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Abstract

Event mentions in text correspond to real-
world events of varying degrees of granular-
ity. The task of subevent detection aims to
resolve this granularity issue, recognizing the
membership of multi-granular events in event
complexes. Since knowing the span of descrip-
tive contexts of event complexes helps infer
the membership of events, we propose the task
of event-based text segmentation (EVENTSEG)
as an auxiliary task to improve the learning
for subevent detection. To bridge the two
tasks together, we propose an approach to
learning and enforcing constraints that cap-
ture dependencies between subevent detection
and EVENTSEG prediction, as well as guid-
ing the model to make globally consistent in-
ference. Specifically, we adopt Rectifier Net-
works for constraint learning and then con-
vert the learned constraints to a regulariza-
tion term in the loss function of the neural
model. Experimental results show that the
proposed method outperforms baseline meth-
ods by 2.3% and 2.5% on benchmark datasets
for subevent detection, HiEve and IC, respec-
tively, while achieving a decent performance
on EVENTSEG prediction1.

1 Introduction

Since real-world events are frequently conveyed
in human languages, understanding their linguistic
counterparts, i.e. event mentions in text, is of vi-
tal importance to natural language understanding
(NLU). One key challenge to understanding event
mentions is that they refer to real-world events
with varied granularity (Glavaš et al., 2014) and
form event complexes (Wang et al., 2020). For ex-
ample, when speaking of a coarse-grained event
“publishing a paper”, it can involve a complex of

∗ This work was done when the author was visiting the
University of Pennsylvania.

1Our code is publicly available at http://cogcomp.
org/page/publication_view/950.

Former Penn State football coach Jerry Sandusky posted (e1) 
bail Thursday after spending a night in jail following a new 
round of sex-abuse charges (e2) filed against him. Sandusky 
secured his release using (e3) $200,000 in real estate 
holdings and a $50,000 certified check provided (e4) by his 
wife, Dorothy, according to online court record … He was also 
charged (e5) last month with abusing eight boys, some on 
campus, over 15 years, allegations that were not immediately 
brought to the attention of authorities even though high-level 
people at Penn State apparently knew about them. In all, he 
faces more than 50 charges (e6). The scandal (e7) has 
resulted in the ousting (e8) of school President Graham 
Spanier and longtime coach Joe Paterno.

Figure 1: An example of PARENT-CHILD relations
and EVENTSEGs from the HiEve dataset (Glavaš et al.,
2014). The blue and yellow segments denote the tex-
tual spans of event complexes “posted” and “scandal”
respectively. Curved arrows denote PARENT-CHILD
relations within a text segment, whereas the dotted ar-
rows denote cross-segment PARENT-CHILD relations.

more fine-grained events such as “writing the pa-
per,” “passing the peer review,” and “presenting at
the conference.” Naturally, understanding events
requires to resolve the granularity of events and
infer their memberships, which corresponds to the
task of subevent detection (a.k.a. event hierarchy
extraction). Practically, subevent detection is a
key component of event-centric NLU (Chen et al.,
2021), and is beneficial to various applications,
such as schema induction (Zhang et al., 2020; Li
et al., 2020a), task-oriented dialogue agents (An-
dreas et al., 2020), summarization (Chen et al.,
2019; Zhao et al., 2020), and risk detection (Pohl
et al., 2012).

As a significant step towards inducing event
complexes (graphs that recognize the relationship
of multi-granular events) in documents, subevent
detection has started to receive attention recently
(Wang et al., 2020; Han et al., 2021). It is natu-
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ral to perceive that in documents, there might be
several different event complexes and they often
span in different descriptive contexts that form rel-
atively independent text segments. Consider the
example in Fig. 1, where the two membership re-
lations in the event complex (graph consisting of
“scandal (e7),” “charges (e6),” “ousting (e8),” and
relations) are both within the segment marked in
yellow that describes the event complex. As can
be seen in the paragraph, though we cannot deny
the existence of cross-segment subevent relations
(dotted arrows), events belong to the same mem-
bership are much more often to co-occur in a text
segment. This correlation has been overlooked by
existing data-driven methods (Zhou et al., 2020;
Yao et al., 2020), which formulate subevent detec-
tion as pairwise relation extraction. On the other
hand, while prior studies have demonstrated the
benefits of incorporating logical constraints among
event memberships and other relations (such as co-
reference) (Glavaš and Šnajder, 2014; Wang et al.,
2020), the constraints between the memberships
and event co-occurences in text segments remain
uncertain. Hence, how to effectively learn and en-
force hard-to-articulate constraints as in the case
of subevent detection and segmentation of text is
another challenge.

Our first contribution is to improve subevent de-
tection based on an auxiliary task of EVENTSEG

prediction. By EVENTSEG prediction, we seek
to segment a document into descriptive contexts
of different event complexes. Evidently, with
EVENTSEG information, it would be relatively easy
to infer the memberships of events in the same de-
scriptive context. Using annotations for subevent
detection and EVENTSEG prediction, we aim to
adopt a neural model to jointly learn these two tasks
along with the (soft) logical constraints that bridge
their labels together. In this way, we incorporate
linear discourse structure of segments into member-
ship relation extraction, avoiding complicated fea-
ture engineering in the previous work (Aldawsari
and Finlayson, 2019). From the learning perspec-
tive, adding EVENTSEG prediction as an auxiliary
task seeks to provide effective incidental supervi-
sion signals (Roth, 2017) to the subevent detection
task. This is especially important in the current
scenario where annotated learning resources for
subevents are typically limited (Hovy et al., 2013;
Glavaš et al., 2014; O’Gorman et al., 2016).

To capture the logical dependency between

subevent structure and EVENTSEG, our second con-
tribution is an approach to automatically learning
and enforcing logical constraints. Motivated by Pan
et al. (2020), we use Rectifier Networks to learn
constraints in the form of linear inequalities, and
then convert the constraints to a regularization term
that can be incorporated into the loss function of the
neural model. This allows any hard-to-articulate
constraints to be automatically captured for inter-
related tasks, and efficiently guides the model to
make globally consistent inference. By learning
and enforcing task-specific constraints for subevent
relations, the proposed method achieves compara-
ble results with SOTA subevent detection methods
on the HiEve and IC dataset. Moreover, by jointly
learning with EVENTSEG prediction, the proposed
method surpasses previous methods on subevent
detection by relatively 2.3% and 2.5% in F1 on
HiEve and IC, while achieving decent results on
EVENTSEG prediction.

2 Related Work

We discuss three lines of relevent research.

Subevent Detection. Several approaches to ex-
tracting membership relations have been proposed,
which mainly fall into two categories: statistical
learning methods and data-driven methods. Statis-
tical learning methods (Glavaš et al., 2014; Glavaš
and Šnajder, 2014; Araki et al., 2014; Aldawsari
and Finlayson, 2019) collect a variety of features
before feeding into classifiers for pairwise decision.
Nevertheless the features often require costly hu-
man effort to obtain, and are often dataset-specific.
Data-driven methods, on the other hand, automati-
cally characterize events with neural language mod-
els like BERT (Devlin et al., 2019), and can simul-
tanously incorporate various signals such as event
time duration (Zhou et al., 2020), joint constraints
with event temporal relations (Wang et al., 2020)
and subevent knowledge (Yao et al., 2020). Among
recent methods, only Aldawsari and Finlayson
(2019) utilize discourse features like discourse re-
lations between elementary discourse units, but
still document-level segmentation signals are not
incorporated into the task of subevent detection.
Actually, research on event-centric NLU (Chen
et al., 2021) has witnessed the usage of document-
level discourse relations: different functional dis-
course structures around the main event in news
articles have been studied in Choubey et al. (2020).
Hence, we attempt to capture the interdependencies



between subevent detection and segmentation of
text, in order to enhance the model performance
for event hierarchy extraction.

Text Segmentation. Early studies in this line have
concentrated on unsupervised text segmentation,
quantifying lexical cohesion within small text seg-
ments (Choi, 2000), and unsupervised Bayesian
approaches have also been successful in this task
(Eisenstein and Barzilay, 2008; Eisenstein, 2009;
Newman et al., 2012; Mota et al., 2019). Given
that unsupervised algorithms are difficult to spe-
cialize for a particular domain, Koshorek et al.
(2018) formulate the problem as a supervised learn-
ing task. Lukasik et al. (2020) follow this idea by
using transformer-based architectures with cross
segment attention to achieve state-of-the-art per-
formance. Focusing on creating logically coherent
sub-document units, these prior work do not cover
segmentation of text regarding descriptive contexts
of event complexes, which is the focus of the auxil-
iary task in this work.

Learning with Constraints. In terms of enforc-
ing declarative constraints in neural models, early
efforts (Roth and Yih, 2004; Glavaš and Šnajder,
2014) formulate the inference process as an In-
teger Linear Programming (ILP) problem. Pan
et al. (2020) also employ ILP to enforce constraints
learned automatically from Rectifier Networks with
strong expressiveness (Pan and Srikumar, 2016).
Yet the main drawback of solving an ILP problem
is its inefficiency in a large feasible solution space.
Recent work on integrating neural networks with
structured outputs has emphasized the importance
of the interaction between constraints and repre-
sentations (Rocktäschel and Riedel, 2017; Niculae
et al., 2018; Li and Srikumar, 2019; Li et al., 2019,
2020b). However there has been no automatic and
efficient ways to learn and enforce constraints that
are not limited to first-order logic, e.g., linear in-
equalities learned via Rectifier Networks. And this
is the research focus of our paper.

3 Preliminaries

A document D consists of a collection of m
sentences D = [s1, s2, · · · , sm], and each sen-
tence, say sk, contains a sequence of tokens sk =
[w1, w2, · · · , wn]. Some tokens in sentences be-
long to the set of annotated event triggers, i.e.,
ED = {e1, e2, · · · , el}. Following the notation
by Koshorek et al. (2018), a segmentation of doc-

ument D is represented as a sequence of binary
values: QD = {q1, q2, · · · , qm−1}, where qi indi-
cates whether sentence si is the end of a segment.

Subevent Detection is to identify membership re-
lations between events, given event mentions in
documents. Particularly, R denotes the set of re-
lation labels as defined in Hovy et al. (2013) and
Glavaš et al. (2014) (i.e., PARENT-CHILD, CHILD-
PARENT, COREF, and NOREL). For a relation
r ∈ R, we use a binary indicator Y r

i,j to denote
whether an event pair (ei, ej) has relation r, and
use yri,j to denote the model-predicted possibility
of an event pair (ei, ej) to have the relation r.

EventSeg prediction aims at finding an optimal seg-
mentation of text that breaks the document into sev-
eral groups of consecutive sentences, and each se-
quence is a descriptive context of an event complex
(Wang et al., 2020). Being different from the tradi-
tional definition of text segmentation, EVENTSEG

focuses on the change of event complex (which is
not necessarily the change of topic). For a pair of
events (ei, ej), we use a binary indicator Zi,j to
denote whether the two events are within the same
descriptive context of event complexes, and zi,j
to denote the model-predicted possibility of two
events to belong to the same segment. Details on
how to obtain EVENTSEG are described in §5.1.

Connections between Two Tasks. Statistically,
through an analysis of the HiEve and IC corpus,
PARENT-CHILD and CHILD-PARENT relations ap-
pear within the same descriptive context of event
complex with a probability of 65.13% (see Tab. 1).
On the other hand, the probability for each of the
two other non-membership relations (i.e., COREF

and NOREL) to appear within the same segment
approximately equals that of its appearence across
segments. This demonstrates that subevent rela-
tions tend to appear within the same EVENTSEG.
Since this is not an absolute logical constraint, we
adopt an automatic way of modeling such con-
straints instead of manually inducing them, which
is described in the next section.

4 Methods

We now present the framework for learning and
enforcing constraints for the main task of subevent
detection and the auxiliary EVENTSEG prediction.
We start with learning the hard-to-articulate con-
straints (§4.1), followed by details of joint learning
(§4.2) and inference (§4.3) for the two tasks.



4.1 Learning Constraints

From the example shown in Fig. 1 we can con-
struct an event graphGwith all the events, member-
ship relations, and EVENTSEG information. Fig. 2
shows a three-event subgraph of G. The goal of
constraint learning is as follows: given membership
relations Y r

i,j , Y
r
j,k and segmentation information

Zi,j , Zj,k about event pairs (ei, ej) and (ej , ek), we
would like to determine whether a certain assign-
ment of Y r

i,k, and Zi,k is legitimate.

Feature Space for Constraints. We now define
the feature space for constraint learning. Specifi-
cally, we construct three-event subgraphs from doc-
uments, and a binary label t for structure legitimacy
is created for each subgraph with membership re-
lations and EVENTSEG information. Note that the
feature space of Y r and Z is not sufficient for cap-
turing the dependency between two tasks. For in-
stance, if r = PARENT-CHILD, Y r

i,j = Y r
j,k = 1,

and Zi,j = Zj,k = 0, then due to the transi-
tivity of PARENT-CHILD relation, we should en-
force Y r

i,k = 1. However, we cannot tell whether
ei and ek are in the same EVENTSEG, i.e., both
Zi,k = 1 and Zi,k = 0 could be legitimate. In
other words, the current feature space is not sepa-
rable for Z, and thus we need to expand the con-
straint features to better capture relationship le-
gitimacy that involves three pairs of events. Let
Xp = {Y r

p , r ∈ R} ∪ {Zp} denote the original set
of features for an event pair p. Given features Xi,j

and Xj,k, we would like to determine the set of
possible values for Xi,k. We employ the power set
of Xi,k, P(Xi,k), as our new features for event pair
(ei, ek). And now a subgraph with three events ei,
ej , and ek can be featurized as

X = Xi,j ∪Xj,k ∪ P(Xi,k). (1)

Constraint Learning with Rectifier Network.
Inspired by how constraints are learned for sev-
eral structured prediction tasks (Pan et al., 2020),
we represent constraints for a given subgraph-label
pair (X, t) as K linear inequalities.2 Formally, for
an input X, we say the output t is feasible if it sat-
isfies constraints ck for all k = 1, · · · ,K. And the
kth constraint ck is expressed by a linear inequality

wk ·X+ bk ≥ 0,

2Here we assume K constraints is the upper bound for all
the rules to be learned.
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Figure 2: A legitimate structure for three-event sub-
graph obtained from the example shown in Fig. 1. The
constraint features for the subgraph can be expressed
by X = X7,6 ∪ X6,2 ∪ P(X7,2), and the label t for
this structure is 1. The total number of features for con-
straint learning is |X| = 5 + 5 + 25 = 42.

whose weights wk and bias bk are learned. Since a
system of linear inequalities is proved to be equiva-
lent to the Rectifier Network proposed in Pan et al.
(2020), we adopt a two-layer rectifier network for
learning constraints

p = σ
(
1−

K∑
k=1

ReLU
(
wk ·X+ bk

))
, (2)

where p denotes the possibility of t = 1 and σ(·)
denotes the sigmoid function. We train the param-
eters wk’s and bk’s of the rectifier network in a
supervised setting. The positive examples are in-
duced from subgraph structures that appear in the
training corpus, while the negative examples are
randomly chosen from the rest possibilities that do
not exist in the training corpus.

4.2 Joint Task Learning
After learning the constraints using Rectifier Net-
works, we introduce how to jointly model member-
ship relations and EVENTSEG with neural networks
and how to integrate the learned constraints into the
model. The model architecture is shown in Fig. 3.

Local Classifier. To characterize event pairs in
documents, we employ a neural encoder, which
obtains contextualized representations for event
triggers from the pre-trained transformer-based lan-
guage model RoBERTa (Liu et al., 2019). As
the context of event pairs, the sentences where
two event mentions appear are concatenated using
[CLS] and [SEP]. We then calculate the element-
wise average of subword-level contextual represen-
tations as the representation for each event trigger.
To obtain event pair representation for (ei, ej), we
concatenate the two contextual representations, to-
gether with their element-wise Hadamard product
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Figure 3: An overview of our approach. The model takes three pairs of events at a time in training to enforce
constraints over three-event subgraphs (an example can be found in Fig. 2). Event pair representations are obtained
from RoBERTa where the context between two events are taken into consideration. Soft logical constraints learned
in §4.1 are converted to a regularization term in the loss function for subgraph structure legitimacy.

and subtraction as in Wang et al. (2020). The event
pair representation is then sent to a multi-layer per-
ceptron (MLP) with |R| outputs for estimation of
the confidence score yri,j for each relation r. To
make EVENTSEG as an auxiliary task, the model
also predicts whether two events belong to the same
segment using another separate MLP with a single-
value output zi,j . In accordance with the learned
constraints in §4.1, the model takes three pairs of
events at a time. The annotation loss in Fig. 3 is
a linear combination of a four-class cross-entropy
loss LA,sub for subevent detection and a binary
cross-entropy loss LA,seg for EVENTSEG.

Incorporating Subgraph Constraints. The K
constraints learned in §4.1 are encoded into the
weights wk and bias bk, k = 1, · · · ,K. Now that
the input X is considered valid if it satisfies all K
constraints, we obtain the predicted probability p
of X being valid from Eq. 2. To add the constraints
as a regularization term in the loss function of the
neural model, we convert p into the negative log
space (Li et al., 2019) which is same as the cross-
entropy loss. And thus the loss corresponding to
the learned constraints is

Lcons = −log
(
Sigmoid

(
1−

N∑
k=1

ReLU(wk ·ψ + bk)
))

.

And the loss function of the neural model is

L = λ1LA,sub + λ2LA,seg + λ3Lcons, (3)

where the λ’s are non-negative coefficients to con-
trol the influence of each loss term. With the loss
function in Eq. 3, we train the model in a super-
vised way to fine-tune RoBERTa.

4.3 Inference
At inference time, to extract relations in the
subevent detection task, we input a pair of events
into the model and compare the predicted possibil-
ity for each relation, leaving the other two input
pairs blank. For EVENTSEG prediction, we let
the model predict zi,i+1 for each pair of adjacent
events (ei, ei+1) that appear in different sentences.
If zi,i+1 = 1, it means there is a segment break
between ei and ei+1. When there are intermediate
sentences between the two adjacent event mentions,
we treat the sentence that contains ei as the end of
a previous segment. In this way, we provide an
approach to solving two tasks together via auto-
matically learning and enforcing constraints in the
neural model. We provide in-depth experimenta-
tion for the proposed method in the next section.

5 Experiments

Here we describe the experiments on subevent de-
tection with EVENTSEG prediction as an auxiliary
task. We first introduce the corpora used (§5.1),
followed by evaluation for subevent detection and
an ablation study for illustrating the importance of
each model component (§5.2-§5.4). We also pro-
vide a case study on EVENTSEG prediction (§5.5)
and an analysis of the constraints learned in the
model (§5.6).

5.1 Datasets

HiEve The HiEve corpus (Glavaš et al., 2014) con-
tains 100 news articles. Within each article, an-
notations are given for both subevent membership



Relations
HiEve IC

Within Across Within Across
Parent-Child 1,123 679 1,698 550
Child-Parent 1,067 779 1,475 863

Coref 322 436 1,476 877
NoRel 32,029 31,726 40,072 41,815

Table 1: Statistics of the HiEve and IC dataset. Num-
bers in column “Within” denote the number of rela-
tions appearing within the same descriptive context of
event complex, whereas numbers under “Across” de-
note those across different segments.

and coreference relations. Using the same measure-
ment of inter-annotator agreement (IAA) as event
temporal relations in UzZaman and Allen (2011),
the HiEve dataset has an IAA of 0.69 F1.

Intelligence Community (IC) The IC corpus
(Hovy et al., 2013) also contains 100 news arti-
cles annotated with membership relations. The
articles report violence events such as attack, war,
etc. We discard those relations involving implicit
events annotated in IC, and calculate transitive clo-
sure for both subevent relations and co-reference
to get annotations for all event pairs in text order
as it is done for HiEve (Glavaš et al., 2014).

Labeling EVENTSEG We explain how to segment
the document using annotations for subevent rela-
tions. First, we use the annotated subevent rela-
tions (PARENT-CHILD and CHILD-PARENT only)
to construct a directed acyclic event graph for each
document. Due to the property of subevent rela-
tions, each connected component in the graph is
actually a tree with one root node, which forms
an event complex. If the graph constructed from
document has one connected component, we re-
move the root node and separate the event graph
into more than one event complexes. Since each
event complex has a textual span in the document,
we obtain several descriptive contexts that may or
may not overlap with each other. For those docu-
ments with non-overlapping descriptive contexts,
their segmentations are therefore obtained. In cases
where two descriptive contexts of event complexes
overlap with each other, if there exists such an
event whose removal results in non-overlapping
contexts, then we segment the contexts assuming
this event is not considered. Otherwise, we merge
the contexts into one segment. Through this event-
based text segmentation, on average we obtain 3.99
and 4.29 EVENTSEGs in the HiEve and IC corpus,

respectively.
We summarize the data statistics in Tab. 1.

5.2 Baselines and Evaluation Protocols

On IC dataset, we compare with two baseline ap-
proaches. Araki et al. (2014) propose a logistic
regression model along with a voting algorithm
for parent event detection. Wang et al. (2020)
use a data-driven model that incorporates hand-
crafted constraints with event temporal attributes
to extract event-event relations. On Hieve3, we
compare with a transformer-based language model
TACOLM (Zhou et al., 2020) that fine-tunes on a
temporal common sense corpora, and the method
proposed by Wang et al. (2020) which also serves
as the second baseline for IC.

We use the same evaluation metric on HiEve as
previous methods (Zhou et al., 2020), leaving 20%
of the documents out for testing4. The F1 scores
of PARENT-CHILD and CHILD-PARENT and the
micro-average of them are reported. In accordance
with HiEve, the IC dataset is also evaluated with F1

scores of membership relations instead of BLANC
(Araki et al., 2014), while the other settings remain
the same with previous works.

5.3 Experimental Setup

We fine-tune the pre-trained 1024 dimensional
RoBERTa (Liu et al., 2019) to obtain contextual
representations of event triggers in a supervised
way given labels for membership relations and
EVENTSEG. Additionally, we employ 18 dimen-
sional one-hot vectors for part-of-speech tags for
tokens in documents to include explicit syntactic
features in the model. For each MLP we set the
dimension to the average of the input and output
neurons, following Chen et al. (2018). The param-
eters of the model are optimized using AMSGrad
(Reddi et al., 2018), with the learning rate set to
10−6. The training process is limited to 40 epochs
since it is sufficient for convergence.

5.4 Results

We report the results for subevent detection on
two benchmark datasets, HiEve and IC, in Tab. 2.

3Despite carefully following the details described in Al-
dawsari and Finlayson (2019) and communicating with the
authors, we were not able to reproduce their results. Therefore,
we choose to compare with other methods.

4To make predictions on event complexes, we keep all neg-
ative NOREL instances in our experiments instead of strictly
following Zhou et al. (2020) and Wang et al. (2020) where
negative instances are down-sampled with a probability of 0.4.



F1 score
Corpus Model PC CP Avg.

IC
Araki et al. (2014) - - 0.262
Wang et al. (2020) 0.421 0.495 0.458
Our model 0.446 0.516 0.481

HiEve
Zhou et al. (2020) 0.485 0.494 0.489
Wang et al. (2020) 0.472 0.524 0.497
Our model 0.534 0.510 0.522

Table 2: Experimental results for subevent detection
on IC and HiEve corpus. PC, CP and Avg. denote
PARENT-CHILD, CHILD-PARENT and their micro-
average, respectively. F1 scores for PC and CP are
not reported in Araki et al. (2014).

Among the baseline methods, Wang et al. (2020)
has the best results in terms of F1 on both datasets.
They integrate event temporal relation extraction,
common sense knowledge and handcrafted logical
constraints into their approach. In contrast, our
proposed method does not require constraints in-
duced by domain experts, but still outperforms their
F1 score by 2.3 - 2.5%. We attribute this superi-
ority to the use of connections between subevent
relations and the linear discourse structure of seg-
ments. Thanks to the strong expressiveness of Rec-
tifier Networks, we utilize these connections via
the learning of linear constraints, thus incorporat-
ing incidental supervision signal from EVENTSEG.
Furthermore, the event pair representation in our
model is obtained from broader contexts than the lo-
cal sentence-level contexts for events in Wang et al.
(2020). The new representation not only contains
more information on events but naturally provides
necessary clues for determining whether there is a
break for EVENTSEG.

We further perform an ablation analysis to aid
the understanding of the model components and
report our findings in Tab. 3. Without any con-
straints, integrating EVENTSEG prediction as an
auxiliary task brings along an absolute gain of 0.2%
and 0.6% in F1 on HiEve and IC respectively over
the vanilla single-task model with RoBERTa fine-
tuning. This indicates that EVENTSEG information
is beneficial to the extraction of membership re-
lations. When membership constraints are added
via the regularization term into the loss function,
the model’s performance on subevent detection is
significantly improved by 2.1% in F1 on HiEve
dataset. Incorporating constraints involving two
tasks further enhances the model performance by
0.5% - 1.1%. This indicates that the global con-

sistency ensured within and across EVENTSEGs
is important for enhancing the comprehension for
subevent memberships.

5.5 Case Study for EVENTSEG Prediction

Here we provide an analysis of model performance
on the task of EVENTSEG prediction. Though
EVENTSEG prediction is somewhat different from
text segmentation in concept, we can use methods
for text segmentation as baselines for EVENTSEG

prediction. We train a recent BERT-based model
(Lukasik et al., 2020) for text segmentation based
on annotations for EVENTSEG in the HiEve and
IC corpora and compare our method with this base-
line. In Tab. 4 we show the performances of the
baseline model and ours for EVENTSEG prediction
in terms of F1 on HiEve and IC. Since our solution
for EVENTSEG prediction is essentially similar to
the cross-segment BERT model in terms of repre-
sentations of segments, our performance is on par
with the baseline model.

5.6 Analysis on Constraint Learning

We further provide an in-depth qualitative analysis
on different types of logical constraints captured
by the constraint learning.

5.6.1 Types of Learned Constraints
We expect that both task-specific constraints (mem-
bership relations only) in previous works (Glavaš
and Šnajder, 2014; Wang et al., 2020) and cross-
task constraints can be automatically captured in
our framework. Accordingly, we separately ana-
lyze these two constraints.

Task-specific Constraints. Since we are using
three-event subgraph for constraint learning, ap-
parently, transitivity constraints for membership
relations like

Y r
i,j + Y r

j,k − Y r
i,k ≤ 1,

r ∈ {PARENT-CHILD,CHILD-PARENT,COREF},

can be learned; whereas constraints that typically
involve two events, e.g., symmetry constraints for
membership relations like

Y r
i,j =Y

r̄
j,i,

r ∈ {PARENT-CHILD,CHILD-PARENT},

can also be learned by assigning the third event ek
to the same event as ei and treating the relation of
(ei, ek) as COREF.



HiEve IC
Model P R F1 P R F1

Single-task Training 43.9 56.6 49.4 44.5 46.9 45.8
Joint Training 45.7 54.2 49.6 39.9 56.5 46.4
+ Membership Constraints 55.6 48.5 51.7 50.1 45.8 47.0
+ Membership + EVENTSEG 51.9 53.6 52.2 39.6 64.0 48.1

Table 3: Ablation study results for subevent detection. The results on both datasets are the micro-average of
PARENT-CHILD and CHILD-PARENT in terms of precision, recall, and F1. “+ Membership Constraints” denotes
adding automatically learned constraints for membership relations upon the joint training model. The row of “+
Membership + EVENTSEG” shows the results of the complete model.

Model HiEve IC
Cross-segment BERT (Lukasik et al., 2020) 55.2 58.3
Our model 56.8 57.4

Table 4: EVENTSEG prediction performance in terms
of F1 on the HiEve and IC corpus.

Cross-task Constraints. Here we provide an anal-
ysis of cross-task constraints for both membership
relations and EVENTSEG information learned in
the model. We give an example constraint in the
form of linear inequality learned from HiEve

0.13x0 + 0.19x1 + 0.27x2 + 0.08x3 − 0.18x4

+0.09x5 + 0.13x6 + 0.25x7 + 0.04x8 − 0.18x9

+ · · ·+ 0.02x18 + 0.07x19 + · · ·+ 0.05 ≥ 0,

where x1 and x6 denote the variables for Y r
i,j = 1

and Y r
j,k = 1 (r = CHILD-PARENT) respectively,

and they both have positive coefficients. If we
look at expected labels for P(Xi,k), we can see
that x18 and x19 which denote the variables for
Y r
i,k = 1, Zi,k = 0 and Y r

i,k = 1, Zi,k = 1 have
coefficients of 0.02 and 0.07, respectively. The
two positive coefficients for x18 and x19 indicate
that (a) (ei, ek) is possible to have CHILD-PARENT

relation, and (b) the possibility of (ei, ek) being in
the same EVENTSEG is greater than two events
being in different EVENTSEGs.

5.6.2 Qualitative Analysis
We set K to 10 since we observe less number of
constraints will decrease the performance of learn-
ing accuracy while increasing K does not cause
noticeable influence. We optimize the parameters
using Adam with a learning rate of 0.001 and the
training process is limited to 1,000 epochs. We
show the performance of constraint learning in
Tab. 5. Since the constraints for membership re-
lations should be declarative hard constraints like
symmetry and transitivity constraints in §5.6.1, the
accuracy of constraint learning is equal or close to

Constraints HiEve IC
Membership 99.13 100.00
Membership + EVENTSEG 96.44 98.01

Table 5: Constraint learning performance in terms of
accuracy on test set. “Membership” denotes the con-
straints involving membership relations only, while
“Membership + EVENTSEG” denotes full constraints.

100%. Yet, those hard-to-articulate constraints that
incorporate EVENTSEG information are more diffi-
cult to learn, and thus the Rectifier Network has a
less satisfying performance in terms of accuracy on
the test set of HiEve and IC (96.44% and 98.01%).

6 Conclusion

In this work we propose an automatic and effi-
cient way of learning and enforcing constraints for
subevent detection. By noticing the connections be-
tween subevent dection and EVENTSEG, we adopt
EVENTSEG prediction as an auxiliary task which
provides effective incidental supervision signals.
Through learning and enforcing constraints that can
express hard-to-articulate constraints, the logical
rules for both tasks are captured to regularize the
model towards consistent inference. The proposed
approach outperforms SOTA data-driven methods
on benchmark datasets and provides comparable
results with recent text segmentation methods on
EVENTSEG prediction. This demonstrates the ef-
fectiveness of the framework on subevent detection
and the potential of solving other structured predic-
tions tasks in NLP.

Ethical Considerations

This work does not present any direct societal con-
sequence. The proposed method aims at supporting
high-quality extraction of event complexes from
documents with the awareness of discourse struc-
tures and automated constraint learning. We be-
lieve this study leads to intellectual merits of de-



veloping robust event-centric information extrac-
tion technologies. It also has broad impacts, since
constraints and dependencies can be broadly in-
vestigated for label structures in various natural
language classification tasks. The acquired eventu-
ally knowledge, on the other hand, can potentially
benefit various downstream NLU and NLG tasks.

For any information extraction methods, real-
world open source articles to extract information
from may include societal biases. Extracting event
complexes from articles with such biases may po-
tentially propagate the bias into acquired knowl-
edge representation. While not specifically ad-
dressed in this work, the ability to incorporate logi-
cal constraints and discourse consistency can be a
way to mitigate societal biases.
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