LvXisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2Nza3invVvb2Dw6PqscnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaCWSvze09UaRbJRzOPqS/wRLKQEWwyqVUXl6NqzW24OdA68QpSgwLtUfVrOI5IIqg0hGOtB54bGz/FyjDC6aIyTDSNMZnhCR1YKrGg2k/zWxfowipjFEbKljQoV39PpFhoPReB7RTYTPWql4n/eYPEhLd+ymScGCrJclGYcGQilD2OxkxRYvjcEkwUs7ciMsUKE2PjqdgQvNWX10n3quG5De/huta8K+IowxmcQx08uIEm3EMbOkBgCs/wCm+OcF6cd+dj2VpyiplT+APn8wcmM42j</latexit>

ê = argmax P
model

(e | m)

<latexit sha1_base64="W6GFx95+hMCOM7iwfIohSSDUq+s=">AAACJHicbVBNS8NAEN34bf2qevSyWIR6KYkICiKIXjxWsFpoStlsJu3S3STsTsQS8mO8+Fe8ePADD178LW4/Dmp9MPB4b4aZeUEqhUHX/XRmZufmFxaXlksrq2vrG+XNrRuTZJpDgycy0c2AGZAihgYKlNBMNTAVSLgN+hdD//YOtBFJfI2DFNqKdWMRCc7QSp3yid9jmENxSn2Ee8yZ7ip2TwvqK4a9IMrrRScfWyoJQRZFFawnQqr2O+WKW3NHoNPEm5AKmaDeKb/5YcIzBTFyyYxpeW6KbbsTBZdQlPzMQMp4n3WhZWnMFJh2PnqyoHtWCWmUaFsx0pH6cyJnypiBCmzn8HTz1xuK/3mtDKPjdi7iNEOI+XhRlEmKCR0mRkOhgaMcWMK4FvZWyntMM44215INwfv78jS5Oah5bs27OqycnU/iWCI7ZJdUiUeOyBm5JHXSIJw8kCfyQl6dR+fZeXc+xq0zzmRmm/yC8/UNLjKltQ==</latexit><latexit sha1_base64="W6GFx95+hMCOM7iwfIohSSDUq+s=">AAACJHicbVBNS8NAEN34bf2qevSyWIR6KYkICiKIXjxWsFpoStlsJu3S3STsTsQS8mO8+Fe8ePADD178LW4/Dmp9MPB4b4aZeUEqhUHX/XRmZufmFxaXlksrq2vrG+XNrRuTZJpDgycy0c2AGZAihgYKlNBMNTAVSLgN+hdD//YOtBFJfI2DFNqKdWMRCc7QSp3yid9jmENxSn2Ee8yZ7ip2TwvqK4a9IMrrRScfWyoJQRZFFawnQqr2O+WKW3NHoNPEm5AKmaDeKb/5YcIzBTFyyYxpeW6KbbsTBZdQlPzMQMp4n3WhZWnMFJh2PnqyoHtWCWmUaFsx0pH6cyJnypiBCmzn8HTz1xuK/3mtDKPjdi7iNEOI+XhRlEmKCR0mRkOhgaMcWMK4FvZWyntMM44215INwfv78jS5Oah5bs27OqycnU/iWCI7ZJdUiUeOyBm5JHXSIJw8kCfyQl6dR+fZeXc+xq0zzmRmm/yC8/UNLjKltQ==</latexit><latexit sha1_base64="W6GFx95+hMCOM7iwfIohSSDUq+s=">AAACJHicbVBNS8NAEN34bf2qevSyWIR6KYkICiKIXjxWsFpoStlsJu3S3STsTsQS8mO8+Fe8ePADD178LW4/Dmp9MPB4b4aZeUEqhUHX/XRmZufmFxaXlksrq2vrG+XNrRuTZJpDgycy0c2AGZAihgYKlNBMNTAVSLgN+hdD//YOtBFJfI2DFNqKdWMRCc7QSp3yid9jmENxSn2Ee8yZ7ip2TwvqK4a9IMrrRScfWyoJQRZFFawnQqr2O+WKW3NHoNPEm5AKmaDeKb/5YcIzBTFyyYxpeW6KbbsTBZdQlPzMQMp4n3WhZWnMFJh2PnqyoHtWCWmUaFsx0pH6cyJnypiBCmzn8HTz1xuK/3mtDKPjdi7iNEOI+XhRlEmKCR0mRkOhgaMcWMK4FvZWyntMM44215INwfv78jS5Oah5bs27OqycnU/iWCI7ZJdUiUeOyBm5JHXSIJw8kCfyQl6dR+fZeXc+xq0zzmRmm/yC8/UNLjKltQ==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="y9cHUDmoPGdEUIuG11yrGECJW7A=">AAACGXicbVDJSsRAEK24O26jVy+NIuhlSLwoiCB48TiCo8JkGDqdykxjdxK6KzJDyMd48Ve8eHDBg39jz3Jwe1DweK+KqnpRrqQl3//0Zmbn5hcWl5ZrK6tr6xv1zdVrmxVGYEtkKjO3EbeoZIotkqTwNjfIdaTwJro7H/k392iszNIrGubY0byXykQKTk7q1k/CPqcSq1MWEg6o5Kan+YBVLNSc+lFSNqtuObF0FqOqqn10noyZPujWd/2GPwb7S4Ip2YUpmt36WxhnotCYklDc2nbg59RxO0kKhVUtLCzmXNzxHrYdTblG2ynHT1ZszykxSzLjKiU2Vr9PlFxbO9SR6xydbn97I/E/r11QctwpZZoXhKmYLEoKxShjo8RYLA0KUkNHuDDS3cpEnxsuyOVacyEEv1/+S64PG4HfCC59WIJt2IF9COAIzuACmtACAQ/wBC/w6j16z977JK4Zb5rbFvyA9/EFFFKkJg==</latexit><latexit sha1_base64="y9cHUDmoPGdEUIuG11yrGECJW7A=">AAACGXicbVDJSsRAEK24O26jVy+NIuhlSLwoiCB48TiCo8JkGDqdykxjdxK6KzJDyMd48Ve8eHDBg39jz3Jwe1DweK+KqnpRrqQl3//0Zmbn5hcWl5ZrK6tr6xv1zdVrmxVGYEtkKjO3EbeoZIotkqTwNjfIdaTwJro7H/k392iszNIrGubY0byXykQKTk7q1k/CPqcSq1MWEg6o5Kan+YBVLNSc+lFSNqtuObF0FqOqqn10noyZPujWd/2GPwb7S4Ip2YUpmt36WxhnotCYklDc2nbg59RxO0kKhVUtLCzmXNzxHrYdTblG2ynHT1ZszykxSzLjKiU2Vr9PlFxbO9SR6xydbn97I/E/r11QctwpZZoXhKmYLEoKxShjo8RYLA0KUkNHuDDS3cpEnxsuyOVacyEEv1/+S64PG4HfCC59WIJt2IF9COAIzuACmtACAQ/wBC/w6j16z977JK4Zb5rbFvyA9/EFFFKkJg==</latexit><latexit sha1_base64="ErjqI5JpfKBp4hdUYa3V0j06TOU=">AAACJHicbVBNS8NAEN3U7/pV9ehlsQh6KYkXBRFELx4rWBWaUjabSbt0Nwm7E2kJ+TFe/CtePPiBBy/+FjdtD349GHi8N8PMvCCVwqDrfjiVmdm5+YXFperyyuraem1j89okmebQ4olM9G3ADEgRQwsFSrhNNTAVSLgJBuelf3MH2ogkvsJRCh3FerGIBGdopW7t2O8zzKE4oT7CEHOme4oNaUF9xbAfRHmz6OYTSyUhyKLYA+uJkKr9bq3uNtwx6F/iTUmdTNHs1l79MOGZghi5ZMa0PTfFjt2Jgksoqn5mIGV8wHrQtjRmCkwnHz9Z0F2rhDRKtK0Y6Vj9PpEzZcxIBbazPN389krxP6+dYXTUyUWcZggxnyyKMkkxoWViNBQaOMqRJYxrYW+lvM8042hzrdoQvN8v/yXXBw3PbXiXbv30bBrHItkmO2SPeOSQnJIL0iQtwsk9eSTP5MV5cJ6cN+d90lpxpjNb5Aeczy8s8qWx</latexit><latexit sha1_base64="W6GFx95+hMCOM7iwfIohSSDUq+s=">AAACJHicbVBNS8NAEN34bf2qevSyWIR6KYkICiKIXjxWsFpoStlsJu3S3STsTsQS8mO8+Fe8ePADD178LW4/Dmp9MPB4b4aZeUEqhUHX/XRmZufmFxaXlksrq2vrG+XNrRuTZJpDgycy0c2AGZAihgYKlNBMNTAVSLgN+hdD//YOtBFJfI2DFNqKdWMRCc7QSp3yid9jmENxSn2Ee8yZ7ip2TwvqK4a9IMrrRScfWyoJQRZFFawnQqr2O+WKW3NHoNPEm5AKmaDeKb/5YcIzBTFyyYxpeW6KbbsTBZdQlPzMQMp4n3WhZWnMFJh2PnqyoHtWCWmUaFsx0pH6cyJnypiBCmzn8HTz1xuK/3mtDKPjdi7iNEOI+XhRlEmKCR0mRkOhgaMcWMK4FvZWyntMM44215INwfv78jS5Oah5bs27OqycnU/iWCI7ZJdUiUeOyBm5JHXSIJw8kCfyQl6dR+fZeXc+xq0zzmRmm/yC8/UNLjKltQ==</latexit><latexit sha1_base64="W6GFx95+hMCOM7iwfIohSSDUq+s=">AAACJHicbVBNS8NAEN34bf2qevSyWIR6KYkICiKIXjxWsFpoStlsJu3S3STsTsQS8mO8+Fe8ePADD178LW4/Dmp9MPB4b4aZeUEqhUHX/XRmZufmFxaXlksrq2vrG+XNrRuTZJpDgycy0c2AGZAihgYKlNBMNTAVSLgN+hdD//YOtBFJfI2DFNqKdWMRCc7QSp3yid9jmENxSn2Ee8yZ7ip2TwvqK4a9IMrrRScfWyoJQRZFFawnQqr2O+WKW3NHoNPEm5AKmaDeKb/5YcIzBTFyyYxpeW6KbbsTBZdQlPzMQMp4n3WhZWnMFJh2PnqyoHtWCWmUaFsx0pH6cyJnypiBCmzn8HTz1xuK/3mtDKPjdi7iNEOI+XhRlEmKCR0mRkOhgaMcWMK4FvZWyntMM44215INwfv78jS5Oah5bs27OqycnU/iWCI7ZJdUiUeOyBm5JHXSIJw8kCfyQl6dR+fZeXc+xq0zzmRmm/yC8/UNLjKltQ==</latexit><latexit sha1_base64="W6GFx95+hMCOM7iwfIohSSDUq+s=">AAACJHicbVBNS8NAEN34bf2qevSyWIR6KYkICiKIXjxWsFpoStlsJu3S3STsTsQS8mO8+Fe8ePADD178LW4/Dmp9MPB4b4aZeUEqhUHX/XRmZufmFxaXlksrq2vrG+XNrRuTZJpDgycy0c2AGZAihgYKlNBMNTAVSLgN+hdD//YOtBFJfI2DFNqKdWMRCc7QSp3yid9jmENxSn2Ee8yZ7ip2TwvqK4a9IMrrRScfWyoJQRZFFawnQqr2O+WKW3NHoNPEm5AKmaDeKb/5YcIzBTFyyYxpeW6KbbsTBZdQlPzMQMp4n3WhZWnMFJh2PnqyoHtWCWmUaFsx0pH6cyJnypiBCmzn8HTz1xuK/3mtDKPjdi7iNEOI+XhRlEmKCR0mRkOhgaMcWMK4FvZWyntMM44215INwfv78jS5Oah5bs27OqycnU/iWCI7ZJdUiUeOyBm5JHXSIJw8kCfyQl6dR+fZeXc+xq0zzmRmm/yC8/UNLjKltQ==</latexit><latexit sha1_base64="W6GFx95+hMCOM7iwfIohSSDUq+s=">AAACJHicbVBNS8NAEN34bf2qevSyWIR6KYkICiKIXjxWsFpoStlsJu3S3STsTsQS8mO8+Fe8ePADD178LW4/Dmp9MPB4b4aZeUEqhUHX/XRmZufmFxaXlksrq2vrG+XNrRuTZJpDgycy0c2AGZAihgYKlNBMNTAVSLgN+hdD//YOtBFJfI2DFNqKdWMRCc7QSp3yid9jmENxSn2Ee8yZ7ip2TwvqK4a9IMrrRScfWyoJQRZFFawnQqr2O+WKW3NHoNPEm5AKmaDeKb/5YcIzBTFyyYxpeW6KbbsTBZdQlPzMQMp4n3WhZWnMFJh2PnqyoHtWCWmUaFsx0pH6cyJnypiBCmzn8HTz1xuK/3mtDKPjdi7iNEOI+XhRlEmKCR0mRkOhgaMcWMK4FvZWyntMM44215INwfv78jS5Oah5bs27OqycnU/iWCI7ZJdUiUeOyBm5JHXSIJw8kCfyQl6dR+fZeXc+xq0zzmRmm/yC8/UNLjKltQ==</latexit><latexit sha1_base64="W6GFx95+hMCOM7iwfIohSSDUq+s=">AAACJHicbVBNS8NAEN34bf2qevSyWIR6KYkICiKIXjxWsFpoStlsJu3S3STsTsQS8mO8+Fe8ePADD178LW4/Dmp9MPB4b4aZeUEqhUHX/XRmZufmFxaXlksrq2vrG+XNrRuTZJpDgycy0c2AGZAihgYKlNBMNTAVSLgN+hdD//YOtBFJfI2DFNqKdWMRCc7QSp3yid9jmENxSn2Ee8yZ7ip2TwvqK4a9IMrrRScfWyoJQRZFFawnQqr2O+WKW3NHoNPEm5AKmaDeKb/5YcIzBTFyyYxpeW6KbbsTBZdQlPzMQMp4n3WhZWnMFJh2PnqyoHtWCWmUaFsx0pH6cyJnypiBCmzn8HTz1xuK/3mtDKPjdi7iNEOI+XhRlEmKCR0mRkOhgaMcWMK4FvZWyntMM44215INwfv78jS5Oah5bs27OqycnU/iWCI7ZJdUiUeOyBm5JHXSIJw8kCfyQl6dR+fZeXc+xq0zzmRmm/yC8/UNLjKltQ==</latexit><latexit sha1_base64="W6GFx95+hMCOM7iwfIohSSDUq+s=">AAACJHicbVBNS8NAEN34bf2qevSyWIR6KYkICiKIXjxWsFpoStlsJu3S3STsTsQS8mO8+Fe8ePADD178LW4/Dmp9MPB4b4aZeUEqhUHX/XRmZufmFxaXlksrq2vrG+XNrRuTZJpDgycy0c2AGZAihgYKlNBMNTAVSLgN+hdD//YOtBFJfI2DFNqKdWMRCc7QSp3yid9jmENxSn2Ee8yZ7ip2TwvqK4a9IMrrRScfWyoJQRZFFawnQqr2O+WKW3NHoNPEm5AKmaDeKb/5YcIzBTFyyYxpeW6KbbsTBZdQlPzMQMp4n3WhZWnMFJh2PnqyoHtWCWmUaFsx0pH6cyJnypiBCmzn8HTz1xuK/3mtDKPjdi7iNEOI+XhRlEmKCR0mRkOhgaMcWMK4FvZWyntMM44215INwfv78jS5Oah5bs27OqycnU/iWCI7ZJdUiUeOyBm5JHXSIJw8kCfyQl6dR+fZeXc+xq0zzmRmm/yC8/UNLjKltQ==</latexit>

e 2 C(m)
<latexit sha1_base64="hudTPDe0yDBAqlVESNSvOPVW/Yg=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GOxF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoNxfea3n1BpHssHM0nQj+hQ8pAzaqz0iKTHJalXoot+qexW3TnIKvFyUoYcjX7pqzeIWRqhNExQrbuemxg/o8pwJnBa7KUaE8rGdIhdSyWNUPvZ/OIpObfKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsfTLgCpkRE0soU9zeStiIKsqMDaloQ/CWX14lrcuq51a9+6ty7TaPowCncAYV8OAaanAHDWgCAwnP8ApvjnZenHfnY9G65uQzJ/AHzucP24ePtw==</latexit><latexit sha1_base64="hudTPDe0yDBAqlVESNSvOPVW/Yg=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GOxF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoNxfea3n1BpHssHM0nQj+hQ8pAzaqz0iKTHJalXoot+qexW3TnIKvFyUoYcjX7pqzeIWRqhNExQrbuemxg/o8pwJnBa7KUaE8rGdIhdSyWNUPvZ/OIpObfKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsfTLgCpkRE0soU9zeStiIKsqMDaloQ/CWX14lrcuq51a9+6ty7TaPowCncAYV8OAaanAHDWgCAwnP8ApvjnZenHfnY9G65uQzJ/AHzucP24ePtw==</latexit><latexit sha1_base64="hudTPDe0yDBAqlVESNSvOPVW/Yg=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GOxF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoNxfea3n1BpHssHM0nQj+hQ8pAzaqz0iKTHJalXoot+qexW3TnIKvFyUoYcjX7pqzeIWRqhNExQrbuemxg/o8pwJnBa7KUaE8rGdIhdSyWNUPvZ/OIpObfKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsfTLgCpkRE0soU9zeStiIKsqMDaloQ/CWX14lrcuq51a9+6ty7TaPowCncAYV8OAaanAHDWgCAwnP8ApvjnZenHfnY9G65uQzJ/AHzucP24ePtw==</latexit><latexit sha1_base64="hudTPDe0yDBAqlVESNSvOPVW/Yg=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GOxF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoNxfea3n1BpHssHM0nQj+hQ8pAzaqz0iKTHJalXoot+qexW3TnIKvFyUoYcjX7pqzeIWRqhNExQrbuemxg/o8pwJnBa7KUaE8rGdIhdSyWNUPvZ/OIpObfKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsfTLgCpkRE0soU9zeStiIKsqMDaloQ/CWX14lrcuq51a9+6ty7TaPowCncAYV8OAaanAHDWgCAwnP8ApvjnZenHfnY9G65uQzJ/AHzucP24ePtw==</latexit>

P
model

(e | m) = P
prior

(e | m) +P
EC

(e | m)
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Figure 18: Candidate generation using inter-language links in Wikipedia. Prior probabilities
are computed from surface to index statistics computed over target language Wikipedia.

to English titles using inter-language links. To improve recall, counts of a version of the

hyperlink surface with its non-ASCII characters replaced (e.g., “Algebre” vs “Algèbre”) are

also maintained. For Chinese, counts are also kept for a version of the string converted

to simplified Chinese. For foreign languages with a Latin script (e.g., Spanish, Turkish), a

Backoff-to-English strategy is used — if querying the target language surface-to-link

index for the mention surface does not generate any candidates, the English surface-to-link

index is queried. At most K=20 candidates are generated for each mention.

The above candidate generation approach works well for the languages studied in this

chapter. In Chapter 8, I will describe a limitation of this approach and an improved

candidate generation strategy that uses transliteration.

7.4.2. Inference

The context conditional entity probability Prcontext(e | m) computed in Equation (7.7) and

the prior probability Prprior(e | m) are combined by taking their union:

Prmodel(e | m) = Prprior(e | m) + Prcontext(e | m)

− Prprior(e | m)× Prcontext(e | m)

(7.11)

Inference for the mention m picks the entity,

ê = argmax
e∈C(m)

Prmodel(e | m) (7.12)
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7.4.3. Training Objective

When only training the mention context encoder and entity vectors, the EC-Loss averaged

over all training mentions is minimized. When using the two type-aware losses, a weighted

sum of EC-Loss, TE-Loss, and TC-Loss is minimized, using the weighing scheme of

Kendall et al. (2018),

EC-Loss
2λ2EC

+
TE-Loss
2λ2TE

+
TC-Loss
2λ2TC

+ logλ2EC + logλ2TE + logλ2TC

(7.13)

Here λi are learnable scalar weighing parameters, and the respective 1
2λ2

i
and logλ2i term

ensure that λ2i does not grow unboundedly. This way, the model learns the relative weight

for each loss term.

During training, mentions from different languages are mixed using inverse-ratio mini-batch

mixing strategy. That is, if two languages have training data sizes proportional to α : β, at

any time during training, mini-batches seen from them are in the ratio 1
α : 1

β . This strategy

prevents languages with more training data from overwhelming languages with less training

data. Though simple, we found this strategy yielded good results.

7.5. Experimental Setup

This section describes the training and evaluation datasets, and the previous XEL ap-

proaches from the literature used in the experiments for comparison.

Training Mentions. Following previous work, hyperlinks from Wikipedia (dumps dated

05/20/2017) are used as the source of grounded mentions for supervision. As described

earlier (Section 4.3), Wikipedias in different languages contain articles describing the same

entity, which can be resolved by using inter-language links. For instance, article Ȣलवरपूल
in the Hindi Wikipedia resolves to Liverpool in English. Training mentions statistics are

shown in Table 24.
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Lang. # Train Mentions Size Relative to #
English Mentions

German (de) 22.6M 43.7%
Spanish (es) 13.8M 26.7%
French (fr) 16.2M 31.3%
Italian (it) 11.5M 22.2%
Chinese (zh) 5.9M 11.4%
Arabic (ar) 3.1M 6.0%
Turkish (tr) 1.8M 3.5%
Tamil (ta) 473k 0.9%

Table 24: Number of train mentions (from Wikipedia) in each language, with % size relative
to English (51.7M mentions). Train mentions from Wikipedias like Arabic, Turkish and
Tamil are <10% the size of those from the English Wikipedia.

The evaluation spans 8 languages — German (de), Spanish (es), Italian (it), French (fr),

Chinese (zh), Arabic (ar), Turkish (tr) and Tamil (ta), each of which has varying amount

of grounded mentions from the respective Wikipedia (Table 24). Note that our method is

applicable to any of the 293 Wikipedia languages as a target language.

Evaluation Datasets. Xelms is evaluated on the following benchmark datasets, span-

ning 8 different languages, thus providing an extensive evaluation.

(a) McN-Test Dataset from (McNamee et al., 2011). The test set was collected by using

parallel document collections, and then crowd-sourcing the ground truths. All the

test mentions in this dataset consists of person-names only.

(b) TH-Test A subset of the dataset used in (Tsai and Roth, 2016), derived from

Wikipedia.6 The mentions in the dataset fall in two categories — easy and hard,

where hard mentions are those for which the most likely candidate according to

the prior probability (i.e., argmaxPrprior(e | m)) is not the correct title. Indeed,

most Wikipedia mentions can be correctly linked by selecting the most likely candi-
6Pan et al. (2017) also created a dataset using Wikipedia, but did not categorize mentions like Tsai and

Roth (2016). Preliminary experiments on their dataset showed Xelms consistently beat Pan et al. (2017)’s

model. TH-Test was chosen for more controlled experiments.
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date (Ratinov et al., 2011). All the hard mentions from Tsai and Roth (2016)’s test

splits, henceforth called TH-Test, are used for each language.

(c) TAC15-Test Dataset from TAC-KBP 2015 Trilingual Entity Linking Track (Ji et al.,

2015) for Chinese and Spanish. It contains 84 news and 82 discussion forum articles

in Chinese (total 166 documents) and 84 news and 83 discussion forum articles in

Spanish (total 167 documents).

All models are evaluated using linking accuracy on gold mentions, which is the fraction of

test mentions that are linked to the correct entity. It is assumed gold mentions are provided

at test time, following common practice (Tsai and Roth, 2016; Ganea and Hofmann, 2017;

Gupta et al., 2017). Table 25 shows the source domains of the evaluation datasets.

Dataset Lang. Source

TH-Test de, es, fr, it, Wikipediazh, ar, tr, ta

McN-Test de, es, fr, it, News,
zh, ar, tr Parliament Proceedings

TAC15-Test es, zh News,
Discussion Forums

Table 25: Evaluation datasets used in the cross-lingual entity linking experiments.

Implementation and Tuning. All models were implemented using PyTorch.7 The

ADAM (Kingma and Ba, 2014) optimizer was used with a learning rate of 1e-3 in all

experiments. the candidate generator was limited to output the top-20 candidates for all

experiments. Local context window was set to W = 25 tokens. The convolutional filter

width was set to k = 5. The mention surface vocabulary V was limited to size 1M for

both monolingual and joint training. The multilingual embeddings (d=300) were scaled to

a fixed norm R (=5.0), and were not updated during training. Dropout (Srivastava et al.,

2014) was separately applied to local context and document context feature, each being

tuned over {0.4, 0.45, · · · , 0.7}. The size of entity, type and context vectors was fixed to
7github.com/pytorch
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h = 100. Batch size was tuned over {128, 256, 512, 1024}.

The Wikipedia dumps were parsed using the WikiExtractor script.8 Stanford segmenter

was used for Arabic (Monroe et al., 2014) and Chinese segmentation (Tseng et al., 2005).

Any dataset-specific tuning is avoided by tuning on a development set and applying the

same parameters across all datasets. All tunable parameters were tuned on a development

set containing the hard mentions from the train split released by Tsai and Roth (2016).

Comparative Approaches. We compare against the following state-of-the-art (SoTA)

approaches, described with the language from which they use mention contexts in (.),

(a) Tsai and Roth (2016) (Target Only) trains a separate model for each language

using mention contexts from the target language Wikipedia only. Current SoTA on

TH-Test.

(b) Pan et al. (2017) (English Only) uses entity coherence statistics from English

Wikipedia and the document context of a mention for XEL. Current SoTA on McN-

Test, except for Italian and Turkish, for which it’s McNamee et al. (2011).

(c) Sil et al. (2018) (English Only) uses multilingual embeddings to transfer a pre-

trained English entity linking model to perform XEL for Spanish and Chinese. Prior

probabilities Prprior are used as a feature. Current SoTA on TAC15-Test.

7.6. Experiments

The experiments in this section aim to evaluate: (a) if Xelms can train a better entity

linking model for a target language, by exploiting additional data from a high resource

language like English? (Section 7.6.1) (b) how does a single XEL model (trained using

Xelms) for multiple related languages compare to individually trained models for each

language? (Section 7.6.2) (c) if adding additional type information through a multi-tasking
8github.com/attardi/wikiextractor
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loss to Xelms improves performance? (Section 7.6.3)

In all experiments, the linking accuracy of Xelms is reported, averaged over 5 different

runs, and marked with ∗ the statistical significance (p < 0.01) of the best result (shown

bold) against the state-of-the-art (SoTA) using Student’s one-sample t-test.

7.6.1. Monolingual and Joint Models

The first experiment compares Xelms(mono), which uses monolingual supervision in the

target language only, and Xelms(joint), which uses supervision from English in addition to

the monolingual supervision, against the state-of-the-art (SoTA) approaches. The results

are in Table 26 and 27 respectively.

It can be seen that Xelms(mono) achieves similar or better scores than respective SoTA

on all datasets. The SoTA for McN-Test in Turkish and Chinese enhances the model

by using transliteration for candidate generation, explaining their superior performance.

Xelms(joint) performs substantially better than Xelms(mono) on all datasets, proving

that using additional supervision from a high resource language like English leads to better

linking performance. In particular, Xelms(joint) outperforms the SoTA on all languages

in TH-Test, on Spanish in TAC15-Test, and on 4 of the 7 languages in McN-Test.

7.6.2. Multilingual Training

Xelms is the first approach that can train a single XEL model for multiple languages. To

demonstrate this capability, a model, henceforth referred as Xelms(multi), is trained jointly

on 5 related languages — Spanish, German, French, Italian and English. Xelms(multi) is

compared to the respective Xelms(joint) model for each language. The results are in

Table 27 and 28.

The results show that Xelms(multi) is better (or at par) than Xelms(joint) on all datasets.

This suggests that Xelms(multi) can make more efficient use of available supervision in

related languages than previous approaches that trained separate models per language.
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Dataset → TH-Test McN-Test

Lang. ↓ SoTA Xelms SoTA Xelms
mono joint mono joint

de 53.3 53.7 55.6∗ 89.7 90.9 91.5
es 54.5 54.9 56.6∗ 91.5 91.2 91.4
fr 47.5 48.5 49.9∗ 92.1 92.6 92.7
it 48.3 48.4 51.9∗ 85.9 87.0 87.8∗
zh 57.6 58.1 61.3∗ 91.2∗ 87.4 88.2
ar 62.1 62.6 63.8∗ 80.2 80.3 83.1∗
tr 60.2 61.0 61.7∗ 95.3∗ 91.0 91.9
ta 54.1 54.7 59.7∗ n/a n/a n/a
avg. 54.7 55.2 57.6 89.4 88.6 89.5

Table 26: Xelms(joint) improves upon Xelms(mono) and the current State-of-The-Art
(SoTA) on TH-Test and McN-Test, showing the benefit of using additional supervision
from English. The best score is shown bold and ∗ marks statistical significance of best
against SoTA. Refer Section 7.5 for details on SoTA.

7.6.3. Adding Fine-grained Type Information

In this experiment, the effect of adding fine-grained type information is studied by compar-

ing Xelms(mono) and Xelms(joint) to Xelms(mono+type) and Xelms(joint+type) respec-

tively, that are versions of Xelms(mono) and Xelms(joint) trained with the type-aware

losses. The results are in Table 27.

Xelms(mono+type) and Xelms(joint+type) both improve compared to Xelms(mono) and

Xelms(joint) on McN-Test and TH-Test (compare Table 29 to Table 26), showing the

benefit of using structured knowledge in the form of fine-grained types. Similar trends are

also seen on TAC15-Test (Table 27), where Xelms(joint+type) improves on the SoTA.

7.7. Experiments with Limited Resources

One of the motivations of Xelms is to exploit supervision from high-resource languages like

English to aid XEL for languages with limited resources. Two such scenarios are examined

in this section,
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Model ↓
Lang. → es zh

(Tsai and Roth, 2016) 82.4 85.1
(Sil et al., 2018) (SoTA) 83.9 85.9

X
el

m
s

mono 83.3 84.4
mono+type 83.5 84.8

joint 84.1 85.5
joint+type 84.4∗ 86.0
multi 83.9 n/a

multi+type 84.4∗ n/a

Table 27: Linking accuracy on TAC15-Test. Numbers for Sil et al. (2018) from personal
communication.

Dataset → TH-Test McN-Test

Lang. ↓ SoTA Xelms SoTA Xelms
joint multi joint multi

de 53.3 55.6∗ 55.2 89.7 91.5 91.4
es 54.5 56.6 56.8∗ 91.5 91.4 91.4
fr 47.5 49.9 51.0∗ 92.1 92.7 92.6
it 48.3 51.9 52.3∗ 85.9 87.8 87.9∗

avg. 50.9 53.5 53.8 89.8 90.8 90.8

Table 28: Linking accuracy of a single Xelms(multi) model for four languages — German,
Spanish, French and Italian. For comparison, individually trained Xelms(joint) scores are
also shown. The best score is shown bold and ∗ marks statistical significance of best
against SoTA. Refer Section 7.5 for details on SoTA.

(a) Zero-shot setting, that is, no supervision available in the target language. Analysis in

Section 7.7.1 reveals the limitations of zero-shot XEL approaches and finds that the prior

probabilities play an important role in achieving good performance, which are unavailable

in realistic zero-shot scenarios.

(b) Low-resource setting, that is, some supervision available in the target language. Sec-

tion 7.7.2 shows that by combining supervision from a high-resource language, Xelms can

achieve competitive performance with a fraction of available supervision in the target lan-

guage.
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Dataset → TH-Test McN-Test

Lang. ↓ SoTA Xelms SoTA Xelms
mono+type joint+type mono+type joint+type

de 53.3 54.0 55.9∗ 89.7 91.2 91.5
es 54.5 55.1 57.2∗ 91.5 91.0 91.2
fr 47.5 49.0 50.6∗ 92.1 92.6 92.7
it 48.3 49.2 52.2∗ 85.9 87.4 87.9∗
zh 57.6 58.9 61.5∗ 91.2∗ 87.6 88.4
ar 62.1 63.0 64.0∗ 80.2 81.1 84.0∗
tr 60.2 61.5 62.0∗ 95.3∗ 91.2 92.1
ta 54.1 56.0 59.9∗ n/a n/a n/a
avg. 54.7 55.8 57.9 89.4 88.9 89.7

Table 29: Adding fine-grained type information further improves linking accuracy (compare
to Table 26). The best score is shown bold and ∗ marks statistical significance of best
against SoTA. Refer Section 7.5 for details on SoTA.

7.7.1. Zero-shot Setting

We first explain how Xelms can perform zero-shot XEL, the implications of our zero-shot

setting, and how it is more realistic than previous work.

Zero-shot XEL with XELMS. Xelms performs zero-shot XEL by training a model

using English supervision and multilingual embeddings for English, and directly applying

it to the test data in another language using the respective multilingual word embedding

instead of English embeddings.

No Prior Probabilities. Prior probabilities (or prior), i.e., Prprior have been shown to be

a reliable indicator of the correct disambiguation in entity linking (Ratinov et al., 2011; Tsai

and Roth, 2016). These probabilities are estimated from counts over the training mentions

in the target language. In the absence of training data for the target language, as in the

zero-shot setting, these prior probabilities are not available to an XEL model.

Comparison to Previous Work. The only other model capable of zero-shot XEL is

that of Sil et al. (2018). However, Sil et al. (2018) use prior probabilities and coreference
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Dataset → TAC15-Test TH-Test McN-Test
Approach ↓ (es) (zh) (avg) (avg)

Xelms (Z-S w/ prior) 80.3 83.9 43.5 88.1
Xelms (Z-S w/o prior) 53.5 55.9 41.1 86.0
SoTA 83.9 85.9 54.7 89.4

Table 30: Linking accuracy of the zero-shot (Z-S) approach on different datasets. Zero-shot
(w/ prior) is close to SoTA for datasets like TAC15-Test, but performance drops in the more
realistic setting of zero-shot (w/o prior) (Section 7.7.1) on all datasets, indicating most of
the performance can be attributed to the presence of prior probabilities. The slight drop in
McN-Test is due to trivial mentions that only have a single candidate.

chains for the target language in their zero-shot experiments, both of which will not be

available in a realistic zero-shot scenario. Compared to Sil et al. (2018), we evaluate the

performance of zero-shot XEL in more realistic setting, and show it is adversely affected by

absence of prior probabilities.

Is zero-shot XEL really effective? To evaluate the effectiveness of the zero-shot XEL

approach, we perform zero-shot XEL using Xelms on all datasets. Table 30 shows zero-

shot XEL results on all datasets, both with and without using the prior during inference.

Note that zero-shot XEL (with prior) is close to SoTA (Sil et al. (2018)) on TAC15-Test,

that also uses the prior for zero-shot XEL. However, for zero-shot XEL (without prior),

performance drops by more than 20% for TAC15-Test, 2.4% for TH-Test and by 2.1% for

McN-Test. This drop indicates that zero-shot XEL is not effective in a realistic zero-shot

setting (i.e., when the prior is unavailable for inference).

The prior is indeed a strong indicator of the correct disambiguation. For instance, simply

selecting the most likely candidate using the prior achieved 77.2% and 78.8% for Spanish and

Chinese respectively in the TAC15-Test dataset. Note that both versions of zero-shot XEL

(with and without prior) perform worse than the best possible model on TH-Test, because

TH-Test was constructed to ensure prior probabilities are not strong indicators (Tsai and

Roth, 2016). On McN-Test, an average of 75.9% mentions have only one (the correct)

candidate, making them trivial to link, regardless of the absence of priors.
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Figure 19: Linking accuracy v/s the number of train mentions in the target language L
(= Turkish (tr), Chinese (zh) and Spanish (es)). We compare both Xelms(mono) and
Xelms(joint) to the best results using all available supervision, denoted by L-best. To
discount the effect of the prior, all results above are without it. For number of train
mentions = 0, Xelms(joint) is equivalent to zero-shot without prior. Best viewed in color.

The results show that most of the XEL performance in zero-shot settings can be attributed

to availability of prior probabilities for the candidates. It is evident that zero-shot XEL in

a realistic setting (i.e., when prior probabilities are not available) is still challenging.

7.7.2. Low-resource Setting

This set of experiments analyzes the behavior of Xelms in a low-resource setting, i.e., when

some supervision is available in the target language. The aim of this setting is to estimate

how much supervision from the target language is needed to get reasonable performance

when using it jointly with supervision from English.

For this experiment, a Xelms(joint) model is trained by gradually increasing the number of

mention contexts for target language L (= Spanish, Chinese and Turkish) that are available

for supervision. Figure 19 plots the results on the TH-Test dataset. Figure 19 also shows the

best results achieved using all available target language supervision (denoted by L-best). For

comparison with the mono-lingually supervised model, the performance of Xelms(mono),
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which only uses the target language supervision, is also plotted. To discount the effect of

prior probabilities, all results reported here are without the prior.

Figure 19 shows that after training on 0.75M mentions from Turkish and Chinese (and

1.0M mentions from Spanish), the Xelms(joint) model is within 2-3% of the respective

L-best model that uses all training mentions in the target language. This indicates that

Xelms(joint) can reach competitive performance even with a fraction of the full target

language supervision. For comparison, a Xelms(mono) model that was trained on the

same number of training mentions is 5-10% behind the respective Xelms(joint) model,

showing better utilization of target language supervision by Xelms(joint).

7.8. Summary

In this chapter, I described an approach that can combine supervision from multiple lan-

guages to train an XEL model. Key to this approach were multilingual embeddings, that

were the feature space upon which language agnostic mention representations were built for

the XEL task. The results in the Section 7.6 illustrated the benefits of this shared repre-

sentation space through extensive evaluation on different benchmarks. Another benefit of

our approach is that can train a single model for multiple related languages, making more

efficient use of available supervision than previous approaches that trained separate models.

Further improvements for XEL can be made using a joint inference framework that enforces

coherent predictions (Cheng and Roth, 2013; Globerson et al., 2016; Ganea and Hofmann,

2017), or by combining supervision between languages in a more principled way (e.g., choice

of related languages). Similar techniques as ours can be applied to other information extrac-

tion tasks like relation extraction to extend them to multilingual settings. An assumption

made in this chapter was that the entity mentions are already identified for the EL system.

That is, the EL system is only responsible for disambiguation. This assumption may lead

to un-recoverable errors due to incorrectly detected mention spans. Several monolingual

entity linking systems have shown that this issue can be remedied by performing these two
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steps jointly (Sil and Yates, 2013; Nguyen et al., 2016a; Kolitsas et al., 2018). Extending

cross-lingual entity linking systems in a similar manner, such that they can directly operate

on raw text by jointly detecting and disambiguating the mentions, is also a useful direction

to pursue. Another key challenge for all XEL approaches is the task of candidate genera-

tion, that is currently limited by existence of a target language Wikipedia. I explore this

problem in detail in the next chapter.
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CHAPTER 8 : Bootstrapping Transliteration with Constrained Discovery

8.1. Introduction

The performance of an entity linking system is a function of the quality of candidate gen-

eration, as poor candidate generation means that the correct candidate might not be in the

list of candidates. The previous chapter discussed how one of the challenges of the cross-

lingual entity linking problem is generating candidates for mentions in a language that has

a different writing script than English. The candidate generation approach in the previous

chapter dealt with this challenge by using inter-language links between the target language

Wikipedia and the English Wikipedia. However, this approach has an obvious coverage

issue when the inter-language link does not exist between some articles.1

Transliteration for Candidate Generation

39

… [Берлин] …

Berlin_(City)
Berlin_(Band)

Berlin_(carriage)
Berlin_(comic)

Берлин_(город)
Berlin_(группа)

Wikipedia 

Inter-language Links
Russian Wikipedia Titles

Missed!

Missed!

Transliterate to 

English

Berlin

English Wikipedia Titles

Tsai and Roth 2016, Sil et al. 2018

Figure 20: Limitation of the candidate generation approach described in Figure 18. For
the Russian mention (that transliterates to Berlin), using inter-language links misses two
plausible candidate entities in the English Wikipedia.

For example, any approach that relies on Wikipedia inter-language links will not gener-

ate all plausible candidates for the Russian mention in Figure 20 (which transliterates

to Berlin), because of missing inter-language links for entities like Berlin_(comic) and

Berlin_(carriage). This problem can be exacerbated for low-resource languages, for

which the corresponding Wikipedia contains few articles (and thus few inter-language links).

Figure 20 also shows how by first transliterating the mention surface (i.e., rewriting the

string in a different writing script) into English, this issue can be avoided.
1This can happen either because the corresponding article does not exist in the target language Wikipedia

or because the article exist, but the inter-language link was missing in the available meta-data.
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Existing approaches for generating transliterations require thousands of name pairs (i.e.,

source and its transliteration) as supervision, which may not be suitable for low-resource

scenarios. How can one learn to transliterate when only a few hundred name pairs are

available as supervision? This chapter proposes a new bootstrapping algorithm to iteratively

improve a weak transliteration generation model trained on a few hundred name pairs.

The approach presented in this chapter marries two threads of work in the literature —

transliteration generation and transliteration discovery, which I describe below.

8.2. History of the Transliteration Task

Transliteration is the process of transducing a name from one writing system to another (e.g.,

ओबामा in Devanagari to Obama in Latin script) while preserving its pronunciation (Knight

and Graehl, 1998; Karimi et al., 2011).

Historically, the transliteration task emerged as a component of machine translation sys-

tems, to handle the translation of names and technical terms across languages. Such lexical

items will have poor coverage in a bilingual dictionary or phrase translation table, thus

making it necessary to replace them with their (approximate) phonetic equivalent (Knight

and Graehl, 1998). However, transliteration has utility beyond as a sub-routine in machine

translation. For instance, transliterating names from foreign languages to English2 helps in

multilingual knowledge acquisition tasks like named entity recognition (Darwish, 2013) and

information retrieval (Virga and Khudanpur, 2003; Jaleel and Larkey, 2003).

Two tasks feature prominently in the transliteration literature: generation (Knight and

Graehl, 1998) that involves producing an appropriate transliteration for a given word in

an open-ended way, and discovery (Sproat et al., 2006; Klementiev and Roth, 2008) that

involves selecting an appropriate transliteration for a word from a list of candidates. This

section briefly review the limitations of existing generation and discovery approaches, and

provides an overview of how our work addresses them.
2Also referred to as back-transliteration.
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Transliteration as Monotonic Seq2Seq Generation 

Encoding the Input 
•  The encoder encodes the character embeddings of the input 

characters using a bidirectional RNN.  
 
Decoding with Hard Monotonic Attention 
•  The decoder generates a sequence of actions, where each action  

is either a character from the output alphabet, or a step action. 
•  At any time, the decoder RNN is attending on a single input  

character’s hidden vector to generate output character(s). 
•  The step action increments the attention position by one. 
•  The stepping mechanism ensures that the decoding is monotonic. 
•  Inspired by Aharoni (2017)’s approach for morphological inflection. 
 
Training 
The oracle sequence of actions is generated from name pairs  
using Algorithm 1 from Aharoni (2017), and the latent character-level 
alignments are derived using the algorithm from Cotterell (2016). 
 
Inference Strategies 
•  Unconstrained (U) ��pick the most likely transliteration from beam. 
•  Dictionary Constrained (DC) � pick the most likely transliteration  

from beam that appears in a name dictionary, else default to  
unconstrained strategy. 

Inference using Hard Monotonic Attention 
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Full Supervision Setting (~10k training examples)

Bengali Hindi Kannada Hebrew Tamil Average 

Constrained Inference Unconstrained Inference 

�

Source Driven Errors 

�

Target Driven Errors 
Beam  

Search 

Generation Model 

Train 

… tomaz, tomas, thomas …  
… landan, london, londun, … 

… interpole, interpoll, inturpol, … 

K-Best Predictions 

 
thomas 
london 
albert 

interpol 
 

Eng. Names 

Constraints 

Discovery 

Using all available 
supervision. 

With only 500 examples. 
(No Bootstrapping) 

After  
6 iterations of 
bootstrapping  

Bootstrapping Transliteration with Constrained Discovery for Low-Resource Languages  
 Shyam Upadhyay    Jordan Kodner     Dan Roth 

University of Pennsylvania, Philadelphia PA, USA 

Tamil: {ta, da, tha, dha} à {த} 
Hindi: {ta, da, tha, dha} à {त, द, थ, ध} 

Acc@1 Hindi as Src Hindi as Trg 
Tamil  31% 15% 

• Irregular Spelling 
[Ph]iladel[ph]ia, So[ph]ia, [F]rance 
[K]ansas, [C]ardiff, [Q]uinn, Bro[ck] 

 
• Inconsistency with Devoicing 
(Медведе[в], Medvede[v]), (Ивано[в], Ivano[v]) 
(Смирно[в], Smirno[ff]), (Рахманино[в], Rachmanino[ff]) 
 
• Silent Letters 
Marsei[lle], Versai[lles], Bruxell[es], Ph[o]ebe  

 
 

�

Native vs Foreign Names 
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Native Foreign 

Transliterating Wickramsinghe vs Brussels from Tamil. 

brussels ब्रसेल्स
thomas 
brussels 
rupert 

Name List 

ब्रसेल्स

Generation Discovery 

Bootstrapping with Constrained Discovery 

Manual Annotation Exercise 

After every iteration, purge the set of mined name pairs to prevent  
new model to be affected by (bad) pairs mined in earlier iterations. 
 

Constraints 
•  Minimum length of exact match - False positives in early iterations  

were usually short transliterations. 
•  The length ratio of output string and input string should be  

close to ratio estimated from training data. 
 

Convergence 
Keep bootstrapping until accuracy@1 stops increasing on dev set. 

•  Languages: Punjabi and Armenian. 
•  Two subtasks for each annotator. 
•  Task 1: Two annotations per letter  

(“[J]ulia”, “Ben[j]amin”) 
•  Task 2: Transliterate list of English words. 

•  Evaluation Dataset: NEWS 2015 
•  Each language has ~10k (or more) name pairs for supervision. 

•  Models Compared 
1.  Pasternack (2009) � probabilistic transliteration approach that uses 

alignment b/w substrings in both source and target names.  
2.  DirecTL+ (2009) - HMM-like discriminative string transduction model. 
3.  Lin (2016) ��A transliteration approach based on the joint source-channel 

model, that uses many-2-many alignments b/w source and target.  
4.  Lin (2016) + EL � re-rank transliterations lang-indep. entity linking. 
5.  Ours(U & DC) � unconstrained and dict. constrained version of our model. 

•  Only 500 name pairs available in each language as supervision. 
•  Train a weak generation model and bootstrap using a name dict. 

Ravi and Knight (2009), Irvine et al. (2010) Sproat et al. (2006), Klementiev and Roth (2008) 

Generate transliteration  
in a open-ended way. 
(a transduction task) 

Select transliteration for a word 
from a (long) list of names. 

(a ranking task) 

 
 

Our Work 
 
 
 
 
 
 
 

 
 
 
 

Previous Work 
 
 
 
 
 
 
 

Lang. Punjabi Armenian 
Time (hours) 5 4 

Pairs ~500 ~600 
Ours (U) 33.4 49.9 

Ours(U) + Boot. 44.5 55.8 

 
 

Foreign Vocab 
थॉमस
लंडन
इंटरपोल

alex	
berlin	
trump		
donald		

Small Training Set 
एलेक्स
ब र्लि न
ट्रम्प
डोनाल्ड

thomas		
london	

थॉमस
लंडन

b 
Monotonic (latent) Alignments 

◌ेब र स ल ◌् स

r u s s e l s 
Not Monotonic! 

b 

◌ेब र स ल ◌् स

r u s s e l s 

Hard Monotonic Attention Model is better than SoTA. 
Simple dictionary constrained inference, does much better  

than the expensive SoTA + Entity Linking approach 

Starting with only 500 examples, bootstrapping achieves  
competitive performance to full supervision. 

•  A seq2seq generation model, tailored for transliteration. 
•  A bootstrapping algorithm, that uses constrained discovery 

 to improve a weak generation model. 

Manual annotation is practical and effective! 
Enough supervision to bootstrap a model. 

Liverpool_(City)
Liverpool_F.C.

University_of_Liverpool

English Wikipedia 

alex	
berlin	
trump		
donald		

Hindi-English Names 

एलेक्स
ब र्लि न
ट्रम्प
डोनाल्ड

लि वरपूल

Generation Model 

Liverpool 

✖ Name Match (Baseline) 

Results 

This work was supported under DARPA LORELEI by Contract HR0011-15-2-0025, Agreement 
HR0011-15-2-0023 with DARPA, and an NDSEG fellowship for the second author.  
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Tigrinya

Task: Candidate Generation (CG) for  
cross-lingual entity linking. 
Example: A mention of “Chicago” in Amharic  
is first transliterated from ሺካጎ, and then  
candidate entities are generated. 
 
 
 
Languages: Macedonian and Tigrinya 
Evaluation Metric: if the gold entity for the query 
is in the top-20 candidates (Recall@20). 
 

ሺካጎ በዎድስቶክ ይጫወታል. 
(Chicago will play at Woodstock.) 

�

Low Resource Experiment 

�

�

�

�

Transliteration Inherent Challenges of  Transliteration 

Full Supervision Experiment 

�
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Our Work: Generation in low-resource settings. 

Idea: Discovery is a easier task. Use it to aid Generation. 
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<latexit sha1_base64="W5gbBIUMwR1pmk85wA2YpTUee2k=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRQZdFNy4r2Ae0w5DJpG1oJhmSTKEM/RM3LhRx65+482/MtLPQ1gMhh3PuJScnSjnTxvO+ncrG5tb2TnW3trd/cHjkHp90tMwUoW0iuVS9CGvKmaBtwwynvVRRnEScdqPJfeF3p1RpJsWTmaU0SPBIsCEj2FgpdN1BJHmsZ4m98vE89EK37jW8BdA68UtShxKt0P0axJJkCRWGcKx13/dSE+RYGUY4ndcGmaYpJhM8on1LBU6oDvJF8jm6sEqMhlLZIwxaqL83cpzoIpydTLAZ61WvEP/z+pkZ3gY5E2lmqCDLh4YZR0aiogYUM0WJ4TNLMFHMZkVkjBUmxpZVsyX4q19eJ52rhu81/MfrevOurKMKZ3AOl+DDDTThAVrQBgJTeIZXeHNy58V5dz6WoxWn3DmFP3A+fwDh3pPN</latexit><latexit sha1_base64="W5gbBIUMwR1pmk85wA2YpTUee2k=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRQZdFNy4r2Ae0w5DJpG1oJhmSTKEM/RM3LhRx65+482/MtLPQ1gMhh3PuJScnSjnTxvO+ncrG5tb2TnW3trd/cHjkHp90tMwUoW0iuVS9CGvKmaBtwwynvVRRnEScdqPJfeF3p1RpJsWTmaU0SPBIsCEj2FgpdN1BJHmsZ4m98vE89EK37jW8BdA68UtShxKt0P0axJJkCRWGcKx13/dSE+RYGUY4ndcGmaYpJhM8on1LBU6oDvJF8jm6sEqMhlLZIwxaqL83cpzoIpydTLAZ61WvEP/z+pkZ3gY5E2lmqCDLh4YZR0aiogYUM0WJ4TNLMFHMZkVkjBUmxpZVsyX4q19eJ52rhu81/MfrevOurKMKZ3AOl+DDDTThAVrQBgJTeIZXeHNy58V5dz6WoxWn3DmFP3A+fwDh3pPN</latexit><latexit sha1_base64="W5gbBIUMwR1pmk85wA2YpTUee2k=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRQZdFNy4r2Ae0w5DJpG1oJhmSTKEM/RM3LhRx65+482/MtLPQ1gMhh3PuJScnSjnTxvO+ncrG5tb2TnW3trd/cHjkHp90tMwUoW0iuVS9CGvKmaBtwwynvVRRnEScdqPJfeF3p1RpJsWTmaU0SPBIsCEj2FgpdN1BJHmsZ4m98vE89EK37jW8BdA68UtShxKt0P0axJJkCRWGcKx13/dSE+RYGUY4ndcGmaYpJhM8on1LBU6oDvJF8jm6sEqMhlLZIwxaqL83cpzoIpydTLAZ61WvEP/z+pkZ3gY5E2lmqCDLh4YZR0aiogYUM0WJ4TNLMFHMZkVkjBUmxpZVsyX4q19eJ52rhu81/MfrevOurKMKZ3AOl+DDDTThAVrQBgJTeIZXeHNy58V5dz6WoxWn3DmFP3A+fwDh3pPN</latexit><latexit sha1_base64="W5gbBIUMwR1pmk85wA2YpTUee2k=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRQZdFNy4r2Ae0w5DJpG1oJhmSTKEM/RM3LhRx65+482/MtLPQ1gMhh3PuJScnSjnTxvO+ncrG5tb2TnW3trd/cHjkHp90tMwUoW0iuVS9CGvKmaBtwwynvVRRnEScdqPJfeF3p1RpJsWTmaU0SPBIsCEj2FgpdN1BJHmsZ4m98vE89EK37jW8BdA68UtShxKt0P0axJJkCRWGcKx13/dSE+RYGUY4ndcGmaYpJhM8on1LBU6oDvJF8jm6sEqMhlLZIwxaqL83cpzoIpydTLAZ61WvEP/z+pkZ3gY5E2lmqCDLh4YZR0aiogYUM0WJ4TNLMFHMZkVkjBUmxpZVsyX4q19eJ52rhu81/MfrevOurKMKZ3AOl+DDDTThAVrQBgJTeIZXeHNy58V5dz6WoxWn3DmFP3A+fwDh3pPN</latexit>

h1
<latexit sha1_base64="GVm9L2JBLp8+5tOqn5N5bm35lpA=">AAACC3icbVDLSsNAFJ34rPVVdekmtAiuSiKCLotuXFawD2hDmExu2qGTBzM3YgnZu/FX3LhQxK0/4M6/cZpmoa0Hhjmcc++dO8dLBFdoWd/Gyura+sZmZau6vbO7t187OOyqOJUMOiwWsex7VIHgEXSQo4B+IoGGnoCeN7me+b17kIrH0R1OE3BCOop4wBlFLbm1+hDhAYs5mSdSyLOhFwtfTUN9ZePctXO31rCaVgFzmdglaZASbbf2NfRjloYQIRNUqYFtJehkVCJnAvLqMFWQUDahIxhoGtEQlJMVO+TmiVZ8M4ilPhGahfq7I6Ohmm2nK0OKY7XozcT/vEGKwaWT8ShJESI2fyhIhYmxOQvG9LkEhmKqCWWS611NNqaSMtTxVXUI9uKXl0n3rGlbTfv2vNG6KuOokGNSJ6fEJhekRW5Im3QII4/kmbySN+PJeDHejY956YpR9hyRPzA+fwAieZxa</latexit><latexit sha1_base64="GVm9L2JBLp8+5tOqn5N5bm35lpA=">AAACC3icbVDLSsNAFJ34rPVVdekmtAiuSiKCLotuXFawD2hDmExu2qGTBzM3YgnZu/FX3LhQxK0/4M6/cZpmoa0Hhjmcc++dO8dLBFdoWd/Gyura+sZmZau6vbO7t187OOyqOJUMOiwWsex7VIHgEXSQo4B+IoGGnoCeN7me+b17kIrH0R1OE3BCOop4wBlFLbm1+hDhAYs5mSdSyLOhFwtfTUN9ZePctXO31rCaVgFzmdglaZASbbf2NfRjloYQIRNUqYFtJehkVCJnAvLqMFWQUDahIxhoGtEQlJMVO+TmiVZ8M4ilPhGahfq7I6Ohmm2nK0OKY7XozcT/vEGKwaWT8ShJESI2fyhIhYmxOQvG9LkEhmKqCWWS611NNqaSMtTxVXUI9uKXl0n3rGlbTfv2vNG6KuOokGNSJ6fEJhekRW5Im3QII4/kmbySN+PJeDHejY956YpR9hyRPzA+fwAieZxa</latexit><latexit sha1_base64="GVm9L2JBLp8+5tOqn5N5bm35lpA=">AAACC3icbVDLSsNAFJ34rPVVdekmtAiuSiKCLotuXFawD2hDmExu2qGTBzM3YgnZu/FX3LhQxK0/4M6/cZpmoa0Hhjmcc++dO8dLBFdoWd/Gyura+sZmZau6vbO7t187OOyqOJUMOiwWsex7VIHgEXSQo4B+IoGGnoCeN7me+b17kIrH0R1OE3BCOop4wBlFLbm1+hDhAYs5mSdSyLOhFwtfTUN9ZePctXO31rCaVgFzmdglaZASbbf2NfRjloYQIRNUqYFtJehkVCJnAvLqMFWQUDahIxhoGtEQlJMVO+TmiVZ8M4ilPhGahfq7I6Ohmm2nK0OKY7XozcT/vEGKwaWT8ShJESI2fyhIhYmxOQvG9LkEhmKqCWWS611NNqaSMtTxVXUI9uKXl0n3rGlbTfv2vNG6KuOokGNSJ6fEJhekRW5Im3QII4/kmbySN+PJeDHejY956YpR9hyRPzA+fwAieZxa</latexit><latexit sha1_base64="GVm9L2JBLp8+5tOqn5N5bm35lpA=">AAACC3icbVDLSsNAFJ34rPVVdekmtAiuSiKCLotuXFawD2hDmExu2qGTBzM3YgnZu/FX3LhQxK0/4M6/cZpmoa0Hhjmcc++dO8dLBFdoWd/Gyura+sZmZau6vbO7t187OOyqOJUMOiwWsex7VIHgEXSQo4B+IoGGnoCeN7me+b17kIrH0R1OE3BCOop4wBlFLbm1+hDhAYs5mSdSyLOhFwtfTUN9ZePctXO31rCaVgFzmdglaZASbbf2NfRjloYQIRNUqYFtJehkVCJnAvLqMFWQUDahIxhoGtEQlJMVO+TmiVZ8M4ilPhGahfq7I6Ohmm2nK0OKY7XozcT/vEGKwaWT8ShJESI2fyhIhYmxOQvG9LkEhmKqCWWS611NNqaSMtTxVXUI9uKXl0n3rGlbTfv2vNG6KuOokGNSJ6fEJhekRW5Im3QII4/kmbySN+PJeDHejY956YpR9hyRPzA+fwAieZxa</latexit>

h2
<latexit sha1_base64="H++9pV9/gXZYhPTBW+wAPFeMpLg=">AAAB+3icdVBLSwMxGMz6rPW11qOXYBE8Ldlitb0VvXisYB/QLks2m21Dsw+SrFiW/StePCji1T/izX9jtl1BRQdChpnvI5PxEs6kQujDWFldW9/YrGxVt3d29/bNg1pfxqkgtEdiHouhhyXlLKI9xRSnw0RQHHqcDrzZVeEP7qiQLI5u1TyhTognEQsYwUpLrlnLxl7MfTkP9ZVNc7eRu2YdWWgBiKwmstvntiaNJmq3ELRLqw5KdF3zfezHJA1ppAjHUo5slCgnw0IxwmleHaeSJpjM8ISONI1wSKWTLbLn8EQrPgxioU+k4EL9vpHhUBbp9GSI1VT+9grxL2+UqqDlZCxKUkUjsnwoSDlUMSyKgD4TlCg+1wQTwXRWSKZYYKJ0XVVdwtdP4f+k37BsZNk3Z/XOZVlHBRyBY3AKbHABOuAadEEPEHAPHsATeDZy49F4MV6XoytGuXMIfsB4+wT3i5UJ</latexit><latexit sha1_base64="H++9pV9/gXZYhPTBW+wAPFeMpLg=">AAAB+3icdVBLSwMxGMz6rPW11qOXYBE8Ldlitb0VvXisYB/QLks2m21Dsw+SrFiW/StePCji1T/izX9jtl1BRQdChpnvI5PxEs6kQujDWFldW9/YrGxVt3d29/bNg1pfxqkgtEdiHouhhyXlLKI9xRSnw0RQHHqcDrzZVeEP7qiQLI5u1TyhTognEQsYwUpLrlnLxl7MfTkP9ZVNc7eRu2YdWWgBiKwmstvntiaNJmq3ELRLqw5KdF3zfezHJA1ppAjHUo5slCgnw0IxwmleHaeSJpjM8ISONI1wSKWTLbLn8EQrPgxioU+k4EL9vpHhUBbp9GSI1VT+9grxL2+UqqDlZCxKUkUjsnwoSDlUMSyKgD4TlCg+1wQTwXRWSKZYYKJ0XVVdwtdP4f+k37BsZNk3Z/XOZVlHBRyBY3AKbHABOuAadEEPEHAPHsATeDZy49F4MV6XoytGuXMIfsB4+wT3i5UJ</latexit><latexit sha1_base64="H++9pV9/gXZYhPTBW+wAPFeMpLg=">AAAB+3icdVBLSwMxGMz6rPW11qOXYBE8Ldlitb0VvXisYB/QLks2m21Dsw+SrFiW/StePCji1T/izX9jtl1BRQdChpnvI5PxEs6kQujDWFldW9/YrGxVt3d29/bNg1pfxqkgtEdiHouhhyXlLKI9xRSnw0RQHHqcDrzZVeEP7qiQLI5u1TyhTognEQsYwUpLrlnLxl7MfTkP9ZVNc7eRu2YdWWgBiKwmstvntiaNJmq3ELRLqw5KdF3zfezHJA1ppAjHUo5slCgnw0IxwmleHaeSJpjM8ISONI1wSKWTLbLn8EQrPgxioU+k4EL9vpHhUBbp9GSI1VT+9grxL2+UqqDlZCxKUkUjsnwoSDlUMSyKgD4TlCg+1wQTwXRWSKZYYKJ0XVVdwtdP4f+k37BsZNk3Z/XOZVlHBRyBY3AKbHABOuAadEEPEHAPHsATeDZy49F4MV6XoytGuXMIfsB4+wT3i5UJ</latexit><latexit sha1_base64="H++9pV9/gXZYhPTBW+wAPFeMpLg=">AAAB+3icdVBLSwMxGMz6rPW11qOXYBE8Ldlitb0VvXisYB/QLks2m21Dsw+SrFiW/StePCji1T/izX9jtl1BRQdChpnvI5PxEs6kQujDWFldW9/YrGxVt3d29/bNg1pfxqkgtEdiHouhhyXlLKI9xRSnw0RQHHqcDrzZVeEP7qiQLI5u1TyhTognEQsYwUpLrlnLxl7MfTkP9ZVNc7eRu2YdWWgBiKwmstvntiaNJmq3ELRLqw5KdF3zfezHJA1ppAjHUo5slCgnw0IxwmleHaeSJpjM8ISONI1wSKWTLbLn8EQrPgxioU+k4EL9vpHhUBbp9GSI1VT+9grxL2+UqqDlZCxKUkUjsnwoSDlUMSyKgD4TlCg+1wQTwXRWSKZYYKJ0XVVdwtdP4f+k37BsZNk3Z/XOZVlHBRyBY3AKbHABOuAadEEPEHAPHsATeDZy49F4MV6XoytGuXMIfsB4+wT3i5UJ</latexit>

h3
<latexit sha1_base64="mUJe0rVFsv35aZNGOXptDRrXO7s=">AAAB+XicdVDLSsNAFL2pr1pfUZdugkVwFRIf6LLoxmUF+4A2hMlk0g6dzISZSaGE/okbF4q49U/c+TdO2xRU9MAwh3Pu5R5OlDGqtOd9WpWV1bX1jepmbWt7Z3fP3j9oK5FLTFpYMCG7EVKEUU5ammpGupkkKI0Y6USj25nfGROpqOAPepKRIEUDThOKkTZSaNv9SLBYTVLzFcNpeB7add/15nA893JJSmVp1aFEM7Q/+rHAeUq4xgwp1fO9TAcFkppiRqa1fq5IhvAIDUjPUI5SooJinnzqnBgldhIhzePamavfNwqUqlk4M5kiPVS/vZn4l9fLdXIdFJRnuSYcLw4lOXO0cGY1ODGVBGs2MQRhSU1WBw+RRFibsmrfS/iftM9c33P9+4t646asowpHcAyn4MMVNOAOmtACDGN4hGd4sQrryXq13hajFavcOYQfsN6/AO8zk9Y=</latexit><latexit sha1_base64="mUJe0rVFsv35aZNGOXptDRrXO7s=">AAAB+XicdVDLSsNAFL2pr1pfUZdugkVwFRIf6LLoxmUF+4A2hMlk0g6dzISZSaGE/okbF4q49U/c+TdO2xRU9MAwh3Pu5R5OlDGqtOd9WpWV1bX1jepmbWt7Z3fP3j9oK5FLTFpYMCG7EVKEUU5ammpGupkkKI0Y6USj25nfGROpqOAPepKRIEUDThOKkTZSaNv9SLBYTVLzFcNpeB7add/15nA893JJSmVp1aFEM7Q/+rHAeUq4xgwp1fO9TAcFkppiRqa1fq5IhvAIDUjPUI5SooJinnzqnBgldhIhzePamavfNwqUqlk4M5kiPVS/vZn4l9fLdXIdFJRnuSYcLw4lOXO0cGY1ODGVBGs2MQRhSU1WBw+RRFibsmrfS/iftM9c33P9+4t646asowpHcAyn4MMVNOAOmtACDGN4hGd4sQrryXq13hajFavcOYQfsN6/AO8zk9Y=</latexit><latexit sha1_base64="mUJe0rVFsv35aZNGOXptDRrXO7s=">AAAB+XicdVDLSsNAFL2pr1pfUZdugkVwFRIf6LLoxmUF+4A2hMlk0g6dzISZSaGE/okbF4q49U/c+TdO2xRU9MAwh3Pu5R5OlDGqtOd9WpWV1bX1jepmbWt7Z3fP3j9oK5FLTFpYMCG7EVKEUU5ammpGupkkKI0Y6USj25nfGROpqOAPepKRIEUDThOKkTZSaNv9SLBYTVLzFcNpeB7add/15nA893JJSmVp1aFEM7Q/+rHAeUq4xgwp1fO9TAcFkppiRqa1fq5IhvAIDUjPUI5SooJinnzqnBgldhIhzePamavfNwqUqlk4M5kiPVS/vZn4l9fLdXIdFJRnuSYcLw4lOXO0cGY1ODGVBGs2MQRhSU1WBw+RRFibsmrfS/iftM9c33P9+4t646asowpHcAyn4MMVNOAOmtACDGN4hGd4sQrryXq13hajFavcOYQfsN6/AO8zk9Y=</latexit><latexit sha1_base64="mUJe0rVFsv35aZNGOXptDRrXO7s=">AAAB+XicdVDLSsNAFL2pr1pfUZdugkVwFRIf6LLoxmUF+4A2hMlk0g6dzISZSaGE/okbF4q49U/c+TdO2xRU9MAwh3Pu5R5OlDGqtOd9WpWV1bX1jepmbWt7Z3fP3j9oK5FLTFpYMCG7EVKEUU5ammpGupkkKI0Y6USj25nfGROpqOAPepKRIEUDThOKkTZSaNv9SLBYTVLzFcNpeB7add/15nA893JJSmVp1aFEM7Q/+rHAeUq4xgwp1fO9TAcFkppiRqa1fq5IhvAIDUjPUI5SooJinnzqnBgldhIhzePamavfNwqUqlk4M5kiPVS/vZn4l9fLdXIdFJRnuSYcLw4lOXO0cGY1ODGVBGs2MQRhSU1WBw+RRFibsmrfS/iftM9c33P9+4t646asowpHcAyn4MMVNOAOmtACDGN4hGd4sQrryXq13hajFavcOYQfsN6/AO8zk9Y=</latexit>

h4
<latexit sha1_base64="r5WkFixmx1CIs3JuTt+11CVaNBo=">AAACC3icbVDLSsNAFJ3UV62vqks3oUVwVRIp6LLoxmUF+4CmhMnkth06eTBzI5aQvRt/xY0LRdz6A+78GydtFtp6YJjDOffeuXO8WHCFlvVtlNbWNza3ytuVnd29/YPq4VFXRYlk0GGRiGTfowoED6GDHAX0Ywk08AT0vOl17vfuQSoehXc4i2EY0HHIR5xR1JJbrTkIDzifk0rws9TxIuGrWaCvdJK5zaziVutWw5rDXCV2QeqkQNutfjl+xJIAQmSCKjWwrRiHKZXImYCs4iQKYsqmdAwDTUMagBqm8x0y81QrvjmKpD4hmnP1d0dKA5WvpysDihO17OXif94gwdHlMOVhnCCEbPHQKBEmRmYejOlzCQzFTBPKJNe7mmxCJWWo48tDsJe/vEq65w3bati3zXrrqoijTE5IjZwRm1yQFrkhbdIhjDySZ/JK3own48V4Nz4WpSWj6Dkmf2B8/gCQ4pv6</latexit><latexit sha1_base64="r5WkFixmx1CIs3JuTt+11CVaNBo=">AAACC3icbVDLSsNAFJ3UV62vqks3oUVwVRIp6LLoxmUF+4CmhMnkth06eTBzI5aQvRt/xY0LRdz6A+78GydtFtp6YJjDOffeuXO8WHCFlvVtlNbWNza3ytuVnd29/YPq4VFXRYlk0GGRiGTfowoED6GDHAX0Ywk08AT0vOl17vfuQSoehXc4i2EY0HHIR5xR1JJbrTkIDzifk0rws9TxIuGrWaCvdJK5zaziVutWw5rDXCV2QeqkQNutfjl+xJIAQmSCKjWwrRiHKZXImYCs4iQKYsqmdAwDTUMagBqm8x0y81QrvjmKpD4hmnP1d0dKA5WvpysDihO17OXif94gwdHlMOVhnCCEbPHQKBEmRmYejOlzCQzFTBPKJNe7mmxCJWWo48tDsJe/vEq65w3bati3zXrrqoijTE5IjZwRm1yQFrkhbdIhjDySZ/JK3own48V4Nz4WpSWj6Dkmf2B8/gCQ4pv6</latexit><latexit sha1_base64="r5WkFixmx1CIs3JuTt+11CVaNBo=">AAACC3icbVDLSsNAFJ3UV62vqks3oUVwVRIp6LLoxmUF+4CmhMnkth06eTBzI5aQvRt/xY0LRdz6A+78GydtFtp6YJjDOffeuXO8WHCFlvVtlNbWNza3ytuVnd29/YPq4VFXRYlk0GGRiGTfowoED6GDHAX0Ywk08AT0vOl17vfuQSoehXc4i2EY0HHIR5xR1JJbrTkIDzifk0rws9TxIuGrWaCvdJK5zaziVutWw5rDXCV2QeqkQNutfjl+xJIAQmSCKjWwrRiHKZXImYCs4iQKYsqmdAwDTUMagBqm8x0y81QrvjmKpD4hmnP1d0dKA5WvpysDihO17OXif94gwdHlMOVhnCCEbPHQKBEmRmYejOlzCQzFTBPKJNe7mmxCJWWo48tDsJe/vEq65w3bati3zXrrqoijTE5IjZwRm1yQFrkhbdIhjDySZ/JK3own48V4Nz4WpSWj6Dkmf2B8/gCQ4pv6</latexit><latexit sha1_base64="r5WkFixmx1CIs3JuTt+11CVaNBo=">AAACC3icbVDLSsNAFJ3UV62vqks3oUVwVRIp6LLoxmUF+4CmhMnkth06eTBzI5aQvRt/xY0LRdz6A+78GydtFtp6YJjDOffeuXO8WHCFlvVtlNbWNza3ytuVnd29/YPq4VFXRYlk0GGRiGTfowoED6GDHAX0Ywk08AT0vOl17vfuQSoehXc4i2EY0HHIR5xR1JJbrTkIDzifk0rws9TxIuGrWaCvdJK5zaziVutWw5rDXCV2QeqkQNutfjl+xJIAQmSCKjWwrRiHKZXImYCs4iQKYsqmdAwDTUMagBqm8x0y81QrvjmKpD4hmnP1d0dKA5WvpysDihO17OXif94gwdHlMOVhnCCEbPHQKBEmRmYejOlzCQzFTBPKJNe7mmxCJWWo48tDsJe/vEq65w3bati3zXrrqoijTE5IjZwRm1yQFrkhbdIhjDySZ/JK3own48V4Nz4WpSWj6Dkmf2B8/gCQ4pv6</latexit>

h5
<latexit sha1_base64="7qHM8W1TycOlWu3c7VFAyjzE5JQ=">AAAB+nicbVC7TsMwFL3hWcorhZElokJiqhIEgrGChbFI9CG1UeQ4TmvVsSPbAVWhn8LCAEKsfAkbf4PTZoCWI1k+Oude+fiEKaNKu+63tbK6tr6xWdmqbu/s7u3btYOOEpnEpI0FE7IXIkUY5aStqWakl0qCkpCRbji+KfzuA5GKCn6vJynxEzTkNKYYaSMFdm0QChapSWKufDQNLqqBXXcb7gzOMvFKUocSrcD+GkQCZwnhGjOkVN9zU+3nSGqKGZlWB5kiKcJjNCR9QzlKiPLzWfSpc2KUyImFNIdrZ6b+3shRoop0ZjJBeqQWvUL8z+tnOr7yc8rTTBOO5w/FGXO0cIoenIhKgjWbGIKwpCarg0dIIqxNW0UJ3uKXl0nnrOG5De/uvN68LuuowBEcwyl4cAlNuIUWtAHDIzzDK7xZT9aL9W59zEdXrHLnEP7A+vwBJFGT5g==</latexit><latexit sha1_base64="7qHM8W1TycOlWu3c7VFAyjzE5JQ=">AAAB+nicbVC7TsMwFL3hWcorhZElokJiqhIEgrGChbFI9CG1UeQ4TmvVsSPbAVWhn8LCAEKsfAkbf4PTZoCWI1k+Oude+fiEKaNKu+63tbK6tr6xWdmqbu/s7u3btYOOEpnEpI0FE7IXIkUY5aStqWakl0qCkpCRbji+KfzuA5GKCn6vJynxEzTkNKYYaSMFdm0QChapSWKufDQNLqqBXXcb7gzOMvFKUocSrcD+GkQCZwnhGjOkVN9zU+3nSGqKGZlWB5kiKcJjNCR9QzlKiPLzWfSpc2KUyImFNIdrZ6b+3shRoop0ZjJBeqQWvUL8z+tnOr7yc8rTTBOO5w/FGXO0cIoenIhKgjWbGIKwpCarg0dIIqxNW0UJ3uKXl0nnrOG5De/uvN68LuuowBEcwyl4cAlNuIUWtAHDIzzDK7xZT9aL9W59zEdXrHLnEP7A+vwBJFGT5g==</latexit><latexit sha1_base64="7qHM8W1TycOlWu3c7VFAyjzE5JQ=">AAAB+nicbVC7TsMwFL3hWcorhZElokJiqhIEgrGChbFI9CG1UeQ4TmvVsSPbAVWhn8LCAEKsfAkbf4PTZoCWI1k+Oude+fiEKaNKu+63tbK6tr6xWdmqbu/s7u3btYOOEpnEpI0FE7IXIkUY5aStqWakl0qCkpCRbji+KfzuA5GKCn6vJynxEzTkNKYYaSMFdm0QChapSWKufDQNLqqBXXcb7gzOMvFKUocSrcD+GkQCZwnhGjOkVN9zU+3nSGqKGZlWB5kiKcJjNCR9QzlKiPLzWfSpc2KUyImFNIdrZ6b+3shRoop0ZjJBeqQWvUL8z+tnOr7yc8rTTBOO5w/FGXO0cIoenIhKgjWbGIKwpCarg0dIIqxNW0UJ3uKXl0nnrOG5De/uvN68LuuowBEcwyl4cAlNuIUWtAHDIzzDK7xZT9aL9W59zEdXrHLnEP7A+vwBJFGT5g==</latexit><latexit sha1_base64="7qHM8W1TycOlWu3c7VFAyjzE5JQ=">AAAB+nicbVC7TsMwFL3hWcorhZElokJiqhIEgrGChbFI9CG1UeQ4TmvVsSPbAVWhn8LCAEKsfAkbf4PTZoCWI1k+Oude+fiEKaNKu+63tbK6tr6xWdmqbu/s7u3btYOOEpnEpI0FE7IXIkUY5aStqWakl0qCkpCRbji+KfzuA5GKCn6vJynxEzTkNKYYaSMFdm0QChapSWKufDQNLqqBXXcb7gzOMvFKUocSrcD+GkQCZwnhGjOkVN9zU+3nSGqKGZlWB5kiKcJjNCR9QzlKiPLzWfSpc2KUyImFNIdrZ6b+3shRoop0ZjJBeqQWvUL8z+tnOr7yc8rTTBOO5w/FGXO0cIoenIhKgjWbGIKwpCarg0dIIqxNW0UJ3uKXl0nnrOG5De/uvN68LuuowBEcwyl4cAlNuIUWtAHDIzzDK7xZT9aL9W59zEdXrHLnEP7A+vwBJFGT5g==</latexit>
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Transliteration as Monotonic Seq2Seq Generation 

Encoding the Input 
•  The encoder encodes the character embeddings of the input 

characters using a bidirectional RNN.  
 
Decoding with Hard Monotonic Attention 
•  The decoder generates a sequence of actions, where each action  

is either a character from the output alphabet, or a step action. 
•  At any time, the decoder RNN is attending on a single input  

character’s hidden vector to generate output character(s). 
•  The step action increments the attention position by one. 
•  The stepping mechanism ensures that the decoding is monotonic. 
•  Inspired by Aharoni (2017)’s approach for morphological inflection. 
 
Training 
The oracle sequence of actions is generated from name pairs  
using Algorithm 1 from Aharoni (2017), and the latent character-level 
alignments are derived using the algorithm from Cotterell (2016). 
 
Inference Strategies 
•  Unconstrained (U) ��pick the most likely transliteration from beam. 
•  Dictionary Constrained (DC) � pick the most likely transliteration  

from beam that appears in a name dictionary, else default to  
unconstrained strategy. 

Inference using Hard Monotonic Attention 
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Constrained Inference Unconstrained Inference 

�

Source Driven Errors 

�

Target Driven Errors 
Beam  

Search 

Generation Model 

Train 

… tomaz, tomas, thomas …  
… landan, london, londun, … 

… interpole, interpoll, inturpol, … 

K-Best Predictions 

 
thomas 
london 
albert 

interpol 
 

Eng. Names 

Constraints 

Discovery 

Using all available 
supervision. 

With only 500 examples. 
(No Bootstrapping) 

After  
6 iterations of 
bootstrapping  

Bootstrapping Transliteration with Constrained Discovery for Low-Resource Languages  
 Shyam Upadhyay    Jordan Kodner     Dan Roth 

University of Pennsylvania, Philadelphia PA, USA 

Tamil: {ta, da, tha, dha} à {த} 
Hindi: {ta, da, tha, dha} à {त, द, थ, ध} 

Acc@1 Hindi as Src Hindi as Trg 
Tamil  31% 15% 

• Irregular Spelling 
[Ph]iladel[ph]ia, So[ph]ia, [F]rance 
[K]ansas, [C]ardiff, [Q]uinn, Bro[ck] 

 
• Inconsistency with Devoicing 
(Медведе[в], Medvede[v]), (Ивано[в], Ivano[v]) 
(Смирно[в], Smirno[ff]), (Рахманино[в], Rachmanino[ff]) 
 
• Silent Letters 
Marsei[lle], Versai[lles], Bruxell[es], Ph[o]ebe  
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Transliterating Wickramsinghe vs Brussels from Tamil. 

brussels ब्रसेल्स
thomas 
brussels 
rupert 

Name List 

ब्रसेल्स

Generation Discovery 

Bootstrapping with Constrained Discovery 

Manual Annotation Exercise 

After every iteration, purge the set of mined name pairs to prevent  
new model to be affected by (bad) pairs mined in earlier iterations. 
 

Constraints 
•  Minimum length of exact match - False positives in early iterations  

were usually short transliterations. 
•  The length ratio of output string and input string should be  

close to ratio estimated from training data. 
 

Convergence 
Keep bootstrapping until accuracy@1 stops increasing on dev set. 

•  Languages: Punjabi and Armenian. 
•  Two subtasks for each annotator. 
•  Task 1: Two annotations per letter  

(“[J]ulia”, “Ben[j]amin”) 
•  Task 2: Transliterate list of English words. 

•  Evaluation Dataset: NEWS 2015 
•  Each language has ~10k (or more) name pairs for supervision. 

•  Models Compared 
1.  Pasternack (2009) � probabilistic transliteration approach that uses 

alignment b/w substrings in both source and target names.  
2.  DirecTL+ (2009) - HMM-like discriminative string transduction model. 
3.  Lin (2016) ��A transliteration approach based on the joint source-channel 

model, that uses many-2-many alignments b/w source and target.  
4.  Lin (2016) + EL � re-rank transliterations lang-indep. entity linking. 
5.  Ours(U & DC) � unconstrained and dict. constrained version of our model. 

•  Only 500 name pairs available in each language as supervision. 
•  Train a weak generation model and bootstrap using a name dict. 

Ravi and Knight (2009), Irvine et al. (2010) Sproat et al. (2006), Klementiev and Roth (2008) 

Generate transliteration  
in a open-ended way. 
(a transduction task) 

Select transliteration for a word 
from a (long) list of names. 

(a ranking task) 
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Lang. Punjabi Armenian 
Time (hours) 5 4 

Pairs ~500 ~600 
Ours (U) 33.4 49.9 

Ours(U) + Boot. 44.5 55.8 
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Hard Monotonic Attention Model is better than SoTA. 
Simple dictionary constrained inference, does much better  

than the expensive SoTA + Entity Linking approach 

Starting with only 500 examples, bootstrapping achieves  
competitive performance to full supervision. 

•  A seq2seq generation model, tailored for transliteration. 
•  A bootstrapping algorithm, that uses constrained discovery 

 to improve a weak generation model. 

Manual annotation is practical and effective! 
Enough supervision to bootstrap a model. 

Liverpool_(City)
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University_of_Liverpool
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Results 

This work was supported under DARPA LORELEI by Contract HR0011-15-2-0025, Agreement 
HR0011-15-2-0023 with DARPA, and an NDSEG fellowship for the second author.  

(b) Discovery

Figure 21: Generation treats transliteration as a sequence transduction task, while discovery
aims to select the correct transliteration from a given list of names.

8.2.1. Transliteration Generation

Generation aims to transliterate an input word x = (x1, x2, · · · , xn) in the source writing

script without relying on a translation lexicon, by generating a sequence of characters

y = (y1, y2, · · · , ym) in the target writing script (Haizhou et al., 2004; Jiampojamarn et al.,

2009; Ravi and Knight, 2009; Jiampojamarn et al., 2010; Finch et al., 2015, inter alia).

Figure 21a shows how a generation model will process the Hindi string Ţसेġस.

Transliteration generation is often formulated as a machine translation (MT) problem, by

treating the characters xi in the input word as “words”, the input word x as the “sentence”,

and the target output y as the “translation” (Virga and Khudanpur, 2003; Irvine et al.,

2010). This allows one to use available MT toolkits such as Moses (Koehn et al., 2007) or

Joshua (Li et al., 2009) for training a transliteration system. However, these approaches

may not exploit structure that is specific to the transliteration task.

Other approaches treat generation as a sequence labeling problem (Ganesh et al., 2008;

Reddy and Waxmonsky, 2009; Ammar et al., 2012). Each character xi in the input is

assigned a label ti = yp, · · · , yq which is a sequence of one or more characters from the

target writing script. For instance, the Hindi character थ can be labeled as “tha” when

transliterating Hindi→English. One issue with this formulation is that the size of output

label space can be quite large, depending on how many different spans yp, · · · , yq are seen

in the training data. For instance, Ammar et al. (2012) reported that Arabic → English

transliteration had > 1200 labels, while Thai → English had > 1700 labels.
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Both the above formulations require generous amount of name pairs (≈ 5–10k) as super-

vision. One popular way to obtain this supervision is identifying name pairs using inter-

language links in Wikipedia (Irvine et al., 2010; Tsai and Roth, 2018). However, a truly

low-resource language (like Tigrinya) is likely to have limited Wikipedia presence as well,

and thus low resource transliteration remains a challenging problem.

8.2.2. Transliteration Discovery

On the other hand, the task of transliteration discovery deals with selecting the correct

transliteration y for a word x from a relatively small list of candidates N . The presence

of the name list makes discovery essentially a ranking problem — rank all names in N to

identify the most appropriate transliteration for a given word in the source script. Figure 21b

shows how a discovery model will process the Hindi string Ţसेġस.

Discovery is a considerably easier task than generation, owing to the restricted search space.

Indeed, for |N | ∼ 50k, unsupervised discovery approaches that use constraints derived from

romanization tables have been shown to be successful (Chang et al., 2009). Notice that for

a given input x, many names in N can be filtered out quite easily, so the effective search

space is even smaller. In general, the hardness of discovery problem increases with |N |, say,

when N contains millions of names.

A key limitation of discovery is the assumption that the correct transliteration(s) is in

the list of candidates N . But it is unlikely that N will be exhaustive, as new names are

constantly being introduced in language.3 If no correct transliteration is present in N , a

discovery model will end up selecting some name from N , and produce false positives. Of

course, one can partially remedy this issue by using a large list of candidates N , at the cost

of increased difficulty. Another issue with transliteration discovery approaches is that they

often exploit features derived from resources that are unlikely to be available for low-resource

languages, like temporally aligned comparable corpora (Sproat et al., 2006; Klementiev and
3The honorific Khaleesi from the TV series “Game of Thrones” became a popular baby name in 2016.
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Roth, 2008). To overcome these limitations, it is prudent to develop generation models

that can handle input for which the transliteration does not belong in N , and operate in

low-resource scenarios.

The work described in this chapter develops transliteration generation approaches for low-

resource languages, by using constrained discovery to drive the learning.

8.2.3. Our Work

Existing generation models require supervision in the form of source-target name pairs (≈

5–10k) that are often collected from names in Wikipedia inter-language links (Irvine et al.,

2010). However, most languages that use non-Latin scripts are under-represented in terms

of such resources. Table 31 illustrates this issue. A generation model that requires 50k

name pairs as supervision can only support 6 languages, while one that needs 500 could

support 56. For a model to be widely applicable, it must function in low-resource settings.

# Name Pairs in Wikipedia Languages Scripts
> 50, 000 6 5
> 10, 000 18 14
> 5, 000 24 15
> 1, 000 45 22
> 500 56 23
> 0 93 30

Table 31: Cumulative number of person name pairs in Wikipedia inter-language links. For
instance, 45 languages (that cover 22 scripts) have at least 1000 name pairs that can be ex-
tracted from inter-language links. While previous approaches for transliteration generation
were applicable to only 24 languages (spanning 15 scripts), our approach is applicable to 56
languages (23 scripts). When counting scripts we exclude variants (e.g., all Cyrillic scripts
and variants count as one).

Our Approach

Previous Work

We show that a weak generation model can be iteratively improved using constrained dis-

covery. In particular, our work uses a weak generation model to discover new training

pairs, using constraints to drive the bootstrapping. Table 31 shows the extra coverage one

can achieve by extending to low-resource languages using our approach. The practicality of
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our approach is demonstrated in truly low-resource scenarios and downstream applications

through two case studies. First, experiments in Section 8.8.1 shows that one can obtain the

initial supervision from a single human annotator within a few hours for two languages —

Armenian and Punjabi. This is a realistic scenario where language access is limited to a

single native informant. Second, experiments in Section 8.8.2 shows that our approach ben-

efits a typical downstream application, namely candidate generation for cross-lingual entity

linking, by improving recall on two low-resource languages — Tigrinya and Macedonian.

To appreciate the difficulty of the transliteration task, an analysis of the inherent challenges

of transliteration, and the trade-off between native (i.e., source) and foreign (i.e., target)

vocabulary is also presented in Section 8.7.

The generation model presented in this chapter is inspired by the success of sequence to

sequence generation models (Sutskever et al., 2014; Bahdanau et al., 2015) particularly

variants used for string transduction tasks like morphological inflection and derivation gen-

eration (Faruqui et al., 2016; Cotterell et al., 2017; Aharoni and Goldberg, 2017; Makarov

et al., 2017). The bootstrapping framework can be viewed as an instance of constraint-

driven learning (Chang et al., 2007, 2012).

8.3. Transliteration with Hard Monotonic Attention

We view generation as a string transduction task and use a sequence to sequence (Seq2Seq)

generation model that uses hard monotonic attention (Aharoni and Goldberg, 2017), hence-

forth referred to as Seq2Seq(HMA). During generation, Seq2Seq(HMA) directly models the

monotonic source-to-target sequence alignments, using a pointer that attends to a single

input character at a time. Monotonic attention is a natural fit for transliteration because

even though the number of characters needed to represent a sound in the source and tar-

get language vary, the sequence of sounds is presented in the same order.4 We review

Seq2Seq(HMA) below, and describe how it can be applied to transliteration generation.
4Many Indic scripts, that sometimes write vowels before the consonants they are pronounced after, seem

to violate this claim, but their Unicode representations actually preserve the consonant-vowel order.
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Figure 22: Transliteration using Seq2Seq transduction with Hard Monotonic Attention, or
Seq2Seq(HMA). The figure shows how decoding proceeds for transliterating थनोस to thanos.
During decoding, the model attends to a source character (e.g.,थ shown in blue) and outputs
target characters (t, h, a) until a step action is generated, which moves the attention position
forward by one character (to न), and so on.

Encoding the Input Word. Let Σf be the source alphabet and Σe be the English al-

phabet. Let x = (x1, x2, · · · , xn) denote an input word where each character xi ∈ Σf .

The characters are first encoded using an embedding matrix W ∈ R|Σf |×d to get character

embeddings w1,w2, · · · ,wn where each wi ∈ Rd. These embeddings are fed into a bidi-

rectional RNN encoder (Figure 22) to generate encoded vectors h1,h2, · · · ,hn where each

hi ∈ R2k, and k is the size of output vector of the forward (and backward) encoder. The

encoded vectors h1,h2, · · · ,hn are then fed into the decoder.

Monotonic Decoding with Hard Attention. Figure 22 illustrates the decoding pro-

cess. The decoder RNN generates a sequence of actions {s1, s2, · · · }, such that each si ∈

Σe ∪ {step}. The step action controls an attention position a, attending on input character

xa, with encoded vector ha. Each action si is embedded into si ∈ Rd using an output

embedding matrix A ∈ R(|Σe|+1)×d. At any time during decoding, the decoder uses its last

hidden state, the embedding of the previous action si and the encoded vector ha of the

current attended position to generate the next action si+1. If the generated action is step,

the decoder increments the attention position by one. This ensures that the decoding is

monotonic, as the attention position can only move forward or stay at the same position

130



during generation. We use Inference(G,x) to refer to the above decoding process for a

trained generation model G and input word x.

Training. Training requires the oracle action sequence {si} for input x1:n that generates

the correct transliteration y1:m. The oracle sequence is generated using the train name

pairs and Algorithm 1 in Aharoni and Goldberg (2017), with the character-level alignment

between x1:n and y1:m being generated using the algorithm in Cotterell et al. (2016).

Inference Strategies. An unconstrained and a constrained inference strategy can be

used to select the best transliteration ŷ from a beam {yi}ki=1 of transliteration hypotheses,

sorted in descending order by likelihood. The constrained strategy uses a name dictionary

N , to guide the inference. These strategies are applicable to any generation model.

• Unconstrained (U) selects the most likely item y1 in the beam as ŷ.

• Dictionary-Constrained (DC) selects the highest scoring hypothesis that is present

in N , and defaults to y1 if none are in N .

It is tempting to disallow the model from generating hypotheses that are not in the dictio-

nary N . However, dictionaries are always incomplete, and restricting the search to generate

from N inevitably leads to incorrect predictions if the correct transliteration is not in N .

This is essentially the same as the problem inherent to discovery models.

Other Strategies in Previous Work. A related constrained inference strategy was

proposed by Lin et al. (2016), who use an entity linking system (Wang et al., 2015) to correct

and re-rank hypotheses. Our constrained inference strategy is much simpler, requiring only

a name dictionary N . These approaches are compared in the experiments.

8.4. Low-Resource Bootstrapping

Low-resource languages will have a limited number of name pairs for training a generation

model. This section proposes a new bootstrapping algorithm to learn a good generation
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model in this setting, that uses constrained discovery to mine name pairs to re-train the

generation model. The algorithm requires a small (≈ 500) seed list of name pairs S for

supervision, a dictionary N containing names in English, and a list of words Vf in the

foreign script. The algorithm and the constraints used in discovery are described below.

8.4.1. The Bootstrapping Algorithm

Algorithm 3 shows the code of the bootstrapping procedure. First, a weak generation

model G0 is initialized using a seed list of name pairs S (line 1). At iteration t, the current

generation model Gt produces the top-k transliteration hypotheses {yi}ki=1 for each word

x ∈ Vf (line 5). A source word and hypothesis pair (x,yi), is added to the set of mined

name pairs B if they satisfy a set of discovery constraints (described below) (line 8). A new

generation model Gt+1 is trained for the next iteration using the union of the seed list S

and the mined name pairs B (line 12). B is purged after every iteration (line 3) to prevent

Gt+1 from being influenced by possibly incorrect name pairs mined in earlier iterations.

The algorithm converges when accuracy@1 stops increasing on a development set. Note

that our bootstrapping approach is applicable to any transliteration generation model.

To ensure that high quality name pairs are added to the mined set B during bootstrapping,

the following discovery constraints are used.

8.4.2. Discovery Constraints

A word-transliteration pair (x,y) is added to the set of mined pairs B, only if all the

following constraints are satisfied,

1. y ∈ N . i.e., y is a known name in the dictionary.

2. P(y | x) > δmin. The model is sufficiently confident about the transliteration.

3. The ratio of lengths |y|
|x| should be close to the average ratio estimated from S (Matthews,

2007). This is encoded using the constraint | |y||x| − r(S)| ≤ ϵ, where ϵ is a tunable tol-

erance and r(S) is the average ratio in S.
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Algorithm 3 Bootstrapping Transliteration Generation via Constrained Discovery
Input:

English name dictionary N ; Seed training pairs S;
Vocabulary in the target language Vf .

Hyper-parameters:
initial minimum length threshold Lmin

0 ;
minimum likelihood threshold δmin;
length ratio tolerance ϵ.

Output: Generation model GT

1: G0 = train(S) ▷ Initialize a weak generation model.
2: while not converged do
3: B = ∅ ▷ Purge mined set.
4: for x in Vf do
5: {yi}ki=1 = argtopk Inference(Gt,x) ▷ Generate top-k hypotheses.
6: for yi in {yi}ki=1 do
7: if (x,yi) satisfies constraints in Section 8.4.2 then
8: B = B ∪ {(x,yi)} ▷ Add name pair to mined set.
9: end if

10: end for
11: end for
12: Gt+1 = train (S ∪ B)
13: Lmin

t+1 = Lmin
t − 1 ▷ Reduce length threshold.

14: t = t+ 1 ▷ Track iteration.
15: end while

4. |y| > Lmin
t . It was found that false positives were more likely to be short hypotheses

in early iterations. As the model improves with each iteration, Lmin
t is lowered to

allow more new pairs to be mined.

Notice that the bootstrapping algorithm can be formulated as an instance of constraint

driven learning (Chang et al., 2007, 2012).

8.5. Experimental Setup

All generation models are evaluated using accuracy at 1 (acc@1), by comparing the best

model prediction ŷ against the reference transliteration y∗, unless otherwise specified.

Training and Evaluation. The train and development sets from the Named Entities

Workshop 2015 (Duan et al., 2015) (NEWS2015) for Hindi (hi), Kannada (kn), Bengali
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(bn), Tamil (ta) and Hebrew (he) are used as our train and evaluation set.5 The size of the

train set was ∼12k, 10k, 14k, 10k and 10k respectively, and all evaluation sets were ∼1k.

For the low-resource experiments, 500 examples are sub-sampled from each train set in the

NEWS2015 dataset using five random seeds, and the averaged results on these is reported.

1k name pairs from the corresponding NEWS2015 train set of each language is set aside as

development data. The foreign script portion of the remaining train data is used as Vf in

the bootstrapping algorithm.

Model and Tuning Details. Seq2Seq(HMA) is implemented using PyTorch.6 50 di-

mensional character embeddings, and single layer GRU (Cho et al., 2014) encoder with 20

hidden states are used for all experiments. The Adam (Kingma and Ba, 2014) optimizer

was used with default hyper-parameters, a learning rate of 0.001, a batch size of 1, and

maximum of 20 iterations in all experiments. Beam search used a width of 10. For low-

resource experiments, all bootstrapping parameters were tuned on the development data

set aside above. Lmin
0 is chosen from {10, 15, 20, 25}.

Name Dictionary N . A name dictionary of 1.05 million names is constructed from the

English Wikipedia (dump dated 05/20/2017) by taking the list of title tokens in Wikipedia

sorted by frequency, and removing tokens that appears only once. The same dictionary is

used in all experiments.

Comparisons. The following generation models are used for comparison:

(a) P&R (Pasternack and Roth, 2009) A probabilistic transliteration generation ap-

proach that learns latent alignments between sub-strings in the source and the target

words. The model is trained to score all possible segmentation and their alignments,

using an EM-like algorithm.
5Test set was not available since shared task concluded.
6github.com/pytorch
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(b) DirecTL+ (Jiampojamarn et al., 2009) A HMM-like discriminative string trans-

duction model that predicts the output transliteration using many-to-many alignments

between the source word and target transliteration. Following Jiampojamarn et al.

(2009), the m2m-aligner (Jiampojamarn et al., 2007) is used to generate the many-

to-many alignments, and the public implementation of DirecTL+ to train models.7

(c) RPI-ISI (Lin et al., 2016) A transliteration approach that uses an entity linking

system (Wang et al., 2015) to jointly correct and re-rank the hypotheses produced by

the generation model. The experiments compare to both the unconstrained inference

(U) approach and the entity linking constrained inference (+EL) approach.

(d) Seq2Seq w/ Att A sequence to sequence generation model that uses soft attention

as described in (Bahdanau et al., 2015). This model does not enforce monotonicity

at inference time, and serves as direct comparison for Seq2Seq(HMA).

8.6. Experiments

The experiments analyze how effective is: (a) Seq2Seq(HMA) for transliteration generation

when provided all available supervision (Section 8.6.1)? (b) the bootstrapping algorithm

in the low-resource setting when only 500 examples are available (Section 8.6.2)?

8.6.1. Full Supervision Setting

This experiment compares Seq2Seq(HMA) with the generation approaches described in

Section 8.5, when provided all available supervision, to see how it fares under standard

evaluation.

Results in the unconstrained inference (U) setting, shown in the top 5 rows of Table 32,

demonstrate that Seq2Seq(HMA) (denoted by “Ours(U)”) outperforms previous approaches

on Hindi, Kannada, and Bengali, with almost 3-4% gains. Improvements over the Seq2Seq

with Attention (Seq2Seq w/ Att) model demonstrate the benefit of imposing the mono-
7https://code.google.com/p/directl-p
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Approach ↓
Lang. → hi kn bn ta he Avg.

Full Supervision Setting (5–10k examples)
Seq2Seq w/ Att (U) 35.5 33.4 46.1 17.2 20.3 30.5
P&R (U) 37.4 31.6 45.4 20.2 18.7 30.7
DirecTL+ (U) 38.9 34.7 48.4 19.9 16.8 31.7
RPI-ISI (U) 40.3 29.8 49.4 20.2 21.5 32.2
Ours(U) 42.8 38.9 52.4 20.5 23.4 35.6

Approaches using Constrained Inference

RPI-ISI + EL 44.8 37.6 52.0 29.0 37.2 40.1
Ours(DC) 51.8 43.3 56.6 28.0 36.1 43.2

Low-Resource Setting (500 examples)
Seq2Seq w/ Att (U) 17.0 13.6 14.5 6.0 9.5 12.1
P&R (U) 21.1 16.6 34.2 9.4 13.0 18.9
DirecTL+ (U) 26.6 25.3 35.5 11.8 10.7 22.0
Ours(U) 29.1 27.7 37.7 11.5 16.2 24.4
Ours(U) + Boot. 40.1 35.1 50.3 17.8 22.8 33.2

Table 32: Comparing different generation approaches on the NEWS 2015 dataset using
accuracy@1 as the evaluation metric for five languages — Hindi (hi), Kannada (kn), Bengali
(bn), Tamil (ta) and Hebrew (he) – in full supervision and low-resource settings. “Ours”
denotes the Seq2Seq(HMA) model, with (.) denoting the inference strategy. The rest of the
approaches are described in Section 8.5. Numbers for RPI-ISI are from Lin et al. (2016).
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tonicity constraint in the generation model. On Tamil and Hebrew, Seq2Seq(HMA) is at

par with the best approaches, with negligible gap (∼0.3) in scores. Overall, Seq2Seq(HMA)

achieves better (and sometimes competitive) scores than state-of-the-art approaches in full

supervision settings. When comparing constrained inference approaches (Table 32, rows 6

and 7), it can be seen that using dictionary-constrained inference (as in “Ours(DC)”) is

more effective than using a entity-linking model for re-ranking (RPI-ISI + EL).

8.6.2. Low-Resource Setting

In Table 32 (rows under “Low-Resource Setting”), the different models are evaluated in a

low-resource setting when provided only 500 name pairs as supervision. Results are averaged

over 5 different random sub-samples of 500 examples.

The results clearly demonstrate that all generation models suffer a drop in performance when

provided limited training data. Note that models like Seq2Seq with Attention suffer a larger

drop than those which enforce monotonicity, suggesting that incorporating monotonicity

into the inference step in the low-resource setting is essential. After bootstrapping our weak

generation model using Algorithm 3, the performance improves substantially (last row in

Table 32). On almost all languages, the generation model improves by at least 6%, with

performance for Hindi and Bengali improving by more than 10%. Bootstrapping results for

the languages are within 2-4% of the best model trained with all available supervision.

To better analyze the progress of the transliteration model during bootstrapping, the ac-

curacy@1 of the current transliteration model is plotted after each bootstrapping iteration

for each of the languages (solid lines in Figure 23). For reference, the best performance

for a generation model using all available supervision from Section 8.6.1 is also shown as

dotted horizontal lines in Figure 23. From Figure 23, we can see that almost after 5 boot-

strapping iterations, the generation model attains competitive performance to respective

state-of-the-art models trained with full supervision.
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Figure 23: Plot showing accuracy@1 after each bootstrapping iteration for Hindi, Kannada,
Bengali, Tamil and Hebrew, starting with only 500 training pairs as supervision. For
comparison, the accuracy@1 of a model trained with all available supervision is also shown
(respective dashed lines, marked X-Full).

8.6.3. Error Analysis

Though our model is state of the art, it does present a few weaknesses. We have found that

the dictionary sometimes misleads the model during constrained inference. For example,

the correct transliteration of the Hindi word ȟवǯुल, is vidyul, which is not present in the

dictionary, but an incorrect hypothesis vidul is present, leading to incorrect prediction.

Another issue comes from the proportion of native (i.e., from the source language) and

foreign (i.e., from English or other languages) names in the training data. It is usually not

the case that the source and target scripts have the same transliteration rules. For example,

य in Hindi might represent ya in English or Hindi names, but ja in German. Similarly, while

अ should be a in Hindi names, it could be any of a few vowels in English. The NEWS2015

dataset does not report a native/foreign ratio, but by our estimation, it is about 70/30 for

each language. This native and foreign names dichotomy are some of the inherent challenges

in transliteration, that are discussed in detail in the next section.
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8.7. Challenges Inherent to Transliteration

The fact that all models in Table 32 perform well or poorly on the same languages suggests

that most of the observed performance variation is the result of factors intrinsic to the

specific languages. Here we analyze some challenges that are inherent to the transliteration

task, and explain why the performance ceiling is well under 100% for all languages, and

lower for languages like Tamil and Hebrew than the others.8

8.7.1. Source and Target-Specific Issues

Source-Driven. Some transliteration errors are due to ambiguities in the source scripts.

For instance, the Tamil script uses a single character to denote {ta, da, tha, dha}, a sin-

gle character for {ka, ga, kha, gha}, etc., while the rest of the Indian scripts have unique

characters for each of these. Thus, names like Hartley and Hardley are entirely indistin-

guishable in Tamil but are distinguishable in the other scripts. We illustrate this problem

by transliterating back and forth between Tamil and Hindi. When transliterating Hindi

→ Tamil, the model achieves an accuracy of 31%, that drops to 15% when transliterating

Tamil → Hindi, suggesting that the Tamil script is more ambiguous.

The Hebrew script also introduces error because it tends to omit vowels or write them

ambiguously, leaving the model to guess between plausible choices. For example, the word

מלך could be transliterated melech (meaning king) just as easily as malach (meaning he

ruled). When Hebrew does write vowels, it reuses consonant letters, again ambiguously.

For example, ה can be used to express a or e, so שמונה can be either shmona or shmone (

either a masculine eight or a feminine eight). The script also does not reliably distinguish

b from v or p from f, among others.

All languages run into problems when they are faced with writing sounds that they do not

natively distinguish. For example, Hindi does not make a distinction between w and v, so

both vest and west are written as वेĥट in its script.
8A similar analysis to ours was presented in (Merhav and Ash, 2018).
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These script-specific deficiencies explains why all models struggle on Tamil and Hebrew

relative to the others. These issues cannot be completely resolved without memorizing

individual source-target pairs and leveraging context.

Target-Driven. Some errors arise from the challenges presented by target script (here

Latin script for English). To handle English’s notoriously convoluted orthography, a model

has to infer silent letters, decide whether to use f or ph for /f/; use k, c, ck, ch, or q for /k/,

and so on. The problem is made worse because English is not the only language that uses

Latin script. For example, German names like Schmidt should be written with sch instead

of sh, and for French names like Margot and Margeau (which are pronounced the same), we

have to resort to memorization. The arbitrariness extends into borrowings from the source

languages as well. For example, the Indian name Bangalore is written with a silent-e, and

the name Lakshadweep contains ee, instead of the expected i.

8.7.2. Disparity between Native and Foreign

Certain names are well-integrated into the source language etymologically (Indian names

like Jasodhara or Ramanathan for Hindi), while some are not (French Grenoble or Japanese

Honshu for Hindi). We refer to the former as native names for that language, and the latter

as foreign names. The above datasets include an unspecified mix of native and foreign

names. How does the transliteration performance vary across these two name types?

To quantify the effect of this, we annotate native and foreign names in the test split of the

four Indian languages, and evaluate performance for both categories. Table 33 shows that

the performance is significantly better on native names for all the languages. A possible

reason for is that the source scripts were designed for writing native names (e.g., Tamil

script lacks separate {ta, da, tha, dha} characters because Tamil does not distinguish these

sounds). Furthermore, foreign names have a wide variety of origins with their own conven-

tions (Section 8.7.1). The performance gap is proportionally greatest for Tamil, likely due

to its script-specific deficiencies.
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Language Native Foreign Ratio
Hindi 45.1 31.4 1.44
Bengali 63.1 20.1 3.14
Kannada 42.6 23.1 1.84
Tamil 24.3 05.2 4.67

Table 33: Accuracy@1 for native and foreign words for four languages (Section 8.7.2). Ratio
is native performance relative to foreign.

This disparity between native and foreign names is a problem since any model must learn

essentially separate transliteration schemes for each name type.

8.8. Case Studies

The practical utility of our approach in low-resource settings and for downstream applica-

tions is evaluated through two case studies. First, Section 8.8.1 evaluates if obtaining an

adequate seed list is possible with a few hours of manual annotation from a single human

annotator. Then, Section 8.8.2 evaluates the impact of our approach on a downstream task

of candidate generation for Tigrinya and Macedonian entity linking.

Language Monolingual Corpus Vocabulary

Punjabi Corpus ILCI-II♠ 30k

Armenian TED♣ 50k

Tigrinya Habit Project♦ 225k

Macedonian TED♣ 60k

♦=habit-project.eu/wiki/TigrinyaCorpus, ♠=tdil-dc.in,

♣=github.com/ajinkyakulkarni14/TED-Multilingual-Parallel-Corpus

Table 34: Corpora used for obtaining foreign vocabulary Vf for bootstrapping in the case
studies in Section 8.8.1 and Section 8.8.2.
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8.8.1. Manual Annotation

The manual annotation exercises simulate a low-resource setting with only a single human

annotator is available. This experiment judges the usability of the annotations by training

models on them and evaluating the models on test sets of 1000 names each, obtained

from Wikipedia inter-language links. For bootstrapping experiments, the corpora shown in

Table 34 is used to obtain foreign vocabulary Vf .

Languages Studied. The evaluation involves two languages: Armenian and Punjabi.

Spoken in Armenia and Turkey, Armenian is an Indo-European language with no close

relatives. It has Eastern and Western dialects with different spelling conventions. One issue

was that the Armenian Wikipedia is primarily written in the Eastern dialect, while our

annotator was a native Western speaker. The annotator produced Western Armenian name-

pairs, that were mechanically mapped to “Eastern” Armenian by swapping five Armenian

character pairs: դ/տ, պ/բ , ք/կ , ձ/ծ, ճ/ջ, so that evaluation can be performed against

name pairs from Armenian Wikipedia.

Punjabi is an Indic language from Northwest India and Pakistan that is closely related to

Hindi. Our annotator grew up primarily speaking Hindi.

Annotation Guidelines. Annotators were given two tasks. First, they were asked to

write two names and their English transliterations for each letter in the source script: one

beginning with the letter and another containing it elsewhere. (e.g. Julia and Benjamin

for the letter j, if the source were English). The is done to ensure good coverage over the

alphabet. Next, annotators were shown a list of English words and were asked to provide

plausible transliteration(s) into the target script. The list had a mix of recognizable foreign

(e.g., Clinton, Helsinki) and native names (e.g., Sarkessian, Yerevan for Armenian).

About 600 and 500 annotated pairs were collected for Armenian and Punjabi respectively.

Table 35 shows that the performance of the models trained on the annotated data is compa-
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Approach ↓
Lang. → Punjabi Armenian

Ours(U) 33.4 49.9
Ours(U) + Bootstrapping 44.5 55.8
Annotation Time (hours) 5 4

Table 35: Accuracy@1 of Seq2Seq(HMA) model supervised using human annotated seed set
in Punjabi and Armenian (with and without bootstrapping). Both languages perform well
relative to the other languages investigated so far. Both annotation sub-tasks took roughly
the same time.

rable to that on the standard test corpora for other languages. This show that our approach

is robust to human inconsistencies and regional spelling variations, and that obtaining an

adequate seed list is possible with just a few hours of manual annotation.

8.8.2. Candidate Generation

Since transliteration is an intermediate step in many downstream multilingual information

extraction tasks (Darwish, 2013; Kim et al., 2012; Jeong et al., 1999; Virga and Khudanpur,

2003; Chen et al., 2006), it is possibly to gauge its performance extrinsically by the impact

it has on such tasks. This section uses the task of candidate generation (CG), which is a

key step in cross-lingual entity linking, as the subject.

The goal of cross-lingual entity linking (McNamee et al., 2011; Tsai and Roth, 2016; Upad-

hyay et al., 2018a) is to ground spans of text written in any language to an entity in a

knowledge base (KB). For instance, grounding [Chicago] in the following German sen-

tence to Chicago_(band).9

[Chicago] wird in Woodstock aufzutreten.

CG in entity linking identifies a set of plausible entities that a given mention can link to,

while ensuring the correct KB entity belongs to that set (Section 7.2.1). For the above

German sentence, CG would provide a list of possible KB entities for the string Chicago:
9Translation: Chicago will perform at Woodstock.
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Chicago_(band), Chicago_(city), Chicago_(font), etc., so that context-sensitive infer-

ence (Section 7.2.1) can select the band. Foreign scripts pose an additional challenge for

CG because they must be transliterated before they are passed on to candidate generation.

For instance, any mention of Chicago in Amharic must first be transliterated from ሺካጎ.

Most approaches for CG use Wikipedia inter-language links to generate the lists of candi-

dates (Tsai and Roth, 2016). While recent approaches such as Tsai and Roth (2018) have

used name translation for CG, they require over 10k examples for languages with non-Latin

scripts, which is prohibitive for low-resource languages with little Wikipedia presence.

Candidate Generation with Transliteration. We evaluate the extent to which our

approach improves recall of a naive CG baseline that generates candidates by performing

exact name match. For each span of text to be linked (or query mention), first it is checked

if the naive name matching strategy finds any candidates in the KB. If none are found,

the query mention is back-transliterated to English, and at most 20 candidates are gener-

ated using a inverted-index from English names to KB entities. The evaluation metric is

recall@20, i.e., if the gold KB entity is in the top 20 candidates. The effect of including

transliteration on CG is evaluated for two test languages — Tigrinya and Macedonian.

Tigrinya is a South Semitic language related to Amharic, written in the Ethiopic script,

and spoken primarily in Eritrea and northern Ethiopia. The Tigrinya Wikipedia has <200

articles, so inter-language links (∼7.5k) from the Amharic Wikipedia are used instead to

extract 1k name pairs for the seed set. The monolingual corpus in Table 34 is used for

bootstrapping. The model is evaluated on the unsequestered set provided under the NIST

LoReHLT evaluation, containing 4,630 query mentions.

The Ethiopic script is an alphasyllabary, where each character is consonant-vowel pair. For

example, the character መ is mä, ሚ with a tail is mi, and ሞ with a line is mo. With 26

consonants and 8 vowels, this leads to a set of >200 characters creating a sparsity problem

since each character has its own Unicode code point. However, the code points are organized
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Approach Recall@20
Tigrinya

Name match (baseline) 31.4
Ours 35.6
Ours (CV-split) 41.3
Ours (CV-split) + Bootstrapping 46.2

Macedonian
Name match (baseline) 33.6
Ours 72.2
Ours + Bootstrapping 76.8

Table 36: Comparing candidate recall@20 for different approaches on Tigrinya and Mace-
donian. CV-split refers to consonant-vowel splitting. Using our transliteration generation
model with bootstrapping yields the highest recall, improving significantly over a name
match baseline.

so that they can be automatically split10 into unique consonant and vowel codes without

explicitly understanding the script. Arbitrary ASCII codes are assigned to each consonant

and vowel so that መ/mä becomes “D 1” and ሞ/mo becomes “D 6.” This consonant-vowel

splitting (CV-split) reduces the number of unique input characters to 55.

Macedonian is a South Slavic language closely related to the languages of the former

Yugoslavia and written in a local variant of the Cyrillic alphabet. The experiment uses the

Macedonian test set constructed by McNamee et al. (2011) containing 1956 query mentions.

A seed set of 1k name pairs was obtained from the Wikipedia inter-language links for

Macedonian, and the monolingual corpus from Table 34 was used for bootstrapping.

Candidate Generation Results. Table 36 shows the results of the candidate generation

experiments in the two languages. For Tigrinya, candidate generation with transliteration

improves on the baseline by 4.2%. Splitting the characters (CV-split) gives another 5.7%,

and adding bootstrapping gives 4.9% more. Our approach yields an overall 14.8% im-

provement in recall over the baseline, showing that the little available supervision can be
10Consonant = Unicode / 8; Vowel = Unicode % 8
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effectively exploited by bootstrapping. Macedonian yields more dramatic results, where

transliteration provides 38.6% improvement (more than double the baseline), with boot-

strapping providing another 4.6%. The differences between Tigrinya and Macedonian is

likely due both to their test sets, corpora and writing systems.

8.9. Summary

The chapter examined the transliteration problem, that serves as an important component

of candidate generation for cross-lingual entity linking. We presented a new transliteration

generation model, and a new bootstrapping algorithm that can iteratively improve a weak

generation model using constrained discovery. The model presented here achieves state-

of-the-art results on standard training set sizes, and more importantly, works well in a

low-resource setting with the aid of the bootstrapping algorithm. The key benefit of the

bootstrapping approach is that it can “recover” most of the performance lost in the low-

resource setting when little supervision is available by training with a smaller seed set, an

English name dictionary, and a list of un-annotated words in the target script. Through

case studies, it was shown that collecting an adequate seed list is practical with a few hours

of annotation. The benefit of incorporating our transliteration approach in a downstream

task, namely candidate generation for cross-lingual entity linking, was also demonstrated.

Challenges inherent to the transliteration task were also discussed, particularly the impact

of the native/foreign distinction in the train data and the difficulties posed by specific scripts

or pairs of scripts.

There are several interesting directions for future work. Performing model combination,

either by developing hybrid transliteration models (Nicolai et al., 2015) or by ensem-

bling (Finch et al., 2016), can further improve low-resource transliteration. Jointly lever-

aging similarities between related languages, such as writing systems or phonetic proper-

ties (Kunchukuttan et al., 2018), also shows promise for low-resource settings. Our analysis

suggests value in revisiting “transliteration in context” approaches (Goto et al., 2003; Her-

mjakob et al., 2008), especially for languages like Hebrew.
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CHAPTER 9 : Conclusion

So far, progress in NLP has largely benefited just a select few languages. For its fruits to

be accessible to more of the world’s diverse set of languages, it is essential to enable NLP

in multilingual settings. However, such endeavors are beset with the challenges of working

with no or limited supervision in the language of interest.

Throughout this thesis, I discussed different approaches that either transfer, share or exploit

knowledge across languages to achieve this goal. The recurring theme was using cross-lingual

signals to developing approaches that facilitate NLP in English and other languages. The

key ingredient in all approaches was some form of cross-lingual word representation, which

made sharing or transfer of supervision possible.

9.1. Summary of Contributions

The thesis began by motivating the need for developing NLP technology for languages

other than English in Chapter 1. A large population of the world produces and consumes

information in a variety of languages, evident from the growing size of the non-English

content on the Web. Multilingual NLP can help us leverage this relatively untapped source

of knowledge, and also serve as a means for making social impact in urgent situations

like disaster relief. From a scientific standpoint, working in Multilingual NLP scenarios

also serves as a test-bed for evaluating existing NLP techniques, revealing their strengths or

limitations. Nevertheless, progress in Multilingual NLP is hindered by the lack of annotated

data in most languages, posing a challenge for traditional supervised learning approaches. I

discussed why existing annotation-based or translation-based approaches are ill-equipped to

deal with this challenge, and argued why sharing resources developed for popular languages

like English is a more viable strategy.

Chapter 2 gave brief history of representation learning approaches used in NLP. The driving

force behind most of these approaches were two hypotheses rooted in the distributional
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Figure 24: Summary of contributions made in the thesis. Different chapters demonstrated
how cross-lingual representations can help achieve model transfer and sharing (Chapter 3
and 4), aid in lexical semantics tasks either monolingually (Chapter 5) or cross-lingually
(Chapter 6), and facilitate cross-lingual information extraction (Chapter 7 and 8).

semantics literature. By appealing to these hypotheses in different ways, one can derive word

representations directly from raw text, an attractive alternative to manually building lexical

semantic resources. I trace the history of different word representation paradigms, starting

with cluster-based representations (à la Brown Clustering) to the more efficient and compact

vector-based representations. Different variants of popular vector space representations

were discussed, laying the groundwork for understanding their cross-lingual counterparts

in later chapters. The chapter ends with a discussion of different aspects where these

word representations fall short, from issues arising either from modeling assumptions or

limitations of the distributional hypothesis itself. Importantly, I discussed the inability of

monolingual representations to capture cross-lingual relationships between words in different

languages, making it difficult to share resources across languages.

The next few chapters were devoted to demonstrate how cross-lingual representations can

help alleviate this limitation, thereby enabling sharing and transfer of resources across

languages. Figure 24 summarizes the tasks used as evidence to support this claim.

The next chapter described different approaches to learn cross-lingual representations to
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overcome the above limitation of monolingually trained distributional representations. By

viewing them as a continuous approximation of discrete translation dictionaries that can

“translate” features used in a model, I motivated why using cross-lingual representations

can aid model transfer across languages. The unifying motif of all approaches was the use

of some form of cross-lingual alignment — word-level, sentence-level, document-level, or a

combination of these — in addition to the monolingual distributional signal. The chapter

also made a comparison of these approaches on various tasks, both intrinsic and extrinsic,

and evaluated the suitability of the different cross-lingual alignments for each.

Traditional distributional representations require lots of data to learn relationships that

might be explicitly stated in manually constructed resources like Wikipedia. In Chapter 4,

I discussed ESA, a representation learning approach that derives word representations from

Wikipedia by appealing to the bag-of-words hypothesis. Then I showed how ESA can be

extended by utilizing metadata that connects Wikipedias in different languages to obtain

cross-lingual word representations. Unlike the representation in Chapter 2, these cross-

lingual representations were interpretable, where the dimensions correspond to concepts in

Wikipedia to which the word is relevant. Another attractive property of these represen-

tations is that they can be used in unsupervised classification paradigms (referred to as

“dataless” in Chapter 4), and achieve accuracies comparable to supervised classification.

In Chapter 5, I discussed how these cross-lingual signals can be used to overcome another

limitation of traditional word representations — that they cannot model polysemy. I moti-

vated why data-driven approaches learn multi-sense word representations hold more appeal

compared to approaches that use lexical resources, as the latter are inherently limited to

the senses listed in those resources. Building on the line of work that exploits transla-

tional information to tease apart word senses, I described an data-driven approach to learn

sense representations by exploiting multilingual translational information using Bayesian

non-parametrics. The experiments showed that the proposed approach yielded comparable

performance to a monolingual model trained on more data.
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In Chapter 6, I discussed a new lexical semantic task of identifying asymmetric relation-

ships like hypernymy between words in different languages. Building on work in monolingual

hypernymy detection, I proposed an unsupervised approach to probe the distributional rep-

resentations of the words to detect if the relationship exists. These representations were

derived from syntactic contexts, and aligned cross-lingual using a small bilingual dictio-

nary. Experimental evaluations showed that the model performance was robust to various

low-resource scenarios, especially when the syntactic contexts were derived using a weak

dependency parser, a encouraging result for languages without a dependency treebank. The

proposed approach has the potential to complement efforts to semi-automatically construct

cross-lingual ontologies such as BabelNet and the Open Multilingual WordNet.

The overarching theme of Chapters 4, 5, 6 shows different applications of cross-lingual

representations for lexical semantics tasks. Chapter 7 and 8 examine the downstream infor-

mation extraction task of entity linking in the cross-lingual setting. Chapter 7 motivated

the cross-lingual entity linking problem as a means for acquiring knowledge expressed in

multilingual text, similar to the function that monolingual entity linking performs for tasks

like question answering and knowledge base population. Apart from dealing with the ambi-

guity and variability of language, in this task one has to deal with the additional challenge

of working with limited supervision in the language of interest. To address this challenge,

I show how cross-lingual representations can be used to leverage supervision from multiple

languages jointly for the task of cross-lingual entity linking. Another benefit of the proposed

approach is that it can train a single model for multiple related languages, making more

efficient use of available supervision than previous approaches that trained separate models.

Later in Chapter 8, I examined a key component of XEL, namely candidate generation, and

show how its coverage for the XEL task can be improved by using transliteration. For this,

I described a transliteration generation approach that can operate in low-resource settings

using a little supervision and an English KB to bootstrap. The key benefit of bootstrapping

is that it can “recover” most of the performance lost in the low-resource setting.
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9.2. Future Directions

There are several directions in cross-lingual NLP that warrant further research; I briefly

describe a few of them below.

Static vs Dynamic Representations. Section 5.8 touched upon a fundamental lim-

itation of static word representations (either monolingual or cross-lingual), in that they

divorce the context and the word’s representation by compiling a fixed representation for

the word. Recently, approaches that use language modeling to learn dynamic, context-

sensitive word representations, like ELMo (Peters et al., 2018) and BERT (Devlin et al.,

2018), have been proposed to overcome this issue in the monolingual setting. Related

research questions can be asked in this direction. For instance, how can one extend these

dynamic, context-sensitive representations cross-lingually? Are there other similar auxiliary

tasks like language modeling for learning contextual representations?

Cross-lingual Understanding and Reasoning. One of the fundamental limitations

of distributional representations discussed in Chapter 2 was its inability to account for

the compositional nature of language, motivating the need to marry formal semantics and

distributional approaches. A similar argument can be made for the need for compositional

semantics in cross-lingual settings. Developing approaches for learning compositional mean-

ing representations in cross-lingual settings with little or no language specific annotation is

an active area of research. Such approaches can pave the way for multilingual versions of

language understanding tasks like semantic parsing (Duong et al., 2017a; Susanto and Lu,

2017; Zou and Lu, 2018; Zhang et al., 2018a,b), which so far have been confined to English.

Code-mixed and Code-switched NLP. In all the cross-lingual tasks studied in this

thesis, an implicit assumption was that the input text was in a single language, and said

language was known beforehand. However, often a speaker alternates between two or more

languages in the same conversation, a phenomenon referred as code-switching. Indeed,

when conversing with another multilingual, a multilingual person can interchange seamlessly
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between two or more languages, either at the word, phrase or sentence level. For instance,

a person who is fluent in both Hindi and English, can utter the following sentence “tum

mujhe dinner ke liye fifty-five dollars owe karte ho” (translates to “you owe me fifty-five

dollars for dinner”), which is a mix of Hindi (written in Latin script) and English. In

such situations, it is necessary to develop ways to either identify which language’s feature

representation to use, or operate at a feature representation that smoothens the difference

in the two languages.

Overall, a wide variety of problems remain to be explored, with some (such as semantic

parsing) being cross-lingual counterparts of traditional NLP problems, while others (such

as code-mixing) being unique to the multilingual setting. These uncharted territories are

attractive directions for future work in developing truly language-independent approaches,

and finding better ways of leveraging existing supervision available in other languages.
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APPENDIX

A.1. Statistical Measures used in the Thesis

Spearman Rank Correlation Coefficient (Spearman, 1904) The Spearman Rank

Correlation Coefficient (SRCC) is a way to compare the “similarity” of rankings produced

by two different models. For a set of n items, suppose models A and B produce scores such

that item i gets a rank ri according to model A’s scores and rank Ri according to model

B’s scores. Define aij = (ri − rj) as the difference in the rank of item i and j according to

model A. A similar term bij = (Ri −Rj) can be defined suitably. Then, the SRCC is,

τ =

∑
i,j aijbij√∑

i,j a
2
ij

∑
i,j b

2
ij

(A.1)

The coefficient assumes a value between 1 and -1, with 1 indicating complete agreement in

the rankings, while -1 indicating complete disagreement.

Steiger’s Test (Steiger, 1980; Williams, 1959) Suppose the SRCC between the rank-

ing produced by model A and the reference ranking is 0.9 and the ranking produced by model

B and the reference ranking is 0.7. How to assess if this difference is statistically significant?

Steiger’s test is used to calculate the statistical significance between two dependent corre-

lation coefficients, i.e., correlation between random variables (X, Y ) and (X,Z). For the

situation described above, X will be the reference ranking, and Y and Z are the rankings

produced by the models. Suppose rpq is the rank correlation between variables P and Q,

then the p-value can be computed as,

p = 1− cdf(|T2|, N − 3) (A.2)
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where T2 = d

√
(N − 1)(1 + ryz)

2N−1
N−3 |R|+ r̄2(1− ryz)3

(A.3)

R =


1 rxy rxz

rxy 1 ryz

rxz ryz 1

 d = rxy − rxz r̄ =
1

2
(rxy + rxz) (A.4)

where cdf is the cumulative distribution function of the t-distribution, N is the number of

items being ranked, and |R| = 1 − r2xy − r2yz − r2xz + 2rxyryzrxz is the determinant of the

correlation matrix R.

McNemar’s Test (McNemar, 1947) McNemar’s test is a non-parametric test to de-

termine if the difference in the accuracies of two classifiers is statistically significant. McNe-

mar’s test considers the number c01 of instances mis-classified by classifier 1 but correctly

classified by classifier 2, and a similarly defined term c10. Under the null hypothesis both

classifiers have the same error rate, i.e., c01 = c10. McNemar’s test uses the χ2 test for good-

ness of fit comparing the observed counts and expected counts under the null hypothesis,

where the χ2 statistic is computed as,

(|c01 − c10| − 1)2

c01 + c10
(A.5)

where the -1 in the numerator is a correction term to account for the fact that the statistic

is discrete while the χ2 distribution is continuous.

Fleiss’ Kappa (Fleiss, 1971) A statistical measure of the reliability of inter-annotator

agreement when N items are assigned to k classes by n annotators. It generalizes Cohen’s

Kappa (Cohen, 1960), which measures the same for exactly 2 annotators. The statistic

computes the probability of the observed agreement, discounting for chance agreement,

κ =
P̄ − P̄e

1− P̄e
(A.6)
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where P̄e is the probability of agreement arising out of chance, and P̄ is the probability of

observed agreement. If nij is the number of annotators who assigned ith item to the jth

class, these quantities can be computed as,

P̄ =
1

N

N∑
i=1

Pi, P̄e =
k∑

j=1

p2j (A.7)

where pj =
1

Nn

N∑
i=1

nij , Pi =
1

n(n− 1)

k∑
j=1

nij(nij − 1) (A.8)

where pj is the observed probability of assigning to jth class and Pi is the observed proba-

bility of annotators agreeing for ith item.

Adjusted Rand Index (Hubert and Arabie, 1985) Adjusted Rand Index (ARI) is a

measure to compare the quality of a predicted clustering X = {X1, · · · } against a reference

clustering Y = {Y1, · · · } , where Xi is a subset with ai items, and Yj is a subset with bj

items. It is derived from another measure, the Rand Index (RI) (Rand, 1971), by discounting

for the expected score for a random clustering. If a denotes the number of pairs that are

in the same cluster in X and Y , and d denotes the number of pairs that are in different

clusters in X and Y then RI is a+d

(n
2
)
. It can be shown that a + d can be simplified to a

linear transformation of e =
∑

ij

(nij

2

)
, where nij is the number of objects in the common

to cluster Xi and Yj (Yeung and Ruzzo, 2001). Using e, ARI can be defined as,

ARI =
e− ẽ

emax − ẽ
(A.9)

where ẽ is expected value of e for a random clustering, emax = 1
2

[∑
i

(
ai
2

)
+

∑
j

(bj
2

)]
is the

maximum possible value of e, and n is the number of items being clustered. By assuming the

hyper-geometric model, Hubert and Arabie (1985) showed that ẽ =
[∑

i

(
ai
2

)∑
j

(bj
2

)]
/
(
n
2

)
.

ARI has a maximum value of 1 (for perfect agreement) and a expected value of 0, unlike

RI which has a non-zero expected value, making ARI a more sensitive index.
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A.2. BiSparse — Bilingual Sparse Coding

For two languages with vocabularies ve and vf , and monolingual dependency embeddings

Xe and Xf, BiSparse solves the following objective:

argmin
Ae,De,Af,Df

ve∑
i=1

1

2
||AeiDe

T −Xei||22 + λe||Aei||1

+

vf∑
j=1

1

2
||AfjDf

T −Xfj ||22 + λf ||Afj ||1

+
∑
i,j

1

2
λxSij ||Aei −Afj ||22 (A.10)

s.t. Ak > 0 ∥Dki∥22 ≤ 1 k ∈ {e, f}

The first two rows and the constraints in Equation A.10 encourage sparsity and non-

negativity in the embeddings, by solving a sparse coding problem where (De, Df) represent

the dictionary matrices and (Ae,Af) the final sparse representations. The third row im-

poses bilingual constraints, weighted by the regularizer λx, so that words that are strongly

aligned according to S have similar representations. The above optimization problem can

be solved using a proximal gradient method such as FASTA (Goldstein et al., 2014).

A.3. Qualitative Analysis for Multi-sense Embeddings

Figure 25 shows PCA plots for 11 sense vectors for 9 words using monolingual, bilingual and

multilingual models. With monolingual training (Fig 25a) the model infers two senses for

bank (denoted by bank_1 and bank_2), but both are close to financial terms, suggesting their

distinction was not recognized. The same observation holds for the senses of apple. With

bilingual training (Fig 25b), the model infers two senses of bank correctly, and two sense

of apple become more distant. The model can still improve e.g., pulling interest towards

the financial sense of bank, and pulling itunes towards apple_2. Finally, with multilingual

training (Fig 25c), all senses of the words are more clearly clustered — the senses of apple,

interest, and bank are well separated, and are close to sense-specific words.
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(a) Monolingual (English) (b) Bilingual (English-Chinese)

(c) Multilingual (English-{French,Chinese})

Figure 25: PCA plots for the vectors for {apple, bank, interest, itunes, potato, west, mon-
etary, desire} with multiple sense vectors for apple (apple_1 and apple_2), interest (inter-
est_1 and interest_2) and bank (bank_1 and bank_2) obtained using monolingual (25a),
bilingual (25b) and multilingual (25c) training.
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