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Abstract

Learning from indirect supervision signals is important in real-world AI applica-
tions when, often, gold labels are missing or too costly. In this paper, we develop a
unified theoretical framework for multi-class classification when the supervision
is provided by a variable that contains nonzero mutual information with the gold
label. The nature of this problem is determined by (i) the transition probability
from the gold labels to the indirect supervision variables and (ii) the learner’s
prior knowledge about the transition. Our framework relaxes assumptions made
in the literature, and supports learning with unknown, non-invertible and instance-
dependent transitions. Our theory introduces a novel concept called separation,
which characterizes the learnability and generalization bounds. We also demon-
strate the application of our framework via concrete novel results in a variety of
learning scenarios such as learning with superset annotations and joint supervision
signals.

1 Introduction

We are interested in the problem of multiclass classification where direct and gold annotations for the
unlabeled instance are expensive or inaccessible, and instead the observation of a dependent variable
of the true label is used as supervision signal. Examples include learning from noisy annotations
[1, 21, 26], partial annotations [16, 22, 14] or feedback from an external world [15, 8].

To extract the information contained in a dependent variable, the learner should have certain prior
knowledge about the relation between the true label and the supervision signal, which can be expressed
in various forms. For example, in the noisy label problem, the noisy rate is assumed to be bounded by
a constant (such as the Massart noise [23, 17]). In the superset problem, the true label is commonly
assumed to be contained in (or consistent with) the superset annotation [16, 22].

As in [13, 29, 36], we model the aforementioned relation using a transition probability, which is the
distribution of the observable variable conditioned on the label and instance. The transition enables
the learner to induce a prediction of the observable via the prediction of the label, and construct loss
functions based on the induced prediction and the observable.

In this paper, instead of assuming that the learner fully knows the transition, we formalize the concept
of transition class, a set that contains all the candidate transitions, to describe more general forms of
prior information. Also, we define the concept of separation to quantify whether the information is
enough to distinguish different labels. With these concepts, we are able to study a variety of learning
scenarios with unknown, non-invertible and instance-dependent transitions in a unified way. We show
this under the realizability assumption (also called separable in linear classification), a commonly
made assumption (such as [2, 19, 22]) that assumes that the true classifier is in the hypothesis space.

Our goal is to develop a unified theoretical framework that can (i) provide learnability conditions
for general indirect supervision problems, (ii) describe what prior knowledge is needed about the
transition, and (iii) characterize the difficulty of learning with indirect supervision.
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Specifically, in this paper, our main contribution includes:

1. We decompose the learnability condition of a general indirect supervision problem into three
aspects: complexity, consistency and identifiability and provide a unified learning bound for the
problem (Theorem 4.2).

2. We propose a simple yet powerful concept called separation, which encodes the prior knowledge
about the transition using statistical distance between distributions over the annotation space and
uses it to characterize consistency and identifiability (Theorem 5.2).

3. We formalize two ways to achieve separation: total variation and joint supervision, and use them
to derive concrete novel results of practical learning problems of interest (Section 5.2 and 5.3).

All proofs of the theoretical results are presented in the supplementary material.

2 Related Work

Specific Indirect Supervision Problems. Our work is motivated by many previous studies on the
problem of learning in the absence of gold labels. Specially, the problem of classification under label
noise dates back to [1] and has been studied extensively over the past decades. Our work is mostly
related to (i) Theoretical analysis of PAC guarantees and consistency of loss functions, including
learning with bounded noise [23, 21, 2], and instance-dependent noise [30, 24, 12]. (ii) Algorithms
for learning from noisy labels, including using the inverse information of the transition [26, 36], and
inducing predictions of noisy label (which is more similar to our formulation) [9, 34].

Superset (also called partial label) problems, where the annotation is given as a subset of the
annotation space, arises in various forms in standard multiclass classification and structured prediction
[16, 14, 20, 27]. While it is possible to extend some approaches in the theory of noisy problems to
the superset case, the superset problem focuses on the case of a large and complex annotation space,
and some of the assumptions (such as “known transition") would be too strong in practice. On the
theoretical side, [16] defines ambiguity degree to characterize the learning bound. [22] provides an
insightful discussion of the PAC-learnability of the superset problem and proposes the concept of
induced hypothesis. This two papers motivate the approach pursued in this paper.

Frameworks for Indirect Supervision. Our supervision scheme is conceptually similar to [33, 29],
which model the label as a latent variable of the indirect supervision signal. However, the discussion
is restricted to the exponential family model. [10, 11] also propose a framework and algorithms to
supervise a structured learning problem with an indirect supervision, which is modeled as a binary
random variable associated with the gold label. Our work extends the binary indirect signal to a
multiclass signal and gives a theoretical treatment to this general learning problem. [13, 14] study
the problem of designing consistent loss functions for superset problems when the transition (aka
mixing) matrix is partially known. The discussion can be applied to a wider range of problems
such as noisy and semi-supervised learning. Our framework can also be compared to the multitask
learning framework proposed in [5, 6], which defines a notion called the F-relatedness to describe
the relation machine learning tasks through some deterministic functions within the instance space X .
As contrast, our framework studies the probabilistic transitions between different domains (from the
label space Y to the annotation space O) and our gold label Y is not observable, which is different
than a multitask setting. Our goal is mostly related to [36], which further develops the ideas from
[32, 14, 26] and develops a general framework of learning from data with reconstructible corruption,
using the inverse of a known, instance-independent transition matrix, to construct unbiased estimator
of the classification loss and derive generalization bounds. Our study aims to relax these assumption
on the transition matrix, especially when the label space and/or annotation space is large and the
estimation of the transition matrix could be difficult.

3 Preliminaries

We will use P(·) to denote probability, E[·] to denote expectation, 1{·} to denote the indicator
function and p(·) to denote the density function or more generally, the Radon–Nikodym derivative.

We denote the source variable as X , which takes value in an input space X and denote the target label
as Y , which takes value in a label space Y . We assume |Y| = c is finite and identify the elements in
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Y as {y1, y2, . . . , yc}. The goal is to learn a mapping h0 : X → Y . The hypothesis classH contains
candidate mappings h : X 7→ Y . The loss function for hypothesis h and sample (x, y) is denoted
as `(h(x), y). The risk of a hypothesis h ∈ H is defined as R(h) := EX,Y [`(h(x), y)] , where x is
sampled independently from a (unknown) distribution DX . We will focus on the realizable case, i.e.,
there is a classifier h0 ∈ H such that R(h) = 0. As in standard PAC-learning theory, we use the zero-
one loss for the gold sample (x, y) (although we may not observe y): `(h(x), y)) = 1 {h(x) 6= y}.
An annotation O (also called supervision signal) is a random variable that is not independent with
Y (or equivalently, O and Y has positive mutual information). The dependence between X and
O conditioned on Y is allowed but not required. O takes value in an annotation space denoted
as O. We also assume |O| = s < ∞ and identify the elements in O as {o1, o2, . . . , os}. For
convenience, when using yi and oi as subscripts, we regard yi, oi as its index i. For example, for any
indexed quantity ai, we will denote ayi

as ai. We denote the probability simplex of dimension s as:
DO = {w ∈ Rs :

∑s
i=1 wi = 1, wi ≥ 0}, which represents the set of all distributions over O.

Examples of annotation O: (i) In the noisy problem, the true label is replaced (due to mislabeling
or corruption) by another label with certain probabilities. Therefore, O = Y . (ii) In the superset
annotation problem, the learner observes o which is a subset of Y (hopefully but not necessarily o
contains the true label y). In this case, O = 2Y , the power set of Y .

In our framework, the learner predicts O using the graphical model shown in fig. 1. The conditional
distribution of O given X = x and Y = y can be identified by a mapping from x to a transition
matrix T0(x) := [P(O = oj |X = x, Y = yi)]ij . A key point of this paper is that in general we do
not assume that the learner (or learning algorithm) has full information of T0(x). Instead, we define
a transition hypothesis to be a candidate transition T (x) (also denoted as T for convenience) that
maps the instance x to a stochastic matrix of size c × s. For a fixed x, the ith row of a transition
T (x) represents a distribution over O, and is denoted as (T (x))i. The set of all candidate transition
hypotheses is called the transition class, denoted as T . We assume T0 ∈ T . When it is needed to
distinguish transition hypothesis from classifiers inH, we will call the latter one a base hypothesis.
With a transition hypothesis T , a base hypothesis ŷ = h(x) naturally induces a probability distribution
(T (x))h(x). We call it induced hypothesis, denoted as T ◦ h.

X Ŷ P̂(O|X, Ŷ )source
label

annotation
H TT

Figure 1: Supervision Model. The learner predicts the label Ŷ of X viaH. To supervise using the
observation of (X,O), the learner uses Ŷ to induce a probabilistic prediction over O via T .

One may penalize T ◦ h by evaluating its prediction of O on the dataset. More precisely, in our
framework, the learner will be penalized by provided with an annotation loss `O(ŷ, T, (x, o)) :
Y × T × X × O 7→ R. A natural example is the cross-entropy loss, which approximates the
conditional probability of O:

`O(h(x), T, (x, o)) := − log P(o|x, h(x), T ) (1)

The annotation risk is defined as RO(T ◦ h) := Ex,o[`O(h(x), T, (x, o))]. A training set S =

{(x(i), o(i))}mi=1 contains independent samples of X and O. The empirical annotation risk associated
with the training sample S is then defined as R̂O(h ◦ T |S) := 1

m

∑m
i=1 `O(h(x(i)), T, (x(i), o(i))).

In summary, the learner’s input includes: the spaces X ,Y,O, the hypothesis classH and transition
class T , the training set S = {x(i), o(i)}mi=1, and the loss functions `, `O.

A hypothesis class H is said to be (T )-learnable if there is a learning algorithm A : ∪∞m=1(X ×
O)m 7→ H such that: for any distribution DX over X and T0 ∈ T , when runningA on datasets S(m)

of m independent samples of (X,O), we have R(A(S(m))) converges to 0 in probability as m→∞.
In particular, we define the Empirical Risk Minimizer to be a mapping ERM : ∪∞m=1(X ×O)m 7→ H
such that ERM(S) ∈ argminh∈H,T∈T R̂O(h ◦ T |S), where the argmin operator only returns the
base hypothesis (although the empirical risk is minimized over both base and transition hypotheses).
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4 General Learnability Conditions

In this section, we present theorem 4.2 that decomposes the learnability of a general indirect supervi-
sion problem into three aspects: complexity, consistency and identifiability. After that, we provide
proposition 4.3 to help verifying the complexity condition. The other two conditions will be further
studied in the next section.

We assume `O takes value in an interval [0, b] for some constant b > 0. To characterize the learnability,
a key step is to describe the complexity of the function class

`O ◦ T ◦ H
def
== {(x, o) 7→ `O(T, (x, h(x), o)) : h ∈ H, T ∈ T }

To do so, we use the following generalized version of VC-dimension proposed in [3]. It will be shown
in proposition 4.3 that it enables us to bound the Rademacher complexity [4] of `O ◦ T ◦ H (which
provides the flexibility to study arbitrary loss function) via the standard VC dimension or Natarajan
dimension [25] (also see Chapter 29 of [7] for an introduction) of H (which is in general easier to
compute than the Rademacher complexity).
Definition 4.1. We adopt the following definitions from [3]:

1. (shattering and VC-class) A class C of subsets of a set Z is said to shatter a finite subset Z ⊆ Z if

{C ∩ Z : C ∈ C} = 2Z

Moreover, C is called a VC-class with dimension no larger than k if there exists an integer k such
that C cannot shatter any subset of Z with more than k elements.

2. (weak VC-major) The function class `O ◦ T ◦ H is said to be weak VC-major with dimension d if
d is the smallest integer such that for all u ∈ R, the set family

Cu
def
== {{(x, o) : `O(h(x), T, (x, o)) > u} : h ∈ H, T ∈ T }

is a VC-class of X ×O with dimension no larger than d.

Now we are able to state the main result of this section:
Theorem 4.2. If the following conditions are satisfied

[C1] (Complexity) `O ◦ T ◦ H is weak VC-major with dimension d <∞.

[C2] (Consistency) h0 ∈ argmin
h∈H,T∈T

2RO(T ◦ h).

[C3] (Identifiability) η def
== inf

h∈H,T∈T :R(h)>0

RO(T ◦ h)− infT∈T RO(T ◦ h0)

R(h)
> 0.

Then,H is T -learnable. That is, for any δ ∈ (0, 1), with probability of at least 1− δ, we have:

R(ERM(S(m))) ≤ 2b

η

√2Γm(d)

m
+

4Γm(d)

m
+

√
2 log(4/δ)

m

 (2)

where Γm(d) is defined in [3] by

Γm(d)
def
== log

2

min{d,m}∑
j=0

(
m

j

) = d logm(1 + o(1)) as m→∞

This implies R(ERM(S(m)))→ 0 in probability as m→∞.

Bound (2) suggests that the difficulty of the learning can be characterized by (i) the identifiability
level η, which mainly depends on the nature of the indirect supervision signal and the learner’s prior
information of the transition hypothesis, which will be further studied in the next section. (ii) the
weak VC-major d of `O ◦ T ◦ H, which depends on the modeling choice. We present the following
results that bound d by the Natarajan dimension ofH and the weak-VC major dimension of the class:

`O ◦ T
def
== {(x, ŷ, o) 7→ `O(ŷ, T, (x, o)) : T ∈ T }

2This argmin operator only returns the base hypothesis.
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Proposition 4.3. Suppose the Natarajan dimension of H is dH < ∞ and the weak-VC major
dimension of `O ◦ T is dT < ∞. Then, the weak-VC major dimension of `O ◦ T ◦ H, d, can be
bounded by:

d ≤ 2 ((dH + dT ) log(6(dH + dT )) + 2dH log c) where c = |Y|

The reason that we do not study the complexity of T separately is that the annotation loss may be
independent of T (i.e., `O(ŷ, T1, (x, o)) = `O(ŷ, T2, (x, o)) for any T1, T2 ∈ T ). See proposition
5.5 for an example of such a loss.

To show applications of proposition 4.3, we study the following cases:
Example 4.4. In the following cases, we first compute/bound dT , then d can be bounded by dH:

1. When the true transition is known or when the annotation loss function only depends on (ŷ, o),
we have dT = 0; hence d ≤ 2dH(log(6dH) + 2 log c). This is conceptually similar to the Lemma
3.4 in [22], which bounds the VC-dimension of the induced hypothesis class for the noise-free
superset problem.

2. When all transition hypotheses in T are instance-independent and the annotation loss only
depends on (T, ŷ, o) (e.g., the cross-entropy loss defined in (1)), then dT can be trivially bounded
by dT ≤ cs = |Y × O|; hence d ≤ 2((dH + cs) log(6(dH + cs)) + 2dH log c).

3. Suppose the instance is embedded in a vector space X = Rp. Consider the problem (Example
5.1.3 in [24]) of binary classification with a uniform noise rate which is modeled as a Logistic
regression: P(O 6= y|x, y) = S(wTx) where S is the sigmoid function and w is the parameter.
Then the cross-entropy loss becomes: −1{o 6= ŷ} log(S(wTx))− 1{o = ŷ} log(1− S(wTx)).
We have dT ≤ 2p+ 2. See supplementary material for a proof.

5 Separation

Throughout this section we assume [C1] of Theorem 4.2 holds. We will first propose a concept called
separation, which provides an intuitive way to understand the learnability and helps to verify [C2]
and [C3]; then we study two ways to ensure separation, and their application in real problems.

5.1 Learning by Separation

Without any prior knowledge, the transition class will contain all possible transitions. In this case,
learnability cannot be ensured since a wrong label ŷ can also induce a good prediction of O via an
incorrect transition hypothesis. Hence, certain kind of prior knowledge is needed to restrict the range
of T . To formalize this idea, we first introduce an extension of the KL-divergence.
Definition 5.1 (KL-divergence between Two Sets of Distributions). Given two sets of distributions
D1 and D2, we define the KL-divergence between them as:

KL(D1 ‖ D2)
def
== inf

D1∈D1,D2∈D2

KL(D1 ‖ D2)

Now we are able to state the main result of this section:
Theorem 5.2 (Separation). For all x ∈ X , we denote the induced distribution families by label yi as
Di(x)

def
== {(T (x))i : T ∈ T } ⊆ DO (recall that (T (x))i is the ith row of T (x)), and the set of all

possible predictions of the label asH(x)
def
== {h(x) : h ∈ H} ⊆ Y . Suppose

γ
def
== inf

(x,i,j):p(x,yi)>0,j 6=i,yj∈H(x)
KL(Di(x) ‖ Dj(x)) > 0 (3)

ThenH is learnable from the observations of (X,O) with η ≥ γ > 0 via the ERM of cross-entropy
loss (1). We call γ the separation degree.

Moreover, if (3) is not satisfied, then there exists a sequence of transitions {T (k)}k (T (k) ∈ T ) and
distributions {D(k)

X }k over X such that limk η
(k) = 0 , where η(k) is defined the same as η in [C3],

with the expectation (in the definition of the risk functions) being taken according to T (k) and D(k)
X .
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(a) (b)

Figure 2: (a) Illustration of separation. A (predicted) label yi will induce a distribution family over
O called Di(x). Different families are separated by a minimal “distance” γ. (b) Illustration of joint
supervision. By adding new supervision signals, separation of particular pairs of labels is preserved.

Theorem 5.2 is important in two ways: (i) It provides a way to characterize the prior knowledge of the
learner about the transition using the KL-divergence and reveals its connection with the identifiability
of labels. (ii) The “moreove” result shows if separation is not satisfied, then the induced distribution
of O by different labels can be arbitrarily close, and hence the learning of Y from O can be arbitrarily
difficult. An illustration of separation is shown in fig. 2 (a). Yet, a drawback of the cross-entropy loss
used in theorem 5.2 is that it can be unbounded when there is a zero element in the transition matrix.
This problem will be partly solved in proposition 5.5 by introducing a different annotation loss.

As the simplest application, we introduce the case where the transition is fully known to the learner.
In this case, the induced distribution families Di(x) reduce to some points in the probability simplex.
Example 5.3 (Full Information of the Transition). Suppose the transition T (x) is known to the
learner, i.e., T = {T0}, by Theorem 5.2, we knowH is learnable if

inf
(x,i,j):p(x)>0, i 6=j,yj∈H(x)

KL((T0(x))i ‖ (T0(x))j) > 0

Notice that this is a weaker assumption than the invertibility assumption of T0(x), which is used in
[36] (called reconstructible corruption). This is possible because we assume a deterministic rule
for X → Y but a randomized process for X,Y → O, hence the latter one could contain more
information and is capable of encoding the deterministic rule even when O is smaller than Y . For a
concrete example, consider the following constant transition matrix:

T =

[
0.1 0.9
0.5 0.5
0.9 0.1

]
In this case, |Y| = 3 > |O| = 2 and therefore T is not right-invertible. However, since the distribution
of O induced by each labels Y is known to learner, and this distribution could be estimated from the
observation of O, the learner is able to recover the true label from the indirect supervision.

5.2 Separation by Total Variation

In this subsection, we introduce a way to guarantee separation by controlling the KL-divergence
using total variation distance, which is done via the well-known Pinsker’s inequality [35]:
Lemma 5.4 (Pinsker’s inequality, proposed in [28], see [35] for an introduction). If P and Q are two
probability distributions on the same measurable space (Ω,F), then

‖P −Q‖TV ≤
√

KL(P ‖ Q)/2

where ‖ · ‖TV is the total variance distance: ‖P −Q‖TV
def
== supA∈F ‖P (A)−Q(A)‖. Moreover, if

Ω is countable (in our case, Ω = O is finite and hence, then the total variance distance is equivalent
to the L1-distance in the sense that ‖P −Q‖TV = 1

2‖P −Q‖1).

This lemma suggests we can ensure separation by controlling the L1-distance. To show a concrete
example, we introduce the concentration condition. The intuition behind it is that the information of
different labels in Y is concentrated in relatively different sets of annotations. Formally:
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Proposition 5.5 (Concentration). A sufficient condition for (3) is that for every 1 ≤ i ≤ c, there
exists a set Si ⊂ O (we call them concentration sets) such that

γC
def
== inf

(i,j,x,T ):T∈T ,p(x)>0,j 6=i
PT (O ∈ Si|x, yi)−PT (O ∈ Sj |x, yi) > 0 (4)

where PT (·) is the conditional probability defined by transition T . Under this condition, we can
relate identifiability and separation degree by η ≥ γ ≥ 2γ2C . Since a condition imposed on all T ∈ T
can be regarded as an assumption imposed on the true transition T0, condition (4) can be rewritten as:

γC = inf
(i,j,x):p(x,yi)>0,i6=j

P(O ∈ Si|x, yi)−P(O ∈ Sj |x, yi) > 0 (5)

Also, in this case, one can ensure learnability by the ERM which minimizes the following transition-
independent annotation loss

`O(h(x), T, (x, o))
def
== 1{o /∈ Sh(x)} (6)

For this annotation loss, we can bound the identifiability level by η ≥ γC .
Example 5.6 (Superset with Noise). For superset with noise problem where O is a random subset of
Y (i.e., O = 2Y ), let Si = {o : yi ∈ o} ⊂ O, the conditional (5) becomes

γC = inf
p(x,yi)>0,i6=j

P(yi ∈ O|x, yi)−P(yj ∈ O|x, yi) > 0 (7)

This generalizes the small ambiguity degree condition proposed in [16, 22], which assumes P(yi ∈
O|x, yi) = 1 (i.e., the gold label always lies in the superset). [16, 22] also proposes a superset loss,
which is the special case of (6). We extend the discussion to allow the presence of noise.

The following example can be regarded as a special case of Example 5.6.
Example 5.7 (Label Noise). For noisy problem where O = Y , let Si = {yi}, condition (4) becomes

γC = inf
p(x,yi)>0,i6=j

P(O = yi|x, yi)−P(O = yj |x, yi) > 0 (8)

This generalizes the Massart noise condition [23] of binary classification, which assumes the noise
rate is lower bounded by 1/2 minus a constant. We extend the discussion to multiclass case.

Also, notice that (6) is simply the zero-one loss forO, which means learnability can still be guaranteed
if one ignores the noisy process and learns O as clean label. This partly explains the empirical study
in [31], which tests the robustness of neural networks (without additional denoising process) to noise
in annotations. [31] proposes a parameter called δ-degree which is similar to γC and observes that
the performance of the network decreases as δ decreases, as our learning bound (2) suggests.

We can further generalize proposition 5.5 by encoding functional prior information of the transition:
Proposition 5.8 (Evidence). A sufficient condition for (3) is that there exists Lipschitz (with respect
to the L1-norm of vectors) functions Φij : Rc → R, 1 ≤ i 6= j ≤ c (we call them evidence) with
Lipschitz constants Lij such that

γij
def
== inf

p(x,yi)>0,yj∈H(x),Di∈Di(x),Dj∈Dj(x)
Φij (Di)− Φij (Dj) > 0 (9)

In this case, the separation degree can be bounded by γ ≥ 1/2 mini6=j (γij/Lij)
2.

In particular, the dot product with a fixed vector Φu(t) = 〈u, t〉 (〈·, ·〉 represents the dot product)
is Lipschitz with Lipschitz constant Lu ≤ ‖u‖∞. As an example, given sets Si ⊂ O (1 ≤ i ≤ c),
letting Φij(·) = 〈

∑
k:ok∈Si

êk−
∑

k:ok∈Sj
êk, ·〉 recovers proposition 5.5, where êk is the kth standard

unit basis vector of Rc. Another example will be given in Example 5.13.

5.3 Separation by Joint Supervision

When a weak supervision signal cannot ensure learnability individually, it needs to be used with other
forms of annotations together to supervise the learning. Our goal in this subsection is to provide a
way to describe the effect of using multiple sources of annotations jointly. We will show that joint
supervision can improve (Example 5.13), preserve (Proposition 5.10) or even damage (Remark 5.11)
the separation.
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First, we formulate the joint supervision problem. For simplicity, we only consider the case that
we have two sources of annotations O1, O2, and the general case can be discussed in a similar way.
For each Ok, k ∈ {1, 2}, denote its annotation space as Ok, its transition as Tk(x) and its transition
classes as Tk. We focus on the scenario that for each instance x, there is only one type of annotation.
Then the joint annotation space is O = O1 ∪ O2. We model the annotation type 1{O = Ok} as a
random variable that is independent with X and all the Ok, and the probability P(O = O1) = λ is
known to the learner. Then the joint annotation is defined as: O = 1{O = O1}O1 + 1{O = O2}O2.

Next, we quantify the supervision power of an annotation if separation is not guaranteed via a local
version of the separation (degree):
Definition 5.9 (Pairwise Separation). Define the separation degree of yi to yj as

γi→j
def
== inf

x:p(x,yi)>0,yj∈H(x)
KL(Di(x) ‖ Dj(x)) (10)

We say the labels yi is separated from a yj if γi→j > 0. The separation degree γ = mini,j γi→j .

This definition gives a probabilistic formulation of the intuition that a (weak) supervision signal can
help distinguish certain pairs of labels. For example, a noisy annotation for multiclass classification
may break the condition (8) due to a large noise rate for certain labels, but it can still provide
information to separate other labels if (8) is satisfied for any other pairs of (i, j).

When there are no additional constraints on the joint transition, one can construct the joint transition
simply by combining the candidate transitions in T1, T2. For example, the induced distribution family
by yi of joint supervision can be naturally constructed by

Di(x) = {λD1 + (1− λ)D2 : D1 ∈ Di1(x), D2 ∈ Di2(x)} (11)

where Di1 and Di2 are the induced distribution family by yi of O1 and O2. In this case, we present
the following result to characterize the learnability under joint supervision O:
Proposition 5.10 (No Free Separation). Suppose the separation degrees of yi to yj of O1 and O2

are γi→j1 and γi→j2 respectively. Then, if the joint transition class is constructed as (11), then the
separation degrees of yi to yj for the joint supervision satisfies:

γi→j ≤ λγi→j1 + (1− λ)γi→j2

Also, if O1 ∩ O2 = ∅, then the two equality holds. As a consequence, a necessary condition of that
yi is separated from yj by the joint signal O is that yi must be separated from yj by one of O1, O2.
Remark 5.11 (DefiningO1 ∩O2). The conditionO1 ∩O2 = ∅ means that the learner distinguishes
different annotations. For example, in a crowdsourcing setting, we have two annotators and each
provides a noisy annotation, thenO1,O2 = Y . But as long as the learner distinguishes the annotations
of the two annotators, we can nevertheless write O1 ∩ O2 = ∅. Without this condition, even if both
γi→j1, γi→j2 > 0 , we can still have γi→j = 0. See the supplementary material for an example. This
idea has also been explored in the empirical study of [18], which observes that in a crowdsourcing
setting, the model performance improves if annotator identifiers are input as features. However, one
should note that the tradeoff is the model complexity: distinguishing different annotations will in
general require more parameters to model the joint transition.
Remark 5.12. Proposition 5.10 shows that without constraints, the joint supervision does not create
new separation, however, it can preserve the separation between labels by the original supervision
signals. So in this view, the weak supervision signal can be regarded as a “building block” for the
(global) separation (3) by contributing pairwise separation (10). An illustration is shown in fig. 2 (b).

If there does exist constraints about the two transition classes, Proposition 5.10 no longer holds and
joint supervision may create new separation. To illustrate, consider the following artificial example:
Example 5.13 (Learning from Difference). Given a binary classification problem where Y = {±1}.
Suppose we have two annotators O1 and O2 and each provides a noisy annotation with an unknown,
uniform, instance-independent noise, i.e., η1

def
== P(O1 6= y|x, y = −1) = P(O1 6= y|x, y = +1),

η2
def
== P(O2 6= y|x, y = −1) = P(O2 6= y|x, y = +1), where η1, η2 are constants independent of

x. Then, the joint transition is modeled as:

T =

[
λ(1− η1) λη1 (1− λ)(1− η2) (1− λ)η2
λη1 λ(1− η1) (1− λ)η2 (1− λ)(1− η2)

]
=

[
D1

D2

]
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Now, suppose it is known that the first annotator provides a better quality of annotation, i.e., there
is a γ ∈ R (known to the learner) such that η1 − η2 ≤ γ < 0. To apply proposition 5.8, define the
evidence Φ(·) = 〈ê1/λ− ê3/(1− λ), ·〉, then for any D1, D2, we have Φ(D1) = η2 − η1 ≥ γ and
Φ(D2) = η1 − η2 ≤ −γ. So by proposition 5.8, the original classification hypothesis is learnable.
Notice that without joint supervision, separation is not guaranteed since we have no restriction on η1
or η2 individually.

This example shows the necessity to model possible constraints between different supervision sources,
which help to reduce the size of the joint transition class and may improve the separation degree.

6 Conclusion and Future Work

In this paper, we provide a unified framework for analyzing the learnability of multiclass classification
with indirect supervision. Our theory builds upon two key components: (i) The construction of
the induced hypothesis class and its complexity analysis, which allows us to indirectly supervise
the learning by minimizing the annotation risk. (ii) A formal description of the learner’s prior
knowledge about the transition and its encoding in the learning condition, which allows us to bound
the classification error by the annotation risk.

The notion of separation depends on the annotation loss being used. The KL-divergence may be
replaced by other statistical distances, as long as the distance can induce a loss function. However,
the idea behind separation is invariant: the prior knowledge needs to be strong enough to distinguish
different labels via the observables. Moreover, theorem 5.2 shows that separation is a sufficient and
almost necessary condition, and the later examples show separation is also practically useful and can
easily produce learnability conditions. Therefore, we believe the the concepts introduced are general,
and that our analysis tools can be applied in many other supervision scenarios.

One limitation of our work is that the definition of learnability requires us to handle every possible
DX , and the consequence is that we need to ensure separation at every x ∈ X . In future work,
we may try to relax the learnability conditions by encoding prior knowledge of DX , which can be
obtained from unlabeled datasets. Another direction to explore is to extend the discussion to the
agnostic case as well as the case where T0 /∈ T . Also, in a directly supervised learning setting,
classical realizable PAC learning could achieve a convergence rate ofO(log(1/δ)/m), which is better
than the rate of O(

√
log(1/δ)/m) we derived for a general indirect supervision problem. It is worth

exploring whether and how our bounds could be improved for more kinds of supervision signals
(other than the gold label).

Broader Impact

Our work mostly focuses on theoretical aspects of learning, however, it provides better understanding
and thus can suggest new machine learning scenarios and algorithms for learning from indirect
observations; this addresses a key challenge to machine learning today, and will help machine
learning researchers to reduce the cost of and need for labeled data. Our theory may have positive
and negative impact on the privacy protection of sensitive data. On one hand, the theory suggests
that one can alter the forms of data (via a probabilistic transition) to ensure privacy while keeping its
usefulness (learnability). On the other hand, it might be possible for an attacker to recover sensitive
information about the data indirectly through a related dataset.
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