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Abstract

Any theory aimed at understanding commonsenserea-
soning, the process that humans use to cope with the
mundane but complex aspects of the world in evalu-
ating everyday situations, should account for its flex-
ibility, its adaptability, and the speed with which it is
performed. Current theories of reasoning, however, do
not satisfy these requirements, a fact we attribute, at
least partly, to their separation from learning.

While the central role of learning in cognition is
widely acknowledged, most lines of research neverthe-
less study the phenomenon of “learning” separately
from that of “reasoning”. The work presented here
is motivated by the belief that learning is at the core
of any attempt at understanding high level cognitive
tasks. A formal model for the study of reasoning is de-
veloped in which a learning component has a principal
role, and its advantages over traditional formalisms for
the study of reasoning are shown.

This paper presents an integrated theory of learning,
knowledge representation and reasoning within a uni-
fied framework called Learning to Reason. The Learn-
ing to Reason framework combines the interfaces to
the world used by known learning models with a rea-
soning task and a performance criterion suitable for
it. It is shown that the framework efficiently supports
“more reasoning” than traditional approaches and at
the same time matches our expectations of plausible
patterns of reasoning. Several results are presented to
substantiate this claim, presenting cases where learn-
ing to reason about the world is feasible but either
reasoning from a given representation of the world or
learning representations of the world do not have effi-
cient solutions.

Overall, this framework suggests an “operational” ap-
proach to reasoning, that is nevertheless rigorous and
amenable to analysis. As such, it may be a step to-
ward a rigorous large-scale empirical study of learning
and reasoning.

The paper presents work originally introduced by
Khardon and Roth (Khardon & Roth 1994a) and sur-
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veys further developments made within this frame-
work more recently.

Introduction

Consider a baby robot, starting out its life. If it were
a human being, nature would have provided for the
infant a safe environment in which it can spend an ini-
tial period of time. In this period the robot adapts to
its environment and learns about the structures, rules,
meta-rules, superstitions and other information the en-
vironment provides. In the meantime, the environment
protects it from fatal events. Only after this “grace pe-
riod”, is the robot expected to have “full functionality”
in the environment, but naturally, its performance de-
pends on this environment and reflects the amount of
interaction it has had with it.

While the central role of learning in cognition is
widely acknowledged, early theories of intelligent sys-
tems have assumed that cognition (namely, computa-
tional processes such as reasoning, language under-
standing, object recognition and other “high level”
cognitive tasks) can be studied separately from learn-
ing, or as phrased by Kirsh (Kirsh 1991), that “learning
can be added later”.

This paper presents a new framework for the study
of Reasoning. In contrast to earlier approaches to rea-
soning, the Learning to Reason framework views learn-
ing as an integral part of the process, and suggests to
study the entire process of learning some knowledge
representation and reasoning with it.

In this framework an agent is given access to its fa-
vorite learning interface, and is also given a grace pe-
riod in which it can interact with this interface and
construct a representation KB of the world W. The
reasoning performance is measured only after this pe-
riod, when the agent is presented with its reasoning
task. A related scenario in which the agent learns and
reasons in an on-line fashion is also studied and some-
times yields a more natural view of the learning and
reasoning process.



In the Learning to Reason framework it is not as-
sumed that the knowledge representation describing
the “world” is given to the agent. Instead, the agent
constructs the knowledge representation while inter-
acting with the world. In this way the reasoning task
is no longer a “stand alone” process, and the agent
does not need to reason from a previously defined “gen-
eral purpose” knowledge representation. Rather, it can
choose a knowledge representation that facilitates the
reasoning task at hand. Moreover, we take the view
that a reasoner need not answer efficiently all possible
queries, but only those that are “relevant”, or “com-
mon”, in a well defined sense. This relaxation can be
used by the agent in selecting its knowledge represen-
tation. In addition, by viewing the interaction of the
agent with the environment while learning and reason-
ing in a unified way the performance of the agent can
be measured relative to the environment it interacts
with. Thus, while in the Learning to Reason frame-
work the knowledge representation used by the agent is
still a crucial ingredient, its effectiveness now depends
on whether it is efficiently learnable and, at the same
time, supports efficient reasoning performance relative
to the environment.

We prove the usefulness of the Learning to Reason
approach by showing that through interaction with
the world, the agent truly gains additional reasoning
power, over what is possible in the traditional setting.
Several results are presented to substantiate this claim,
exhibiting cases where learning to reason about the
world is feasible but either (1) reasoning from a given
representation of the world or (2) learning representa-
tions of the world do not have efficient solutions.

In this paper we present a high level survey of the
theoretical work within the Learning to Reason frame-
work. The work on this framework started by Khardon
and Roth in (Khardon & Roth 1994a), and many of
the works discussed here are extensions of this paper
in various directions. No technical details are given
here. Rather, we motivate the framework, describe its
high level principles and briefly discuss how they can be
implemented and what results they yield. For prelim-
inaries on reasoning, learning and rigorous definitions
for the material presented here, consult (Khardon &

Roth 1994a).

Motivation

The generally accepted framework for the study of rea-
soning in intelligent systems is the knowledge-based
system approach (McCarthy 1958; Nilsson 1991). It
is assumed that the knowledge is given to the sys-
tem, stored in some representation language with a
well defined meaning assigned to its sentences. The

sentences are stored in a Knowledge Base (KB) which
is combined with a reasoning mechanism, used to de-
termine what can be inferred from the sentences in
the KB. Many knowledge representations can be used
to represent the knowledge in a knowledge-based sys-
tem. Different representation systems (e.g., a set of
logical rules, a probabilistic network) are associated
with corresponding reasoning mechanisms, each with
its own merits and range of applications. The question
of how this knowledge might be acquired and whether
this should influence how the performance of the rea-
soning system is measured is normally not considered.
The intuition behind this approach is based on the fol-
lowing observation:

Observation: If there is a learning procedure that can
learn an exact description of the world in representa-
tion R, and there is a procedure that can reason ezactly
using R, then there is a complete system that can learn
to produce “intelligent behavior” using R.

We believe that the separate study of learning and the
rest of cognition is, at least partly, motivated by the
assumption that the converse of the above observation
also holds. Namely, that if there is a system that can
Learn to Reason, then there is a learning procedure
that can learn a representation of the world, and a
reasoning procedure that can reason with it.

Computational considerations, however, render the
traditional self-contained reasoning approach as well as
other variants of it inadequate for common-sense rea-
soning. This is true not only for the task of deduction,
but also for many other forms of reasoning which have
been developed, partly in order to avoid the compu-
tational difficulties in exact deduction and partly to
meet some (psychological and other) plausibility re-
quirements. All those were shown to be even harder to
compute than the original formulation (Selman 1990;
Papadimitriou 1991; Roth 1996). As a consequence,
many recent works in reasoning aim at identifying
classes of limited expressiveness, with which one can
perform some sort of reasoning efficiently (Levesque
& Brachman 1985; Cadoli 1995; Levesque 1992; Sel-
man 1990). However, none of these works meet the
strong tractability requirements for common-sense rea-
soning (as described, for example, in (Shastri 1993)),
even though, (as argued, for example, in (Doyle & Patil
1991)) the inference is sometimes restricted in implau-
sible ways.

Very few works have considered the question of inte-
grating theories of reasoning and learning in any formal
way. In fact, results in these two fields are in a fairly
disconnected state. The current emphasis of the re-
search in learning is on the study of inductive learning



(from examples) of concepts (binary classifications of
examples). In this framework the performance of the
learner is measured when classifying future examples.
Perhaps the most important open question in learn-
ing theory today is concerned with the learnability of
DNF or CNF formulas (the problems are equivalent
in the current framework). However, even if one had
a positive result for the learnability of these classes,
this would be relevant only for classification tasks, and
cannot be used for reasoning. The reason is that if
the output of the learning algorithm is a CNF expres-
sion, then it cannot be used for reasoning, since this
problem is computationally hard. From a traditional
reasoning point of view, on the other hand, learning
a DNF is not considered interesting, since it does not
relate easily to a rule based representation. Alterna-
tive representations studied in learning theory are also
not geared towards supporting the reasoning task, and
are thus not directly usable. Other problems that ex-
ist in the interface between a learning algorithm and a
reasoning algorithm are discussed later in this paper.

In this work, therefore, while we build on the frame-
work and some of the results of computational learn-
ing theory, we distinguish the traditional learning task
which we call here Learning to Classify (L2C) from the
new learning task, Learning to Reason.

The Learning to Reason approach should also be
contrasted with various knowledge compilation studies
(Selman & Kautz 1991; Moses & Tennenholtz 1993).
There, a theory (KB) is given to the system designer
who is trying to compile it, off line, into a more
tractable knowledge representation, to facilitate the
answering of future queries. In our approach, a world
representation is not given to the agent, but instead,
it is assumed that the agent can access the world itself
via some reasonable interface and acquire information
that, later on, will support query answering correctly
and efficiently.

This work is similar in nature to the Neuroidal model
developed by Valiant (Valiant 1994). The model devel-
oped there provides a more comprehensive approach to
cognition, and akin to our approach it views learning as
an integral and crucial part of the process. There, the
agent reasons from a learned knowledge base, a com-
plex circuit, and thus can be modeled by our frame-
work. Indeed reasoning in the Neuroidal model shares
many properties with the Learning to Reason frame-
work. One difference is that in some instances of the
Learning to Reason framework, though not all, we re-
strict our discussion to a fixed, consistent world, in an
effort to give a more formal treatment of a reasoner
that has learned its knowledge base.

Learning to Reason

Motivated by the abovementioned computational con-
siderations we argue that a central question to con-
sider, if one wants to develop computational models for
commonsense reasoning, is how the intelligent system
acquires its knowledge and how this process of interac-
tion with its environment influences the performance
of the reasoning system. Thus the Learning to Reason
theory is concerned with studying the entire process
of learning some knowledge representation and reason-
tng with it. In its most abstract form the Learning to
Reason approach has the following principles:

e Intelligent agents are not omniscient:

The view of commonsense reasoning taken here is
that the agent has to function in a very complex
world that may be hard to represent exactly. Luck-
ily, the agent need not be omniscient, but rather has
to perform well on a fairly wide, but restricted, set
of tasks. Thus, the requirements from the reasoning
stage may be relaxed.

e The goal of the learning stage depends on the re-
quired functionality:
The learning stage is not evaluated by how well its
output models the world, but rather by how well it
supports the required functionality. Given, for ex-
ample, that the agent is only required to perform
well on a restricted® class of tasks, there may not be
a need for the agent to learn a complete description
of the world. A partial or approximate representa-
tion may be sufficient to support the relaxed reason-
ing requirements.

e Interaction with the world is a key issue:

The interaction of the agent with its environment
during the learning stage is an important aspect of
this view. The type of interaction assumed depends
on the task the agent is to perform and may range
from observing examples, actively studying the envi-
ronment using membership queries, interacting with
a teacher or “being told” some facts. Naturally,
there may be a tradeoff between the strength of this
interaction and the resulting functionality.

e The knowledge representation used may depend on
the functionality:

! This should not be taken too narrowly. The intention
is not to perform well a single mission, but rather learn in
order to perform well on a fairly wide collection of tasks,
which share some commonality. This is the way it has been
used in the cases already studied.



The notion of knowledge representation is as impor-
tant in the Learning to Reason framework as in the
more traditional KBS framework. However, the ef-
fectiveness of the knowledge representation here de-
pends on its learnability and on how well it supports
inference, rather than on its comprehensibility. In
this way, there may not exist a “general purpose”
knowledge representation on which a “general pur-
pose” inference engine can act. Instead, different
knowledge representations should learned in order
to support various tasks.

e The performance of the agent is measured with re-

spect to the world it functions in, and not in any
absolute terms:
The world in which the agent performs its task is the
same world that supplies the agent the information
when learning. One interpretation of this principle
may be that the performance of the agent is mea-
sured only on a collection of tasks that are “relevant”
or “common” in the environment.Another may be
that the same arbitrary “world” that supplies the
information in the learning phase is used to measure
the agent’s performance later. In its general form
this principle induces a unified way to view the in-
teraction of the agent with its environment during
the learning and reasoning stages, and suggests that
both should be governed by the same distribution.

In general, it may not be necessary to appeal to a
notion of a “world” at all (e.g., by not making any
assumptions on the world the agent functions in)
when the performance of the agent on the required
functionality can be measured with respect to the
functionality observed while learning.

e Rigor and efficiency:

The aim was to define the framework in a way that
is rigorous and amenable to analysis. For this pur-
pose the interaction of the agent with its world is de-
fined in a formal way (as in Computational Learning
Theory), as are the tasks to be performed and any
assumptions made on the world the agent functions
in. In addition, it is usually required that Learning
to Reason is done in time that is polynomial in the
natural complexity parameters.

Results

Reasoning, as the term is used in Al, is viewed as hav-
ing a major role in several high level cognitive tasks, in-
cluding language understanding, high level vision and
planning, tasks which rely on performing some sort of
inference. A basic inference task considered in this

context, that of deductive inference, is the focus of this
presentation. In the first part of this section we concen-
trate on the ideas as presented by Khardon and Roth
in the original paper on this framework, and discuss
some of the results proved there. Later, we briefly sur-
vey some other results proved within this framework.
The results are presented at a high level and without
any of the technical details. Consult the relevant pa-
pers for those.

General Framework

Several general questions regarding the relation of the
Learning to Reason (L2R) framework to the two exist-
ing ones, the traditional reasoning framework and the
traditional learning framework have been considered
(Khardon & Roth 1994a). Most of these were consid-
ered for the task of deductive reasoning. First, it was
shown that when the class of queries is not restricted,
L2R implies L2C. However, the interesting aspect of
this is that this property does not hold if the class of
queries is restricted in some natural way (see next sec-
tion). A second basic question to consider concerns the
possibility of Learning to Reason by putting together
existing learning and reasoning algorithms. As pointed
out earlier, this approach has a problem whenever the
output of the learning algorithm does not support effi-
cient reasoning, as happens in many of the commonly
used knowledge representations. Even when this is not
a problem, it turns out that the straightforward ap-
proach that builds a L2R system by reasoning from the
output of a (PAC or mistake bound) L2C algorithm,
has some shortcomings. In particular, it is shown that
a PAC learning algorithm, provided that it has an ad-
ditional property (“learning from below”), can be com-
bined with a reasoning algorithm to yield a PAC-Learn
to Reason algorithm. The significance of this result,
however, is that it exhibits the limitations of L2R by
combining reasoning and learning algorithms: relaxing
the requirement that the algorithm learns from below
is not possible. Similar behavior is shown for mistake-
bound algorithms.

Deductive Reasoning

The most striking evidence of the usefulness of this ap-
proach is given in the context of deductive reasoning.
It is shown that the new framework allows for efficient
solutions even in cases where the separate learning and
reasoning tasks are not tractable. The following results
are shown for Learning to Reason algorithms that use
a set of models (satisfying assignments) as their knowl-
edge representation. The results build on a characteri-
zation of reasoning with models developed in (Khardon

& Roth 1994b) (based on ideas from (Bshouty 1995)).



e Learning to Reason without Reasoning:
Consider the reasoning problem W & a, where W is
some CNF formula and « is a log nCNF (i.e., a CNF
formula with at most logn literals in each clause).
Then, when W has a polynomial size DNF? there
is an exact and efficient Learning to Reason algo-
rithm for this problem, while the traditional reason-
ing problem (with a CNF representation as the in-
put) is NP-Hard.

e Learning to Reason without Learning to Clas-
sify:
Consider the reasoning problem W |= «, where W
is any Boolean formula with a polynomial size DNF
and «a is a lognCNF. Then, there is an exact and effi-
cient Learning to Reason algorithm for this problem,
while the class of Boolean formulas with polynomial
size DNF is not known to be learnable in the tradi-
tional (Learning to Classify) sense.

Learning to Reason algorithms that use formulas as
their knowledge representation are also considered, and
results of the same nature can be shown there too. In
the following result the formula-based knowledge rep-
resentation does not describe the world exactly but
rather an approximation of it (see below). The follow-
ing builds on a learning (to classify) result of Frazier

and Pitt (1993):

e Learning to Reason without Reasoning:
Consider the reasoning problem W = «, where W
is any Boolean formula that has a Horn approxima-
tion of polynomial size, and « is a Horn expression.
Then, there is an exact and efficient Learning to Rea-
son algorithm for this problem, while the problem of
learning W exactly is not known to be solvable, and
the problem of reasoning from a representation of W
is not tractable.

Of course, these algorithms do not solve NP-hard
problems. Rather, the additional reasoning power is
gained through the interaction with the world. In the
first instance, examples from the world are used to con-
struct the model-based representation. In the second
instance the queries presented by the interface are used
to construct the approximation of W. An additional
crucial observation, used in two of these results is that
in order to reason with respect to W one need not
learn W exactly. Instead, it is sufficient to use the
least upper bound approximation of W. (The least
upper bound approximation is, in some sense, (Selman

2The DNF representation is not given to the reasoner.
Its existence is essential, since the algorithm is polynomial
in its size.

& Kautz 1996; Khardon & Roth 1994b) the function
closest to W in the class of queries we reason about).
These approximations are shown to be learnable in a
form that supports the reasoning task efficiently, and
this is used to prove the Learning to Reason results.

These results show that neither a traditional rea-
soning algorithm (from the CNF representation) nor a
traditional learning algorithm (that can “classify” the
world) is necessary for Learning to Reason. Moreover,
the results exemplify the phrase “intelligence is in the
eye of the beholder” (Brooks 1991), since our agent
seems to behave logically, even though its knowledge
representation need not be a logical formula and it does
not use any logic or “theorem proving”.

To summarize, the new positive results are made
possible by a combination of several features, which
can be viewed as a direct application of the general
principles listed above to the current instantiation.
First, we relax the inference problems by restricting
the classes of queries considered®, while, at the same
time, using different knowledge representations (that
may not be in the traditional comprehensible form) in
which this can be exploited. Second, we represent in
our KB the least upper bounds of the “world” function
rather than the exact representation. Third, and per-
haps conceptually most important, our formal frame-
work for the study of reasoning is different from pre-
vious ones since we allow the agent to interact with
the world, and can therefore measure its performance
relative to the world.

Other Learning to Reason Results

As mentioned above, the framework should be seen in
a more general context and can be applied in a variety
of tasks. We briefly point to results which have be
recently developed for other, related, reasoning tasks
within this framework. We discuss in the following
only theoretical results within this framework, and do
not consider more applied work that is influenced by

this framework (Golding & Roth 1996).

Abductive Reasoning

The results cited above are based on learnability re-
sults for model-based representations. Together with
the results in (Khardon & Roth 1994b), which show
how model-based representations can be used for effi-
cient abductive reasoning (see there for details on the
abduction formalisms used) this yields an algorithm
for Learning to Reason abductively. Moreover, as in

3Notice that restricting the classes of queries considered
does not change the intractability of the deduction problem,
if the world is represented traditionally, as a CNF formula.



the deductive case, the result obtained can be phrased
as a “Learning to Reason without Reasoning” result.

Default Reasoning

As in the case of abductive reasoning, learnability re-
sults for model-based representations, together with
the results in (Khardon & Roth 1995a), which show
how model-based representations can be used for effi-
cient default reasoning, yield an algorithm for Learning
to Reason with defaults. In particular, the results pro-
vide a “Learning to Reason without Reasoning” result
to fragments of Reiter’s default logic.

Reasoning with Partial Assignments

The deductive reasoning approach presented above has
been extended in (Khardon & Roth 1995b) to han-
dle partial assignments in the input. Several inter-
pretations for partial information in the interface with
the environment are discussed there and the work on
model-based representations is extended to deal with
partially observable worlds. Then, learning to reason
algorithms that cope with partial information are pre-
sented. These results exhibit a tradeoff between learn-
ability, the strength of the oracles used in the inter-
face and the expressiveness of the queries asked. As
in the cases above, it is shown that one can learn to
reason with respect to expressive worlds, that cannot
be learned efficiently in the traditional learning frame-
work, and do not support efficient reasoning in the
traditional reasoning framework.

In addition, this work suggests another important
motivation for the study of reasoning (and in partic-
ular, deductive reasoning) and for integrating it with
learning. It is shown that when dealing with partial in-
formation in the interface, classification problems be-
come deductive reasoning problems.

Non-Monotonic Reasoning

In (Roth 1995; Valiant 1995) a different view of reason-
ing in the presence of partial assignments is developed.
The approach presented there implements in its gen-
eral form the L2R principle that the performance of
an agent is measured with respect to the world it func-
tions in. Namely, the interaction of an agent with its
environment during the learning and reasoning stages
are defined in a unified way, via the notion of an o0b-
servation.

This is used to formalize the intuition that incom-
plete information may actually help to support efficient
and plausible reasoning; the underlying assumption is
that missing information in the interaction of the agent
with its environment may be as informative for future
interactions as observed information.

Formally, (Roth 1995) shows that the problem of
reasoning from incomplete information can be pre-
sented as a problem of learning attribute functions over
a generalized domain. Several examples, which have
been used over the years as benchmarks for various
formalisms and that illustrate various aspects of the
non-monotonic reasoning phenomena, are considered
and translated into Learning to Reason problems. It is
then demonstrated that these have concise representa-
tions over the generalized domain and it is shown that
these representations can be learned efficiently, yield-
ing Learning to Reason algorithm that learn to reason
non-monotonically.

Learning to Take Action

(Khardon 1996) extends the framework in another di-
rection and studies planning problems. As in other
instances of the Learning to Reason framework, the
problem of learning to take actions is viewed as a su-
pervised learning problem. In this case, the learning
problem is in a dynamic stochastic domain; the agent
receives observations (a teacher acting in the world)
and learns from it an acting strategy. This model im-
plements the L2R principles and, in particular, the per-
formance of the agent is measured with respect to the
world it functions in with very few assumptions made
on the world. The knowledge representation selected
in this case is that of production rule systems and it is
shown that action strategies based on this representa-
tion can be learned. The most significant addition to
the framework developed there is that the agent acts
in the world, and there by changes it. Other works in
planning which can be viewed within the Learning to
Reason framework include, for example, (Baum 1996).

Learning Active Classifiers

Many classification algorithms are “passive”, in that
they assign a class-label to each instance based only
on the description given, even if that description is in-
complete. In contrast, an active classifier can, at some
cost, obtain the values of missing attributes, before
deciding upon a class label. The problem of learning
active classifiers is formalized and studied in (Greiner,
Grove, & Roth 1996). It is shown there that while
the “learn then optimize” approach to this problem
is certainly sufficient (in principle) to determine active
classifiers, it can fail (for complexity reasons) in various
ways. Perhaps the main point made there is that one
may be better off learning the active classifier directly.
The basic idea implements some of the L2R principles,
in that it is suggested to learn just enough to perform
some particular task, in a representation tailored to
this task, rather than trying to learn everything.



Conclusions

We have presented the Learning to Reason framework,
a recently introduced framework for the study of rea-
soning in intelligent systems, and surveyed some of the
recent results shown within it.

The Learning to Reason approach is intended to
overcome some of the fundamental problems in ear-
lier approaches to reasoning. This framework differs
from existing ones in that it sees learning as an integral
part of the process, it avoids enforcing rigid syntactic
restrictions on the intermediate knowledge represen-
tation, and it makes explicit the dependence of the
reasoning performance on the input from the environ-
ment.

The usefulness of the Learning to Reason approach is
shown by exhibiting a few interesting results, that are
not possible in the traditional setting. For the problem
of deductive reasoning we have shown cases in which
the new framework allows for successful Learning to
Reason algorithms, but stated separately, either the
reasoning problem or the learning problem are not (or
not known to be) tractable. Results of the same na-
ture have been shown also for other inference problems
including various reasoning and planning formalisms.

We have made explicit the main principles of the ap-
proach and have demonstrated that these can be im-
plemented in various ways in many inference problems.
In all these cases we have shown that the Learning
to Reason approach efficiently supports “more reason-
ing” than traditional approaches and at the same time
matches our expectations of plausible patterns of rea-
soning.

Certainly, these are not the only works which can
be viewed as implementations of the L2R principles.
Some practitioners have argued before, as is argued
here, for an “operational” approach to the study of rea-
soning. One of the contributions of this line of research
is that it shows, in a formal sense, that an operational
approach is not a “necessary evil” but rather a well
justified path and moreover, that an “operational” ap-
proach to reasoning can be developed, that is rigorous
and amenable to analysis.

We believe that this framework is a step toward
constructing an adequate computational theory of rea-
soning. One major difference between the traditional,
knowledge-based system approach to intelligent infer-
ence and the L2R approach is that the latter approach
suggests that for large scale reasoning to work in prac-
tice, reasoning systems need to be trained over a large
number of examples. Integrating the knowledge ac-
quisition stage with the reasoning stage in a plausible
manner, as suggested here, may thus be an important
step toward a rigorous large-scale empirical study of

learning and reasoning.
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