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ABSTRACT
Massive online courses occupy an important place in the educa-
tional landscape of today. We study an approach to scale predic-
tive analytic models derived from online course discussion fora–
specifically that of confusion detection–onto other courses. The
primary challenge here is the lack of labeled examples in a new
course and this calls for unsupervised domain adaptation (DA). As
a first step in exploring DA in the education domain, we propose
a simple algorithm, DiAd, which adapts a classifier trained on a
course with labeled data by selectively choosing instances from
a new course (with no labeled data) that are most dissimilar to
the course with labeled data and on which the classifier is very
confident of classification. Our algorithm is empirically validated
on the confusion detection task across multiple online courses. We
find that DiAd outperforms other methods on the target domain,
while showing a comparable performance to a popular method that
uses labeled data from the target domain.

CCS CONCEPTS
• Information systems→Data analytics; •Computingmethod-
ologies → Unsupervised learning; • Applied computing →
E-learning;
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1 INTRODUCTION
Massive online learning platforms are ubiquitous and have trans-
formed the educational landscape in ways that have never been
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possible before. This transformation has led to numerous contem-
porary studies focusing, among other areas, on inferential and
predictive learning analytics derived from the clickstream and dis-
cussion fora to understand learner behavior and disengagement,
and to improve learning outcomes.

Discussion fora constitute an important online course compo-
nent that students use to interact with each other, to seek help, as
well as to express their sense of satisfaction/dissatisfaction with the
course. Numerous studies have highlighted the benefits of process-
ing forum posts to provide key data-driven insights into learning
behaviors and guide timely interventions, including [2, 5, 17–20].
The predictive analyses in these works rely on developing super-
vised machine learning models. With the rapid proliferation of
courses in a variety of learning-at-scale platforms and the lack of
immediate access to labeled data, developing supervised machine
learning models to automate decision-making based on discussion
fora can be resource-constraining–be it in the context of a subse-
quent offering of the same course, or the offering of a new course
altogether. This calls for efficient mechanisms for unsupervised Do-
main Adaptation–the process of adapting a classifier trained for a
source course to a target course without using any manually labeled
training data from the target course. Particularly, in this paper,
we study the problem of domain adaptation in the specific area of
at-scale discussion forum analysis–that of confusion detection.

Confusion detection refers to the binary classification problem of
automatically identifying if a given forum post expresses confusion
or not. Because of the important role of discussion fora in affecting
learner satisfaction and outcomes in a course, timely and efficient
detection and resolution of confusion not only helps in bringing
instructor immediacy to online courses but also positively impacts
learner experience. Given the issues of scalability in online course
platforms, automating the decision-making process brings about the
much needed efficiency in aspects needing instructor immediacy,
which in turn requires the use of scalable and adaptive algorithms.
Thus, mechanisms to easily extend models developed for one course
over to other courses are of fundamental necessity.

In the recent years, a number of studies [2, 24] have focused on
the tasks of confusion detection and identified the need for domain
adaptation (DA). Despite recognizing this need and DA not being a
novel idea, the effect of DA in the area of online courses remains
largely under-explored.

Domain adaptation is a challenging task especially in the discus-
sion fora domain because different courses demonstrate different
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Table 1: Sample posts labeled asConfusion from the three courses to highlight the difference in the nature of the three domains

Course Example post
HS I had this on test all wrong as I must have not understood anything. 1. housing market: i put shift in demand curve, apparently wrong. I supossed less income

would cause less people wanting to buy a house making them cheaper. 2. Tea market. if one of the resources to make tea is running low the supply would be
affected not the demand. more people wont buy tea because a drought in Brasil. I had almost all wrong :(

EDU I can draw and reason out the cubes, but the algebraic notation is far beyond my skill level working alone. I would like to participate in an exercise like this to see
if I could contribute. I guess I have been in elementary math too long! I had to watch this video several times, and came away with the onion peeling theory that
could be adapted for my students and my understanding. It was very frustrating. I still do not have it all.

MED When calculating the normal approximation for the binomial do we use half intervals e.g. 111.5 instead of 112 if we’re looking for the area to the right in the curve;
and can we use a different normal distribution applet than the ones recommended. If so, what are the answer tolerances. Can one be several tenths of a percentage
point off. This ambiguity is killing me. Literally, I’m dying.

Figure 1:Wordcloud of confused posts from EDU,MED andHS (in order from left to right). All courses contain different words
related to course-specific topics making it challenging for a classifier trained on one course to performwell on another course.

idiosycracies. For example, consider the task of confusion detection.
Table 1 shows examples of posts that express confusion from three
different types of courses broadly classified as Humanities (HS),
Education (EDU) and Medicine (MED). We can see that they share
some commonalitites, e.g., confused posts often express frustration,
but the way of expressing this frustration and confusion exhibits
tremendous variability. This variability can depend on factors in-
cluding the course topic, instruction style, level of formality of
the forum and background of learners. While the commonalities
present a promise for domain adaptation methods, the differences
demonstrate the critical need for careful thought and experimenta-
tion in designing these adaption procedures. For example, in the
Medicine domain, several confused posts discussed technical prob-
lems related to the topics in ‘probability and statistics’ aspects of the
course. Hence, any statistical machine learning system operating
on related posts would learn to associate words related to the topics
of probability and statistics with the confused class. This is further
illustrated in Figure 1, by way of word-clouds of only the confused
posts for the three courses. We can see that in posts from the EDU
course, the prominent words are specific to the Education domain
and include students, math, school, teaching, grade. Similarly, for
the MED course the prominent words include data, mean, valu(e),
standard (deviation), sample, calcul(ate), number and for HS posts
these include data, issu(e), women, girls. In summary, we can see
significant differences in distributions of words among confused
posts from different courses.

Naturally, a classifier trained on the vocabulary from one course
will be limited to course-specific features and patterns of that course
and have limited generalizability. That is, such course-specific regu-
larities may not translate successfully to other courses (for instance,
to HS where ‘probability and statistics’ may not even be a relevant
topic and the most confusing topic could be related to, say, ‘markets’
or ‘women issues’). Hence, a classifier trained on labeled data from

Medicine courses can not be expected to perform well on data from
Humanities (we also demonstrate this quantitatively in our exper-
iments). This constitutes the primary technical challenge of the
problem considered here, i.e., the ability to tune a classifier, which
is trained on a particular course, to learn not only those patterns
indicative of confusion of that course, but also of a new course.

Fortunately, there could be linguistic commonalitites, such as
expressions of frustration or presence of keywords like question (as
indicated by the word-clouds of the three courses), which could help
the model in identifying some posts expressing confusion in the new
course. Thereafter, statistical regularities and correlations found in
these newly identified posts could be harnessed to learn confusing
course-specific patterns in the new course. The resulting classifier is
now more general, with the increased capability achieved without
using any labeled data from the new course.

With this motivation in mind, we propose DiAd, an algorithm
that differentially adapts the source-trained classifier to the tar-
get domain by relying on instances that it is most confident on,
and those that are dissimilar to the source. While the proposed
methodology for adapting a classifier is independent of its goal,
here we validate its applicability for the purpose of confusion de-
tection. To the best of our knowledge this study is a first step in
the direction of DA for educational domain, while also being an
effort to draw the community’s attention to this important and
under-explored problem. In this sense, this constitutes a unique
contribution to existing literature on discussion forum analysis and
associated domain adaptation.

We summarize our contributions below:
• In the case of confusion detection, we observe that the source
and target domains tend to have similar features. This means
that a transformation to resolve the difference between fea-
ture space statistics alone is not sufficient for domain adap-
tation; what is additionally needed is the transformation
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of the labels given the features. We achieve this by the use
of surrogately labeled instances to slowly move the source
model towards the target domain.

• We propose a self-training algorithm, DiAd, to adapt the
supervised model of confusion detection to a new course,
thus rendering it more widely applicable.

• We demonstrate that existing unsupervised DA techniques
like hassle-free domain adaptation (HF) [23] and some of
the popular supervised DA methods modified to work in
an unsupervised setting [6] are largely inadequate for the
confusion detection task. We quantitatively demonstrate the
efficacy of our approach by comparing it with variations of
existing DA techniques using data from multiple courses.

• Wefind that DiAd not only adapts a classifier to new domains
without using any labeled data, the resulting classifier does
not compromise on its performance in the source domain.
This is especially important in the education domain, where,
while adapting a classifier to a new course, we would still
like to use it for making predictions in the source course (for
instance, future offerings of the same course).

2 RELATEDWORK
We situate this work at the intersection of two active research areas:
analytics derived from course discussion fora and unsupervised
domain adaptation methods.
Analytics from MOOCs and discussion fora: Empirical stud-
ies based on online course discussion fora include understanding
learner persistence by mining their sentiments expressed in discus-
sion forum content (e.g., [20]), analyzing how fora evolve [15], pre-
dicting student performance from emotional expressions [22], pre-
dicting instructor interventions [5], predicting learner performance
using engagement patterns [17], recommending forum threads to
users [21], and detecting confusion and frustration [2, 24]. Other
studies include detecting indices of cognitive presence of learners
[12], understanding help-seeking behaviors and new principles for
supporting help-seeking [11], discovering the importance of social
presence in learning experience [7, 9], understanding the percep-
tions of social presence in diverse MOOC populations [16], and
more general studies focussed on understanding and improving
engagement [8, 10, 14]. Depending on the task, a few of the findings
have been valid more generally in more than one course regard-
less of the course, while others (e.g., [2] and [24]) have explicitly
identified the need for domain adaptation in order to render the
tasks more widely applicable (e.g., across different courses offered
on the same platform). Accordingly, our present study is a natural
extension of prior work and addresses a critical need in this area.
Domain adaptation methods: This work is similar in spirit to
the unsupervised DA approach proposed in [3, 23], where a subset
of the target instances gets added to the training set during the
adaptation stage, but differs in the manner in which the subset is
selected. Moreover, as will be evident from the baselines considered,
our approach can be likened to the more popular supervised adap-
tation methods such as Frustratingly easy and Source-and-Target
[6] (described in Section 4.3), with the difference being the use of
surrogately labeled target instances in place of their true labels.

We would like to point out that our approach is different from
the structural correspondence learning approach [4], which auto-
matically induces correspondences among features from the source
and target domains. We do not rely on the correspondence at the
feature level, but instead harness the dissimilarity of a collection of
confidently predicted target instances to enable the adaptation.

3 APPROACH
In this section we describe two variations of our domain adapta-
tion approach, DiAd, DiAd-Radius and DiAd-Sample, in detail. Our
setting in both cases is that of unsupervised domain adaptation. In
other words, we assume that we have labeled data, L, in the source
domain but unlabeled data,U, in the target domain. Like all domain
adaptation settings, the label set in the source domain is the same
as the (desired) label set in the target domain. The goal is to output
a trained classifier, f , which has been adapted to the target domain.

The underlying idea behind our iterative self-training approach
is that the source and target courses (domains) are similar, and a
classifier trained on the source course would perform reasonably
well on the target course. The goal of this work is to improve the
performance of this basic classifier. We use a classifier trained on
labeled data from the source course to get surrogate labels on the
unlabeled instances from the target domain. These labels are so
termed because they are not ground-truth labels but are, instead,
predicted by the existing classifier. The goal in both the variants
presented here is to use these surrogately labeled target instances,
in addition to the labeled source instances, to further train the
classifier. However, instead of overwhelming the classifier with the
source and target data all at once, we slowly adapt the classifier to
the new domain. For achieving this, we introduce the surrogately
labeled target instances iteratively. In each iteration, we introduce
only a subset of these instances to the existing training set.

Understandably, the performance of the final classifier would
depend on the (surrogately labeled) instances that were added to
the training set. Therefore, it is important to carefully select this
subset of instances introduced to the training data in each iteration.
For choosing this subset, we adapt the classifier differentially to the
instances of the target domain. Specifically, we choose instances
that satisfy the following two constraints:

(1) the classifier should have been very confident while assign-
ing the respective surrogate labels, and

(2) the instances in the subset should be dissimilar to those in
the existing training set.

The first constraint encourages the addition of good quality ‘labeled’
instances by adding instances that are likely to be correctly labeled
as judged by the existing classifier. However, intuitively, it is likely
that the classifier would be more confident while labeling instances
that are similar to the ones it has already seen in the training set.
Therefore, simply adding these instances to the training set would
encourage the classifier to relearn what it already knows. What is
additionally needed is to introduce the classifier to new types of
instances that are different from the source domain and are repre-
sentative of the idiosyncrasies of the target domain. The second
constraint attempts to capture this notion by choosing instances
that are most dissimilar to the existing training set. In the rest of
this section we first describe the general algorithmic framework
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and then describe the two variations of our method: DiAd-Radius
and DiAd-Sample.

Figure 2: Pictorial representation of the process of choosing
surrogately labeled instances to the existing set of labeled
instances. Each instance is represented by its predicted con-
fidence on the x-axis and its dissimilarity from the training
set on the y-axis (both normalized). All points depicted by
x lie in the shaded rectangle. (1,1) is the ideal candidate for
addition to the training set. DiAd-Radius chooses all points
that lie inside the circle. DiAd-Sample samples points with
probabilities proportional to the distance from the ideal
point. In this representation, the size of a point is propor-
tional to this probability.

3.1 General Algorithmic Framework for DiAd
Algorithm 1 presents the pseudocode of our general approach. The
algorithm accepts labeled data, L, and a set of unlabeled instances,
U, as inputs. These sets are initialized with data from the source
and target domains respectively. Our iterative algorithm proceeds
by training a classifier (such as a Logistic Regression) on the labeled
set, L (Step 1). It then predicts a label, lu , and the corresponding
prediction confidence, zu , for each instance, u, in the unlabeled set,
U (Step 3) 1. For each instance in u, the algorithm also computes its
dissimilarity, du , from the training set, L (Step 4). For the sake of
readability, we define this dissimilarity measure later in this section.

Hence, for each instance in U, we have: (i) its prediction confi-
dence, zu , and (ii) its dissimilarity, du , from the training set. We first
normalize the dissimilarity and confidence values to lie between 0
and 1 (Steps 6 and 7). Now, each instance, u, from U can be viewed
as a point in a two dimensional Euclidean space with confidence, zu ,
and dissimilarity, du , corresponding to the x and the y coordinates
respectively. Note that since the confidence and dissimilarity values
were normalized, all points will lie in the shared rectangle shown in
Figure 2. The ideal candidate for addition to the training set would
be one that has high dissimilarity from the training set and also
had a high corresponding prediction confidence. Geometrically,
such a point in this space would correspond to the top right cor-
ner of this rectangle: (1,1). So, while selecting the set of instances,
H, to be appended to the training set of the classifier, we want
instances that are as close to (1,1) as possible. The two proposed
1We extract the same features for the source and target domains, excepting the unigram
features, and for this step, we use the vocabulary of the source domain.

methods, DiAd-Radius and DiAd-Sample, differ in the way this set
H is selected (selection described later). However, once the set of
surrogately labeled points, H, has been chosen, its elements (along
with the corresponding surrogate labels) are added to the labeled
set L, and are removed from the unlabeled set, U (Steps 9 and 10).
The algorithm then returns to Step 1 using these updated sets, L
and U. This iteration proceeds until there are no more instances
left in the unlabeled set U that can be added.

Algorithm 1 Training algorithm for DiAd
Input:
Set L = Labeled data from source domain;
Set U = Unlabeled data from target domain
Output:
f = Domain adapted classifier

1: Train classifier, f , using L
2: for each u ∈ U do:
3: (lu, zu ) = f (u) ▷ Surrogately label u using f while outputing

prediction confidences, zu
4: du = dissimilar ity(u, L)
5: end for
6: Normalize du ’s ▷ 0 ≤ du ≤ 1, ∀du
7: Normalize zu ’s ▷ 0 ≤ zu ≤ 1, ∀zu
8: Set H ⊆ U ▷ Select H according to DiAd-Radius or DiAd-Sample
9: L = L + H
10: U = U − H
11: If H = ∅ or U = ∅ Stop, Otherwise goto Step 1

Choice of classifier, f : While DiAd makes no assumptions about
the type of classifier, a key requirement is that the classifier should
be able to estimate the confidence of its predictions. In our imple-
mentation, we used logistic regression because it yields a natural
measure of confidence–the probability of the predicted class. One
could conceivably use other classifiers like SVM, where the confi-
dence is estimated by computing the distance from the classificatory
hyperplane. However, this experimentation is left to future work.
Computing dissimilarity: In Step 4 of the above algorithm, we
also compute the dissimilarity, du , of an instance, u, from the train-
ing set. As already mentioned, the dissimilarity measure is included
to enable the classifier to encounter new ‘types’ of instances (for
each predicted class). We design a simple measure to compute an
instance’s dissimilarity to other instances in the current training set
that belong to the same class. For any instance, u, with a predicted
label, lu , we consider the set of training instances that belong to
the same predicted class:

Llu = {x |label of x = lu ,∀x ∈ L}

We then define its dissimilarity, du , from the training set as the L2
distance between the feature vector representations of u and the
centroid of Llu . This measure serves to identify those points that
are different from other training points belonging to the same class
and hence provide the classifier with crucial new information to
learn once these new points are added to the training set.

3.2 DiAd-Radius
As mentioned earlier, the two variations of DiAd differ in the way
set H is selected (Step 8 of Algorithm 1). In the first variation,
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DiAd-Radius, we select the instances to be included in H by first
constructing a circle centered at (1,1). The circle’s radius, r , is a
parameter in our model. The points of interest to us would lie in
this circle. In other words, the set H contains all points that lie in
the area that represents the intersection of the rectangle and the
circle in Figure 2:

H = {u |u ∈ U and z2u + d
2
u ≤ r2}

3.3 DiAd-Sample
This method uses an alternate way to choose the points for set H
(Step 8). It first computes the Euclidean distance, pu , of each point,
u (represented in the Euclidean plane as (du , zu )), from the ‘ideal
candidate’ (1,1) as:

pu =
√
(zu − 1)2 + (du − 1)2,∀u ∈ U

It then constructs a set H of randomly sampled K points from the
surrogately labeled set such that the sampling probability of a point,
u, is proportional to this distance, pu .

4 EMPIRICAL EVALUATION
In this section, we present our experiments in detail. We first de-
scribe the dataset used in our experiments (Section 4.1) and the
features extracted for the classification task (Section 4.2). We then
describe our baselines (Section 4.3) and the evaluation set-up (Sec-
tion 4.4) and compare DiAd’s performance with other methods in
Section 4.5.

4.1 Confusion Detection Dataset
We conduct our experiments using forum posts from the Stanford
MOOC Posts, a corpus composed of 29,604 anonymized learner
forum posts from eleven Stanford University public online classes
[1]. The courses were broadly classified into three course domains
(henceforth simply referred to as courses) by the data curators:
Humanities/Sciences (HS), Medicine (MED), and Education (EDU),
with about 10,000 posts in each set. Each post was manually an-
notated with a value indicating the extent to which it expresses
confusion, on a scale of 1 (expert knowledge) to 7 (extreme con-
fusion). A score of 4 indicates neither knowledge nor confusion.
Following previouswork [24], we divided the posts into two groups–
“confusion” and “not confusion” based on this score. A score above
4 was considered a Confusion post, whereas a score below 4 was
regarded as a Not confusion one. For our domain adaptation exper-
iments, we considered various ordered pairs of these courses to
form the source and target domains pairs.

4.2 Feature Engineering
Our approach, DiAd, essentially adapts a classifier trained on the
source domain to the target domain. Our first focus was to extract
features that would be used for training this classifier. Towards
this end, we used the features that were found to be indicative
of confusion as mentioned in [24]. They were grouped into two
categories: content-related and community-related features.

Content-related features: These features pertain to the textual
content of the post:

(1) Automated readability index (ARI): For a given post, the ARI
is a number, which approximates the grade level needed

to comprehend the text. The inclusion of this feature was
based on the assumption that posts encoding confusion have
higher readability indices (i.e., are more difficult to read) than
posts that do not encode confusion.

(2) Post length in words;
(3) Unigrams: These binary features encode whether a word

occurred in the post or not.
(4) Question mark: Since confusion is often expressed by asking

questions, the presence of a question mark in the post was
regarded as a feature.

(5) Sentiment Ratio: This feature measures the ratio of the num-
ber of positive and negative words in a post. The assumption
was that a post expressing confusion would contain propor-
tionately more words with negative sentiments as compared
to words with positive sentiment, and hence would have a
lower value for this feature than that of a post not express-
ing confusion. A word was classified as having positive or
negative sentiment using a pre-trained lexicon [13].

Community-related features: These constituted a second set
of features that measured the reactions of other students enrolled
in the course and were available in the dataset. They were: the
number of (i) reads and (ii) up-votes of the post. It is likely that a
post expressing a confusion or seeking clarification would be of
interest to other students taking the course and so would be read
more and receive a higher number of up-votes.

4.3 Baselines
We would like to remind the readers that ours was an unsuper-
vised domain adaptation framework (i.e. we assumed that we do
not have labeled target data). For the task of confusion detection,
we compared the performance of our approach with the follow-
ing baselines. Also, when applicable, the baselines used the same
features and the same classifier as DiAd for a fair comparison.
HF: The Hassle-Free Method (HF) [23] is an unsupervised domain

adaptation method that has shown state-of-the-art performance
and forms our primary baseline 2. It randomly selects a subset of
target instances, and normalizes them into an exemplar vector.
Then each source instance is transformed into a new feature vec-
tor by computing its similarity to each instance in the exemplar
vector. The new features are then appended to the original in-
stances in the training set to form a new set of training instances.

SrcOnly: In this baseline we use a classifier without any domain
adaptation. The classifier is trained only on ground-truth labeled
data from the source domain, and tested on the held-out test sets
(from source or target domains). While this is not a true domain
adaptation baseline, we have included it to test the change in the
performance of a model when it is tested on instances from an
unseen course. It thus helps to underscore the need for DA.

Source-and-Target (S+T): This is a modification of a simple yet
popular supervised DA baseline (used in [6]), in which the source
and the target labeled data are pooled in together to train a
classifier. Since in our case, the target domain does not have
labeled data, we treat the predictions of the SrcOnly baseline on
the target course data as surrogate labels. We apply S+T using

2HF is a particularly competitive baseline and has been shown to outperform other
unsupervised domain adaptation methods [23]
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Table 2: Performance comparison of our approach, DiAd, with baselines (like HF [23]) for the Confusion Detection task. DiAd
outperforms other methods on the target domain, and achieves a performance similar to one that could be obtained using
labeled data in the target domain.

Source Target Baselines DiAd-Variations
SrcOnly Oracle HF S+T FE DiAd-Conf DiAD-Diss DiAd-Radius DiAd-Sample

HS MED 79.03 82.33 73.86 79.93 79.77 81.05 80.40 80.46 80.84
EDU 28.74 40.99 27.42 30.71 25.67 53.31 54.34 53.37 55.03

EDU HS 83.12 85.64 44.94 84.14 83.16 78.41 78.13 80.88 79.45
MED 73.19 82.15 42.44 73.26 74.58 67.75 72.23 69.25 68.75

MED HS 81.98 86.89 76.87 82.53 79.64 82.67 82.40 82.62 82.42
EDU 35.39 41.64 27.32 40.41 33.30 50.24 48.38 36.76 50.37

Average 63.57 69.94 48.81 65.16 62.69 68.91 69.31 67.22 69.48

ground-truth labeled data from source and surrogately labeled
data from the target domain.

Frustatingly Easy (FE): This baseline is also a modification of
another popular supervised DA method [6], where the feature
space is augmented to enable the classifier to learn domain spe-
cific weight vectors. Like S+T, in our experiments, this approach
trains the classifier using ground-truth labeled data from the
source and surrogately labeled data from the target domain.

Oracle: Our final baseline represents a hypothetical scenario,
where unlike the previous baselines, it has access to the ground-
truth labeled data from the target domain and hence trains on
labeled data from the target domain. The train and test sets are
non-overlapping. While this too is not a DA approach, it helps us
in getting an estimate of the performance of a classifier should
labeled data from the target domain be available.

4.4 Evaluation
For each course, we used 80% of the data for training out of which
5% was used for development. While training the classifier, we also
balanced the dataset by up-sampling the minority class. The test-set
comprised of the remaining 20% of the data. For robustness, the
reported results were averaged over 10 randomly held-out test sets.

From the perspective of helping students, the positive class is
more important than the negative class. Thus, identifying all con-
fusion posts so that they can be brought to the instructor’s notice
(high recall) would be desirable. Simultaneously, a high precision
is also desirable so that the instructor’s valuable time is not wasted
in analyzing false-positives. Therefore, in line with previous stud-
ies [24], we evaluate the various approaches using the F-measure
of the positive (confusion) class.

4.5 Quantitative Results
We emphasize that our goal in this study was not to understand the
task of confusion detection, which in itself is a hard problem, nor
do we address improving a solution to that problem. Instead, our
goal is to address the problem of domain adaptation for this field.
Our experiments were designed to help us answer the following
questions:
Q1: Can we quantitatively demonstrate the need for DA in dis-

cussion forum analytics?
Q2: How does DiAd adapt the classifier to new target domains?

Q3: What is the role of confidence and dissimilarity in DiAd’s
performance?

Q4: How well does the state-of-the-art unsupervised approach
to DA (HF) work on this problem?

Q5: DiAd iteratively uses surrogately labeled instances from the
target domain to adapt to it. How does its performance com-
pare to alternative ways (S+T or FE) of using surrogate labels
for this task?

Q6: How does the adaptation process affect the performance on
the source domain?

Q7: Overall, what are the most unexpected components of our
findings?

Table 2 compares the performance of various methods on the
confusion detection task. The first two columns represent the source
and the target courses. The remaining columns represent the per-
formance of the baselines and the DiAd variants. For example, the
number in the 5th column of the 1st row indicates the performance
of the HF model when it is adapted from HS to MED.
Q1: Need for domain adaptation
As mentioned in the introduction, the major challenge in utilizing
supervised methods in this field is the lack of labeled data from new
courses. A naive DA solution to this problem could be training a
classifier on a previously labeled course and utilizing it in the new
course. We first demonstrate the efficacy of this approach. The
third and the fourth columns in Table 2 report the performance
on the held-out test sets when the model is trained on labeled
data from only the source (SrcOnly) and only the target (Oracle)
respectively. We can see that in all cases, testing a classifier on
an unseen course hurts its performance (at times very drastically)
indicating an urgent need for DA. For example, the performance of
a classifier trained on instances from the Medicine course (MED) is
82.33 when tested in the same domain (row 1, column 4) and drops
to 79.03 (row 1, column 3) in the absence of labeled data from the
testing domain (MED) but is instead trained on labeled data from
another course, Humanities (HS).
Q2: Does DiAd help in adapting to new courses?
The answer to the previous question indicated a need for DA for
the confusion detection task. We now investigate whether our pro-
posed approach, DiAd and its variations, help us in alleviating this
problem. Considering average performances (last row of Table 2)
we can see that in general, the performance of DiAd-Sample (69.48
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in last row and last column) is much better that the SrcOnly perfor-
mance (63.57) (except when adapting from EDU to MED or HS and
we discuss this while answering Q5.).

Comparing the performances of the DiAd variants–DiAd-Radius
and DiAd-Sample–represented by the last two columns respectively,
we see that the average performance of DiAd-Radius (67.22) 3 is
inferior to that of DiAd-Sample (69.48). A possible explanation
for this difference could be that DiAd-Sample has a better control
over the number of surrogately labeled instances it adds to the
training set in each iteration. Our analysis for answering Q5 below
demonstrates that it is not sufficient to just add surrogately labeled
instances from the target domain, but it is important to add them
slowly. Since in DiAd-Radius the parameter is the radius of the
circle and not the number of instances to be added to the training
set, it loses control over how slowly it adds the surrogately labeled
instances. In our experiments, not reported here due to space con-
straints, we saw that the surrogately labeled instances were indeed
spread out very unevenly across various iterations in DiAd-Radius.
So, even though the total number of iterations in DiAd-Radius and
DiAd-Sample were comparable, DiAd-Radius added most of the
instances in the first few iterations (making it more similar to S+T),
and the later iterations only added a handful of instances. Thus,
DiAd-Radius was not adapting the classifier slowly to the target
domain while DiAd-Sample was. However, we acknowledge that
on an average DiAd-Radius outperforms SrcOnly. It is also notable
that the average performances of the two variations of DiAd, es-
pecially DiAd-Sample, are very close to that of the Oracle (69.94)
which represents the hypothetical scenario when we have access
to labeled data from the target domain. In particular, for individual
course-pairs, we see that in all cases, the performance of DiAd-
Sample is close to that of Oracle and sometimes even better. The
improvement is likely because of the availability of additional data.

To summarize, comparing the performances of DiAd-Random
and DiAd-Sample with SrcOnly and Oracle, we can conclude that
they are indeed useful in adapting to unseen courses.
Q3: Role of confidence and dissimilarity
Both DiAd-Sample and DiAd-Radius choose instances to be ap-
pended to the training set based on two criteria: the prediction
confidence of the current classifier, and the dissimilarity from the
current train set. We seek to understand the contributions of these
two criteria, individually, to the performance of DiAd. Toward this,
we designed two other models that only use one of the constraints
while selecting instances from the target–the confidence (DiAd-
Conf) or the dissimilarity from the training set (DiAd-Diss). When
we consider performances with individual course pairs, DiAd-Conf
(column 8 of Table 2) outperforms DiAd-Sample (last column), when
the source and target courses are HS and MED respectively. How-
ever, the improvements seem marginal.

On an average, we can see that the performance of both of these
methods is worse than DiAd-Sample (last row of Table 2). This
indicates that, in general, both constraints together constructively
contribute towards the performance of DiAd.
Q4: Performance of state-of-the-art

3While reporting the performance of DiAd-Radius, we experimented with several
values of the user-provided parameter, r , and report results with r = 0.7.

The answer to question Q2 showed that DiAd is indeed helpful
in adapting a classifier to an unseen course. However, it remains to
be seen if there is a need for a new DA method for this task. Here
we explore the performance of a recently proposed unsupervised
DA method, HF, which is represented in Column 5 of Table 2. We
note that HF is not particularly useful for this task and that DiAd
significantly outperforms HF. This is especially remarkable when
adapting from HS (or MED) to EDU when DiAd-Sample achieved
F-scores of 55.03 and 50.37 respectively. On the other hand, HF
could only achieve an F-score of 27.42 and 27.32 respectively. HF
also particularly underperforms DiAd when adapting from EDU to
MED or HS, confirming DiAd’s utility.
Q5: Role of the iterative process

We now investigate the need to iteratively introduce surrogately
labeled target instances to DiAd, as proposed in our approach. A
simpler alternative would have been to present all these surrogately
labeled instances to the model using a standard supervised DA
approach such as S+T or FE [6]. Comparing columns 6 and 7 of
Table 2, we can see that the performances of S+T and FE are very
similar (except when adapting from HS or MED to EDU). On an
average, looking at the last row of the table, we can see that S+T’s
performance (65.16) is better than SrcOnly (63.57). This, however,
is not true for FE’s average performance (62.69). This indicates that
S+T, but perhaps not FE, is helpful in adapting a confusion-detection
classifier to a new course.

More interestingly, comparing S+T’s average performance (6th
column of the table) with that of several variations of DiAd’s (last
columns of the table), we see that DiAd mostly outperforms S+T
(and also FE). 4

For a different perspective of how the classifier performance
changes as DiAd progresses, we plot the performance after every
iteration for several course pairs in Figure 3. For example, MED
− > EDU in the figure indicates that the source course was MED
and the target course was EDU. The blue line (with square markers)
indicates the performance of the classifier on the target domain as
it adapts in every iteration of DiAd (DiAd-sample). The left-most
point corresponds to the initial unadapted classifier which is, in
principle, equivalent to SrcOnly. In almost all cases, we can see an
initial performance spurt between iterations 0 and 1. This happens
because during iteration 1 the model is exposed to (surrogately)
labelled instances from the target course resulting in a sudden
improvement in target performance. This reemphasizes the need
for DA by introducing target instances even if they are surrogately
labeled. We also see another bump in target performance around
iteration 5. This might be because by this iteration, a significant
number of target instances have been introdiced to the classifier

4An exception to this occurs while adapting from EDU to HS or MED. For these two
course pairs we can see that the performance of S+T or FE is better than SrcOnly
indicating that the surrogately labeled instances were useful. However, their perfor-
mance is also better than that of DiAd indicating that the iterative process did not
help. This could possibly be explained by a more careful look at the data sizes which
indicated that the size of EDU’s training set was much larger than any other dataset
(negative/positive instances in EDU: 6714/640, HS: 1358/2257, MED: 1581/1598). That
is, when we iteratively add too few instances (as a fraction of the source training
instances), they act more like outliers and degrade the model. The same instances
when added together during S+T would form a sizable cluster and help the adaptation.
To alleviate this issue, we recommend using a small labeled development set ( 5% of
train data) in the target domain, and prefer S+T or FE over DiAd if the iterative process
hurts performance on the development set.
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Figure 3: Changes in the Source and the Target performances with DiAd iterations. We can see that the Target performance
improves while the Source performance almost remains the same (or degrades slightly) as DiAd adapts the classifier.

Table 3: Performance comparison of our approach, DiAd, with baselines for the confusion detection task on held-out testsets
in the source domain. During the adaptation process, DiAd leads to a very slight drop in performance on the source side.

Source Target Baselines DiAd-Variations
SrcOnly S+T FE DiAd-Conf DiAD-Diss DiAd-Radius DiAd-Sample

HS MED 86.58 85.99 86.31 85.20 85.40 86.34 85.20
EDU 86.58 86.37 86.70 84.42 85.02 85.96 84.83

EDU HS 40.42 38.97 39.73 34.13 34.52 39.09 35.71
MED 40.42 37.55 39.04 34.10 38.29 38.07 34.95

MED HS 83.28 84.29 84.13 83.69 84.06 83.84 83.59
EDU 83.28 84.32 83.82 82.89 83.31 84.42 82.99

Average 70.09 69.75 69.96 67.41 68.43 69.62 67.88

enabling it to perform reasonably well on the target domain. In
general, we see that as the iterative process of DiAd continues, the
performance on the target domain improves slowly.

Overall, the average performance of DiAd (69.48) over various
course pairs is better than S+T’s (65.16) and FE’s (62.69) indicating
that while it is advantageous to use surrogately labeled instances,
it is imperative to slowly introduce the model to the new domain.
Q6: How does the adaptation process affect performance on
the source domain?

The discussions so far highlighted the utility of DiAd in adapting
a classifier to a new domain. However, we also want to ensure that
such an adaptation does not result in a significant deterioration
in the performance of the classifier on the source domain. This is
especially important in the domain of online courses, where, while

adapting a classifier to a new course, we would still like to use it for
making predictions in (subsequent offerings of) the source course.

In order to answer this question, we compare performances of
the adapted classifier on the held-out test sets from the source
domain, in Table 3. For example, the 4th column of the 1st row
indicates the performance (85.99) of S+T adapted from HS to MED
on a held-out test set from the HS course. Broadly speaking, a model
that does not adapt to the target domain is expected to have the
best performance on the held-out test set from the source domain.
Since SrcOnly, by design, does not adapt at all to the target domain,
its performance remains the same for a given source irrespective
of the target (e.g. see the first two rows of the third column). The
more a classifier changes while adapting to the target domain, the
more it deviates from an optimal classifier in the source domain
and hence the lower its expected performance on the source test
set, confirmed in the last row of Table 2. Here we can see that
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Example post SrcOnly Oracle DiAd-Sample
I’m a parent for kindergarten kid. Could
you provide resources to formative assess-
ment for kindergarten.

X ✓ ✓

We do tracking, but only for one course.
After that course, students can choose to
take an AP Calc class or move to a Pre-Calc
class. ... But if that benefits students more,
should tracking be our choice?"

X ✓ X

How do we ignite this same creativity and
level of comfort with older students who
haven’t had positive math experiences?

✓ X ✓

Table 4: Sample of Confused posts from EDUwhen adapting
from HS.

the average performance of DiAd-Sample on the test set from the
target course (69.48) was better than that of S+T (65.16), indicating
that DiAd-Sample changed more during the adaptation process.
Accordingly, in Table 3 we see that DiAd-Sample’s performance
on the source test set (67.88) is worse than that of S+T (69.75).
Nevertheless, we see that the average performance of DiAd-Sample
on the source test set is close to that of SrcOnly (70.09).

Figure 3 also shows the performance change of DiAd-Sample
on the source test set as it adapts the classifier to the new domain.
We can see that, in general, as the number of iterations increases,
the performance on the source course either remains almost the
same, or degrades very slightly. Surprisingly, we even see a slight
improvement in the source performance when adapting from MED
to HS. This could be attributed to the availability of more training
data, even if not from the same course and is surrogately labeled.
Q7: Most unexpected aspects of our findings
The most interesting observation in our experiment was how some
courses can be inherently difficult to predict on. For instance, if
in-domain training data on the target is available (corresponding
to the ‘Oracle’ column of Table 2), the F1 scores for HS and MED
are reasonable on an absolute scale (> 80). However, prediction on
EDU is very difficult (F1 score of about 40), which is the case even
if target-domain training data is available. This problem becomes
even more severe when target-domain training data is not available
(F1 scores of 29 and 35). This indicates a need for future exploration
of the cause of this poor performance and design of more robust
algorithms, irrespective of the question of domain adaptation.

Another surprising result was the remarkable performance of
DiAd when adapting from HS or MED to EDU. Our experiments
revealed that the performance of DiAd-Sample for these pairs (55.03
and 50.37) was significantly better than performance of the Oracle
on the same pairs (40.99 and 41.64). This is surprising because the
Oracle has access to manually annotated target-domain training
data, which DiAd does not have and only estimates surrogate labels
on the target-domain. This superior performance cannot simply
be attributed to the availability of more training data (manually
annotated or surrogate). This is because HF, S+T and FE also have
access to same data as DiAd (surrogate labels in target domain), but
their performance is much worse than that of Oracle. This leads us
to hypothesize that the rate and order in which DiAd iteratively
adapts to the new domain may lead to fundamentally stronger
models with the same amount of data.

Figure 4: Visualization of feature-weights for different mod-
els. We can see that SrcOnly and Oracle are very different
from each other while DiAd’s profile (visually) intermediate
between them

4.6 Error Analysis
Table 4 shows examples of confused posts that were predicted
correctly/incorrectly by various models. Due to space constraints,
we only show examples of posts when adaptating from HS to EDU.
The first row is an example of successful adaptation, where the post
was incorrectly predicted (predicted as not-confused) by SrcOnly
but correctly predicted by Oracle and DiAd-Sample. This happened
possibly because the post was about EDU-specific content (teaching
kindergarten kids), and so SrcOnly, trained on HS instances, could
not predict it correctly but when adapted to EDU, could yield correct
prediction. The instance in the second row was correctly predicted
by Oracle but incorrectly predicted by SrcOnly and DiAd-Sample.
This could have happened because even though the post was target
(EDU) specific, it was unusually long (... represents content we
ommitted) which might have resulted in adapted signals getting
lost or mixed with other signals. This is an example of insufficient
adaptation. The last row represents an interesting case when after
adaptation, DiAd could make correct prediction on the instance
even though Oracle could not. This could have happened because
the post was a short and well-formed question and it is likely that
similar posts from the labeled corpus from the source course could
have helped the model in correctly predicting this instance.

4.7 Model Visualization
The heatmap in Figure 4 demonstrates the (normalized) weights for
the 100 most important features for adaptation from HS to MED.
The Y-axis represents the features and X-axis represents the differ-
ent models (one column each for the three models). Blue and red
colors represent small and large weights respectively, and for ease
of visualization the features are sorted according to their weights
learned by SrcOnly. We see that the feature-weight profiles of Sr-
cOnly (left column) and Oracle (right column) are most different
from each other indicating a need for DA. The profile of DiAd (mid-
dle column), on the other hand, is (visually) intermediate between
that of SrcOnly and Oracle. This indicates that DiAd steers the
SrcOnly model to be more like the Oracle.
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5 DISCUSSION AND CONCLUSION
The necessity for domain adaptation: DA is essential in predic-
tive learning analytic models in online course contexts, considering
the short life cycle of a typical course and the cost of manual an-
notations for a course. Addressing this problem of DA enables the
application of classification models developed for one course to
courses without labeled data. This is especially likely in at-scale
learning environments, where new courses are constantly being
added without access to timely labeled data. In this paper we have
experimentally demonstrated the need for sophisticated DA meth-
ods for this field with confusion detection as a case.
Design justification for DiAd: We have shown the inadequacy
of existing unsupervised DA methods based on transforming a
classifier’s features, which could be explained because most of
the features are largely transferable. The difference possibly lies in
adapting to the new conditional distribution of the label space given
the inputs and we propose to tackle that using surrogately labeled
instances from the target domain. Our proposed approach, DiAd,
tackles this problem by iteratively and gradually introducing sur-
rogately labeled instances from the target domain to the classifier,
and slowly adapting it to the target course. Our experiments also
demonstrated the utility of DiAd as compared to other alternatives.
Target audience and impact on teaching and learning activ-
ities: Our intent here was to draw the community’s attention to-
wards the dire need for DA in this field to enable practical appli-
cations. DA is amenable for use at an institutional- or learning-
platform level for predictive/classification tasks that can be applied
at-scale to more than one course. Additionally, online education
technology designers and instructional personnel may mutually
benefit from an exchange of course data and DA results for effective
course design and enhanced productivity.

Future work could study DA for various problems in at-scale
learning leveraging their commonalities and differences. While this
study explored the use of DA for multiple courses, limitations in the
dataset prevented us from exploring the use of DA for subsequent
offerings of the same course, which we suggest as another direction
for future exploration. To conclude, we addressed the problem of
adapting a classifier to new courses for the confusion detection
task. Our proposed approach, DiAd, tackles this by iteratively and
gradually introducing surrogately labeled instances from the target
domain to the classifier.We demonstrated that DiAd outperforms all
baselines without considerably compromising on its performance
in the source course. Also, its performance is very close to that of a
hypothetical classifier which uses labeled target data.
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