
EACL’26 Findings

Program-of-Thought Reveals LLM Abstraction Ceilings

Mike Zhou1 Fenil Bardoliya2 Vivek Gupta2 Dan Roth1

1University of Pennsylvania 2Arizona State University
{mikezhou,danroth}@seas.upenn.edu {fbardoli,vgupt140}@asu.edu

Abstract

Large language models (LLMs) are often
claimed to exhibit reasoning ability when super-
vised with chain-of-thought (CoT) traces. True
reasoning, however, requires invariance: iso-
morphic problems should yield identical solu-
tions regardless of superficial variation. We test
this property by evaluating base and reasoning-
optimized models—including LLaMA, Mistral,
Qwen, GPT-OSS, and Deepseek—on isomor-
phic variants from GSM8K and MATH. All
models exhibit substantial accuracy drops un-
der perturbation. To assess whether training
can induce invariance, we fine-tune models
with Program-of-Thought (PoT) supervision
under concrete and masked formulations. PoT
fine-tuning increases behavioral cross-variant
consistency but does not significantly reduce
the accuracy gap, and these gains fail to trans-
fer across prompting formats and domains. Our
central finding is that models converge toward
stable but systematically incorrect behaviors:
consistency without correctness. This dissocia-
tion suggests that current reasoning supervision
teaches models to reproduce solution templates
rather than to abstract mathematical structure.

1 Introduction

Many mathematical word problems admit multiple
surface forms that are logically isomorphic: the
wording, numeric instantiation, or order of presen-
tation may change, yet the underlying computa-
tional structure remains invariant. A system that
truly abstracts reasoning should solve all members
of an isomorphic family with equal reliability. In
program-mediated reasoning, this means the solu-
tion procedure should be identical, aside from vari-
able naming, regardless of surface perturbations.

Large language models (LLMs) achieve strong
performance on mathematical benchmarks like
GSM8K and MATH (Cobbe et al., 2021;
Hendrycks et al., 2021), particularly with Chain-
of-Thought (CoT) prompting (Wei et al., 2022).

However, this performance degrades sharply un-
der numeric perturbations (Mirzadeh et al., 2025;
Yu et al., 2024). These failures remain ambigu-
ous: when models produce different CoT traces
for isomorphic problems, we cannot tell, for ex-
ample, whether they miss structural equivalence or
make arithmetic errors. Program-of-Thought (PoT)
prompting (Chen et al., 2023) resolves this ambigu-
ity, as models should generate identical programs
for isomorphic variants, making divergence a clear
failure of abstraction rather than computation.

To operationalize1 this separation, we employ
PoT prompting on perturbation datasets like Rea-
sonAgain (Yu et al., 2024), which pairs isomorphic
variants with canonical programs. We ask: can tar-
geted training induce the invariances that genuine
reasoning requires? We find that it cannot. PoT
fine-tuning reduces variance across problem classes
without significantly reducing accuracy drops. This
dissociation between consistency and correctness
is our primary contribution.

We first demonstrate that, under an all-variants
accuracy (AVA) metric, current models suffer sharp
performance drops (∆AVA). We then test whether
PoT-based fine-tuning can reduce this brittleness.
We train models under two regimes: (i) Con-
crete, using natural language paired with exe-
cutable programs, and (ii) Masked, replacing num-
bers and entities with typed variables. PoT su-
pervision increases consistency across isomorphic
variants, yet the perturbation gap (∆AVA) remains
largely unchanged. These gains also fail to transfer
across prompting formats (PoT to CoT) or domains
(GSM8K to MATH). Under stricter analysis, PoT
training consolidates errors rather than correcting
them—models learn to fail consistently, demon-
strating that structured supervision can induce pro-
cedural stability without mathematical abstraction.

1code is available at: https://cogcomp.seas.upenn.
edu/page/publication_view/1098
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2 Related Work

Reasoning Decomposition and Program-Based
Diagnostics. Prompting methods such as CoT, self-
consistency, least-to-most decomposition, and PoT
improve performance on mathematical reasoning
benchmarks by encouraging intermediate structure
(Wei et al., 2022; Wang et al., 2023; Zhou et al.,
2023; Chen et al., 2023). PoT differs by repre-
senting reasoning as executable programs, sepa-
rating symbolic structure from arithmetic execu-
tion. Program-Aided Language Models have been
shown to improve accuracy using Python programs
as intermediate solutions (Gao et al., 2023).

Robustness Under Distribution Shift. Diagnostic
challenge sets suggest that strong benchmark per-
formance may however rely on shallow heuristics;
GSM-Symbolic and ReasonAgain evaluate robust-
ness via controlled numerical and symbolic pertur-
bations (Mirzadeh et al., 2025; Yu et al., 2024), ob-
serving substantial performance drops under CoT
despite strong in-distribution accuracy. However,
their evaluation conflates multiple failure modes,
like arithmetic mistakes and linguistic brittleness.
Recent work (Dziri et al., 2023; Shojaee et al.,
2025) also reveals sharp performance degradation
in LLM reasoning by studying synthetic puzzle-
like tasks with controlled compositional structure.
While they demonstrate brittleness under carefully
constructed tasks, they do not isolate failures of
abstract reasoning from failures of execution or
multi-step state tracking.

Present Work. In contrast to prior work, we isolate
reasoning failures from execution/computational
errors by leveraging PoT’s executable structure.
PoT renders model reasoning as an explicit ex-
ecutable program, enabling failures attributable
to abstract reasoning to be examined separately
from other confounding sources, such as compu-
tational/execution errors, linguistic variation, or
state-tracking limitations. The framework consid-
ers isomorphic problem families that differ only in
numeric instantiations while requiring the same ab-
stract computation. Robustness is characterized by
whether these perturbations induce failures despite
preserving the required reasoning. This compara-
tive evaluation exposes a failure mode overlooked
by prior work: models may achieve high accuracy
on individual instances while remaining brittle to
perturbations that should not affect the correctness
of the underlying output.

3 Experimental Setup

Data and Perturbations. We evaluate all mod-
els on GSM8K and MATH (Cobbe et al., 2021;
Hendrycks et al., 2021) using ReasonAgain’s (Yu
et al., 2024) perturbations that alter surface num-
bers while preserving program structure: 6,701
perturbed + 1,121 original GSM8K items; 1,513
perturbed + 268 original MATH items.

Models. We evaluate LLaMA-3.1-8B-Instruct,
Mistral-7B-Instruct, Llama-4 Maverick-17b-128e-
Instruct (Grattafiori et al., 2024; Jiang et al., 2023;
Meta AI, 2025), and 3 reasoning models: Qwen-3-
8B-Instruct, GPT-OSS-120B, and Deepseek-V3.2-
Exp (Yang et al., 2025; Agarwal et al., 2025;
DeepSeek-AI et al., 2025). LLaMA-3.1-8B and
Mistral-7B are additionally fine-tuned.

Supervision Regimes. We fine-tune with LoRA
(Hu et al., 2021) on GSM8K Python traces
with two regimes: (i) PoT–Concrete: original
problems with gold programs; (ii) PoT–Masked:
names/numbers replaced by typed variables (e.g.,
alice_books:int). Settings: 3 epochs, rank-16,
α = 32, LR = 10−5, effective batch = 64.

Prompting Modes. All base models are evaluated
zero-shot with CoT (Wei et al., 2022), CoT+Self-
Consistency (SC) (Wang et al., 2023), and PoT
(Chen et al., 2023). Non-reasoning models are
also evaluated with Direct mode, while reasoning
models default to CoT. For fine-tuned models we
restrict evaluation to PoT and CoT. Code in all PoT
settings is extracted using lightweight <python>
tags with sandboxed execution. All PoT prompts
include a brief one-shot example that specifies the
correct extraction template.

Decoding. Fine-tuned models use greedy decod-
ing (temp = 0) for deterministic stability metrics
(shared/new/recovered errors). Base models follow
standard practice: 5 samples (temp = 0.7, top-p =
0.9) with accuracy averaged, except SC uses 10
samples with majority voting. We use a maximum
generation length of 512 tokens for non-reasoning
models and 2048 tokens for reasoning models.

Metrics and Normalization. We report exact-
match accuracy (after deterministic answer extrac-
tion) and stability metrics over original–perturbed
families of isomorphic variants. We define an
all-variants accuracy (AVA) that measures mean
accuracy across all perturbed variants (AVA =
1
N

∑N
i=1 ai, ai ∈ {0, 1}) and a distance ∆AVA
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(a) Non-Reasoning Models

GSM8k MATH
Prompt Orig. AVA ∆AVA Orig. AVA ∆AVA

Llama-3.1-8B
Direct 82.60 62.54 20.06 77.23 47.72 29.51
CoT 91.92 72.50 19.47 84.78 52.54 32.24
CoT+SC 91.97 72.47 19.50 85.07 52.54 32.53
PoT 88.93 75.72 13.21 81.94 59.35 22.59

Mistral-7B
Direct 51.76 39.30 12.46 25.76 19.37 6.39
CoT 61.91 44.59 17.32 32.91 20.51 12.40
CoT+SC 61.91 44.61 17.30 32.84 20.51 12.33
PoT 57.57 49.19 8.38 31.34 24.42 6.92

Llama-4-Maverick-17B-128e
Direct 98.93 80.98 17.95 99.78 71.75 28.03
CoT 99.03 81.12 17.88 99.93 71.49 28.44
CoT+SC 99.16 82.95 16.21 100.00 71.70 28.30
PoT 97.04 83.53 13.51 94.40 70.75 23.65

(b) Reasoning Models

GSM8k MATH
Prompt Orig. AVA ∆AVA Orig. AVA ∆AVA

Qwen-3-8B

CoT 93.67 69.02 24.65 89.78 45.15 44.63
CoT+SC 94.02 69.53 24.49 90.30 45.47 44.83
PoT 69.99 55.91 14.08 47.46 36.61 10.85

GPT-OSS-120B

CoT 97.29 72.56 24.73 99.93 71.76 28.17
CoT+SC 97.50 72.98 24.52 100.00 72.18 27.82
PoT 94.59 80.10 14.49 93.66 64.29 29.37

DeepSeek-V3.2-Exp

CoT 97.00 73.83 23.17 99.55 67.63 31.92
CoT+SC 97.77 73.86 23.91 100.00 69.47 30.53
PoT 96.81 77.04 19.77 96.34 66.53 29.81

Table 1: Model accuracy on GSM8k dataset under PoT prompting after Fine Tuning. Orig. = accuracy on original questions;
AVA = all-variants accuracy; ∆AVA = accuracy drop. Accuracies are given as percentages.

which denotes the original-AVA accuracy gap,
thereby measuring robustness. We decompose out-
comes into: new errors (original correct, any pertur-
bation wrong), shared errors (original wrong, any
perturbed wrong), and recovered errors (original
wrong, any perturbation correct).

4 Results and Analysis

4.1 Aggregate Error Report for Base Models
Across all baselines, the gap between per-instance
and all-variants accuracy ∆AVA is substantial, high-
lighting widespread instability under surface pertur-
bations. On GSM8K, non-reasoning models lose
roughly 16–19%, while reasoning models drop by
18–24% under CoT evaluation—indicating that ex-
plicit reasoning traces do not necessarily confer
greater robustness. The gap widens further on the
MATH dataset, where ∆AVA often exceeds 20%.
Although prompting on PoT slightly reduces ∆AVA
in all but two cases, the gap remains sizable, sug-
gesting that PoT prompting improves robustness
but that current models still lack the deeper gener-
alization required for stable reasoning.

Among programs that executed successfully, we
identify two dominant error categories: logical er-
rors, arising from skipped steps and faulty interme-
diate reasoning or control flow; and rounding or
discrete-threshold errors (e.g., "minimum number
of books"). In both cases, the generated code is
syntactically valid and executes without error, yet
produces wrong answers. Overall, these results sug-
gest that PoT prompting improves robustness but
current models remain brittle under perturbation.

4.2 Fine-tuning Results

The base model results raise a natural question: can
targeted training induce the invariance that genuine
reasoning requires? We investigate this by fine-
tuning on PoT traces under two regimes (Concrete
and Masked) and evaluate along three dimensions:
whether consistency improves within distribution,
whether gains transfer across tasks/prompting for-
mats, and whether consistency brings correctness.
Our findings reveal a dissociation. PoT supervision
increases behavioral consistency, causing models
to succeed and fail more uniformly across isomor-
phic variants, but does not significantly reduce the
accuracy gap. The gains are representation-bound
and do not transfer to Chain-of-Thought evalua-
tion or to out-of-domain problems. Most notably,
models learn to fail the same way.

Operational-level Semantics. At the operator
frontier, even after fine-tuning on executable traces
that explicitly contain rounding (e.g., minimum
number of books = ceil) and fencepost logic, mod-
els still mishandle these discrete thresholds at test
time. Roughly 6–9% of GSM8K is rounding-
sensitive and continues to fail (Tab. 2), indicating
that PoT training imparts format more readily than
calibrated semantics. We therefore report both Non-
Rounded and Auto-Round accuracies, and report
error classification (as defined in metrics in § 3) on
responses within the Auto-Round category (though
results in the Non-Rounded setting can be found
in Appendix A). On MATH, Auto-Round yields
negligible gains, likely because many problems
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Non-Rounded Auto-Round
FineTune Orig. AVA ∆AVA AVA Round Err.

GSM8k
Llama-3.1-8B

Masked 88.22 74.57 13.65 83.05 8.48
Concrete 88.22 74.55 13.67 83.01 8.46
Base 83.59 69.15 14.44 76.03 6.88

Mistral-7B
Masked 60.93 53.69 7.23 59.76 6.07
Concrete 61.02 53.66 7.36 59.73 6.07
Base 58.16 49.64 8.52 55.30 5.66

MATH
Llama-3.1-8B

Masked 81.34 59.86 21.48 60.25 0.39
Concrete 79.85 60.57 19.28 61.05 0.48
Base 82.46 61.61 20.85 62.40 0.79

Mistral-7B
Masked 27.24 22.50 4.74 23.45 0.95
Concrete 26.12 23.21 2.91 24.40 1.19
Base 29.10 25.68 3.43 27.34 1.66

Table 2: Model accuracy under PoT prompting after fine-
tuning (greedy decoding). Orig. = accuracy on original ques-
tions; AVA = all-variants accuracy; ∆AVA = accuracy drop;
Round Err. = Auto-Round AVA − Non-Rounded AVA.

naturally admit non-integer outputs (e.g., rates or
averages), so enforcing rounding does not system-
atically correct errors.

PoT Training Induces In-Distribution Behav-
ioral Consistency. Across models, PoT supervi-
sion primarily stabilizes behavior rather than im-
prove ∆AVA (Tab. 2), as reflected in substantial re-
ductions in both new and recovered errors (Tab. 3).
For LLAMA-3.1-8B, new errors decrease from 431
to 212–213 and recovered errors from 167 to 87
(Masked/Concrete), with MISTRAL-7B exhibiting
a similar reduction in both categories. The same
pattern holds under non-auto-rounded inference
(see Appendix A). Under a stricter error classifica-
tion, PoT training does not randomly reduce error
counts, but instead concentrates failures onto sub-
sets of problems across equivalent perturbations,
yielding greater uniformity in failure patterns with-
out improved correctness, explaining why consis-
tency gains do not translate to improved ∆AVA (see
Appendix A). For example, a model that originally
answered incorrectly but recovered on some per-
turbations may, after training, answer all variants
incorrectly, suppressing recovered errors while low-
ering AVA. Manual inspection of 20 consistent fail-
ures reveals that fine-tuning consolidates model
behavior. In some cases, models converge to a
single error repeated across all variants. In others,
models converge to a small set of distinct error pat-
terns. In both cases, consistency increases without
accuracy drops significantly improving.

SFT Improves Execution but Not Reasoning In-
variance. We fine-tune on GSM8K and evaluate
on MATH to test cross-task transfer. In-domain
consistency improves substantially, but cross-task
∆AVA and consistency remain largely unchanged,
with MATH accuracy slightly decreasing (∼ 2%).

Invariance metrics show no clear improvement
outside the training domain—new and recovered er-
rors sometimes increase. Normalized consistency
metrics vary only modestly (Fig. 1). More con-
sistent gains across these measures would be in-
dicative of broadly reusable reasoning abstractions;
instead, the observed improvements appear largely
confined to domain-specific policies.

The small cross-task accuracy drop reflects ex-
pected task-shift effects rather than overfitting:
AVA and consistency remain stable under perturba-
tion, indicating preserved reasoning behavior.

CoT vs PoT Evaluation and Masked Training.
The gains in consistency are also channel-bound.
When evaluated under Chain-of-Thought prompt-
ing, PoT-tuned models show no systematic im-
provement (Fig. 1), and MISTRAL-7B shows in-
consistent results (Tab. 3). This pattern reveals that
the competence induced by PoT is representation-
specific. PoT improves procedural fluency, the abil-
ity to emit stable, program-shaped solutions for iso-
morphic inputs, but that fluency does not transfer
to form-agnostic understanding that would transfer

Figure 1: Dataset-normalized percent changes in error
categories relative to base model. M = Masked, C =
Concrete.
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Program-of-Thought (GSM8K) Program-of-Thought (MATH) Chain-of-Thought (GSM8K)

FineTune Shared New Recover Shared New Recover Shared New Recover

Llama-3.1-8B-Instruct
Masked 115 212 87 42 141 28 99 584 90
Concrete 115 213 87 46 129 27 97 586 91
Base 137 431 167 38 139 21 107 611 100

Mistral-7B-Instruct
Masked 405 272 232 177 49 32 445 507 247
Concrete 403 273 231 181 45 38 441 513 244
Base 427 416 307 176 46 36 437 530 239

Table 3: Error distributions from fine-tuned models. Shared = shared errors; New = new errors; Rec = recovered
errors.

to free-form reasoning.
This interpretation is reinforced by masked train-

ing results. Masked and concrete supervision yield
comparable in-distribution accuracy but diverge
under distribution shift: PoT stabilizes reasoning
procedure without grounding numerical semantics.

5 Implications and Future Directions

The central finding of this work is that consistency
and correctness are dissociable. All models we
evaluate exhibit substantial gaps between original
and all-variants accuracy under PoT prompting. Ex-
plicit reasoning traces do not necessarily confer
robustness to surface variation.

PoT supervision does not resolve this fragility; it
reshapes it. Fine-tuning reduces new and recovered
errors, yet ∆AVA remains largely unchanged. What
improves is not correctness but uniformity: models
shift towards failing on the same problems across
isomorphic variants; they learn to fail the same
way. These gains are also representation-bound—
they do not transfer across prompting formats or
domains. This dissociation has direct implications
for how we evaluate reasoning.

First, measuring consistency is independently
valuable. A model that fails inconsistently is still
searching; a model that fails consistently has sta-
bilized on something learnable but wrong. Dis-
tinguishing these cases requires tracking not just
accuracy but error structure across perturbations.
Current benchmarks obscure this. A model with
90% accuracy and high ∆AVA has learned to suc-
ceed on specific surface forms; a model with 85%
accuracy and low ∆AVA may have learned some-
thing more general. We argue that future evalua-
tions should report both metrics and treat the gap
as a signal of reasoning quality.

Second, what supervision strategy could stabi-

lize free-form reasoning? PoT supervision induces
in-distribution consistency but does not transfer to
CoT evaluation. Reasoning models trained on CoT
still exhibit substantial accuracy drops under per-
turbation, suggesting that neither approach induces
robust CoT reasoning. Whether any supervision
strategy can remains an open question.

Why does training induce consistency before
correctness? One possibility is that these are dis-
tinct stages: models first stabilize on a procedure,
then that procedure may or may not become correct.
Our results demonstrate that the first stage can oc-
cur without the second. Consistency, then, may not
be evidence of understanding, but evidence of com-
mitment to a pattern. Studying learning dynamics
directly could clarify whether this interpretation
holds, which we leave to future work.

6 Conclusion

Program-of-Thought prompting is often regarded
as a robustness technique. Our results partially
support this view: PoT supervision does improve
consistency across isomorphic variants. However,
they also clarify its limits.

Fine-tuning causes models to converge to stable
behaviors that do not transfer: gains vanish under
CoT evaluation and domain shift. The consistency
we observe is uniformity of behavior, including
uniform failure. Models learn to fail the same way.

The picture that emerges is one of dissociation.
Procedural consistency and semantic invariance
are distinct, and progress on one does not necessar-
ily entail progress on the other. The challenge is
not simply to improve accuracy, but to understand
when consistency reflects genuine abstraction ver-
sus memorization of a wrong procedure. Closing
the gap may require rethinking what reasoning su-
pervision is meant to teach.
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Limitations

While our study provides meaningful insights into
LLM abstraction under numeric perturbations, sev-
eral important limitations remain.

Dataset Scope and Applicability to Other Bench-
marks. Our study evaluates perturbation drops on
GSM8K and MATH, fine-tuning only on GSM8K.
These datasets consist of problems whose solu-
tions can be expressed as parameterized procedures
with numeric inputs to a fixed reasoning template.
Under numeric substitution, the core computation
structure remains unchanged, allowing perturba-
tions to isolate whether models reliably apply the
same method across instantiations.

This property does not generally hold for many
harder competition-style benchmarks (e.g., AIME),
where intended solutions often depend on instance-
specific arithmetic relationships among the given
numbers. Naively changing numbers in such prob-
lems frequently alters which strategies are valid,
thereby changing the effective task. Although
one can sometimes construct constraint-preserving
variants by explicitly maintaining these relation-
ships, such perturbations evaluate invariant recov-
ery across a generated family rather than robustness
of a fixed solution template under numeric varia-
tion. As a result, perturbation consistency mea-
sured on those datasets is not directly comparable
to the consistency studied here.

Accordingly, while our results characterize ro-
bustness for broadly parameterized mathematical
reasoning, they may not extend to domains in
which solvability depends on delicate number-
specific structure that is not preserved under
straightforward perturbations.

Perturbation Type Coverage. ReasonAgain’s per-
turbations vary numeric values while preserving
program structure, isolating sensitivity to control-
flow changes but not semantic robustness against
synonym substitutions or rephrasings. Our analysis
thus focuses on operational brittleness (e.g., round-
ing, boundary conditions) rather than linguistic
brittleness. Future work should extend PoT evalua-
tion to meaning-preserving perturbations like para-
phrases and name changes, testing whether models
can generate functionally equivalent programs or
are merely relying on surface features.

Label Noise in ReasonAgain. Although Reason-
Again’s programmatic extraction workflow effi-
ciently generates gold answers, roughly 8% of per-

turbations carry incorrect labels in GSM8K and
17% in MATH—stemming from template drift,
rounding mismatches, or extraction bugs. While
filtering these noisy examples only modestly af-
fects the observed robustness deltas, it highlights
the need for more stringent validation (e.g., cross-
verification with human annotation) to ensure fu-
ture robustness benchmarks are both comprehen-
sive and accurate.
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A Comparison Across Evaluation Criteria

Model FineTune Program-of-Thought (GSM8K) Program-of-Thought (MATH) Chain-of-Thought (GSM8K)

Non-auto Strong Non-auto Strong Non-auto Strong

Sh New Rec Sh New Rec Sh New Rec Sh New Rec Sh New Rec Sh New Rec

Llama-3.1-8B

Masked 121 348 74 48 23 13 43 107 35 17 64 3 102 570 93 28 102 10
Concrete 121 348 74 48 23 13 45 97 29 21 58 2 100 572 93 27 103 13
Base 155 569 157 20 17 35 39 106 22 20 58 3 102 604 101 35 98 14

Mistral-7B

Masked 416 327 211 204 30 31 180 34 35 149 20 4 444 494 256 223 115 14
Concrete 414 328 210 203 30 32 182 31 44 148 16 5 440 499 252 221 120 13
Base 436 453 279 158 41 39 176 33 47 141 18 1 432 521 244 216 129 11

Table 4: Error distributions under two evaluation regimes: Non-auto-round and Strong. Sh = shared errors; New =
new errors; Rec = recovered errors.

A.1 Alternative Definitions of Error
Categories

We begin by examining robustness to stricter se-
mantic equivalence criteria by adopting a stronger
definition of error categories. Under this strong
classification, error types are defined using uni-
versal rather than existential quantification over
the perturbation set. Specifically, a shared error
corresponds to a problem that the model answers
incorrectly on the original instance and on all of
its perturbations. A new error is a problem that the
model answers correctly on the original instance
but incorrectly on all perturbations. A recovered
error is a problem that the model answers incor-
rectly on the original instance but correctly on all
perturbations. All classifications here are done in
the auto-round setting.

While new and recovered errors gener-
ally exhibit similar directional behavior in-
distribution—aside from LLAMA-3.1-8B, where
new errors increase slightly—the most consistent
effect is a substantial rise in shared errors under
PoT evaluation on GSM8K. For LLAMA-3.1-8B,
shared errors increase from 20 in the base model to
48 under PoT fine-tuning. MISTRAL-7B exhibits
the same pattern, with shared errors rising from
158 to 203–204. This systematic increase in shared
errors indicates that PoT supervision concentrates
error mass into stable, repeatable failure modes
under stricter semantic equivalence criteria.

As in the non-rounded analysis, this consolida-
tion remains domain- and channel-local. Under
task shift to MATH and CoT evaluation, increases Figure 2: Dataset-normalized percent change vs base for

Non-auto-round (top) and Strong definition (bottom).
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in shared errors are less consistent and, in some
cases, reversed. The absence of a uniform trend
across these settings indicates that the consistency
induced by PoT supervision does not transfer
across tasks or reasoning formats.

The increase in shared errors under the strong
definition reflects a smoothing effect: errors be-
come less confined to individual phrasings and
more uniform across equivalent perturbations. This
may help explain why consistency gains need not
improve accuracy—a model that, for example, orig-
inally answered incorrectly but recovered on some
perturbations may, after training, answer all vari-
ants incorrectly, suppressing recovered errors while
lowering AVA. Models become more consistent
without becoming more correct.

A.2 Non-Rounded Answer Evaluation
Table 4 also reports error distributions under non-
auto-rounded answer extraction. The pattern mir-
rors the auto-rounded evaluation in §4.2: PoT su-
pervision improves consistency within the same
reasoning channel and training distribution, but
this trend does not generalize under task shift or
CoT evaluation. This indicates that the consistency
gains reported in §4.2 are not an artifact of answer
normalization.
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