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Abstract

Cross document event coreference (CDEC) is an important task that aims at aggregating event-
related information across multiple documents. We revisit the evaluation for CDEC, and dis-
cover that past works have adopted different, often inconsistent, evaluation settings, which either
overlook certain mistakes in coreference decisions, or make assumptions that simplify the coref-
erence task considerably. We suggest a new evaluation methodology which overcomes these
limitations, and allows for an accurate assessment of CDEC systems. Our new evaluation setting
better reflects the corpus-wide information aggregation ability of CDEC systems by separating
event-coreference decisions made across documents from those made within a document. In
addition, we suggest a better baseline for the task and semi-automatically identify several incon-
sistent annotations in the evaluation dataset.

1 Introduction

Understanding events is crucial to natural language understanding and has applications ranging from
question answering (Berant et al., 2014; Narayanan and Harabagiu, 2004), to causal reasoning (Do et
al., 2011; Chambers and Jurafsky, 2008) to headline generation (Sun et al., 2015). The task of Cross
Document Event Coreference (CDEC) determines if two event mentions (which belong to different doc-
uments) refer to the same event (Bagga and Baldwin, 1999; Bejan and Harabagiu, 2014). Figure 1 shows
an example of two events whose mentions co-refer across 3 documents,

[King]	decided	to	fire	
[O’Brien]	,	who	s;ll	has	two	
years	lea	on	the	contract	he	
signed	when	he	was	hired	by	
the	[Sixers]	on	April	21	,	2004.	

Up	the	coast,	the	[Philly	Sixers]	
canned	[Jim	O’Brien]	(	who	had	
been	under	fire	all	season	)	and	
quickly	hired	[Mo	Cheeks].		

[76ers]	have	relieved	[Maurice	
Cheeks]	of	his	coaching	
responsibili;es	.		
[Cheeks]	was	brought	aaer	[Jim	
O'Brien]	was	relieved	of	his	du;es.	

O’Brien fired! Cheeks hired!

Figure 1: Event coreference across 3 documents. Event mentions are shown in bold and its participants are enclosed by
brackets, []. Note that there are multiple firing events, but only a few co-refer.

An efficient CDEC system enables corpus-level aggregation of event attributes, which can prove valu-
able for tasks such as information extraction and aggregation (Humphreys et al., 1997; Zhang et al.,
2015), topic detection and tracking (Allan et al., 1998), multi-document summarization (Daniel et al.,
2003) and knowledge discovery (Mayfield et al., 2009).

In this work, we analyze whether existing CDEC evaluations reflect a system’s ability to predict cross
document links. Past works have adopted different evaluation methodologies which either make simpli-
fying assumptions about the coreference task, such as ignoring singletons, or overlook certain corefer-
ence mistakes made by a CDEC system (as discussed in §4). Furthermore, under existing evaluations,
a system which only predicts within document coreference links can score higher than a system which
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predicts both within and cross document links. However, the latter system is clearly useful at aggregating
information at corpus-level by finding across document links.

We address these issues by lifting the aforementioned assumptions, and proposing a new setting which
enables accurate evaluation of the cross document coreference performance (§ 4.1). Lifting these assump-
tions also allowed us to semi-automatically identify several inconsistent annotations in the dataset. As
the current evaluation dataset is the only available dataset with cross document coreference annotations,
it is prudent to improve its annotation quality. We describe these annotation errors in § 7.3.

2 Related Work

Work on event coreference deals primarily with coreference within document, mostly building on in-
sights gained from the entity coreference literature (Ng and Cardie, 2002; Bengtson and Roth, 2008;
Lee et al., 2012; Peng et al., 2015). Recent approaches (Liu et al., 2014; Araki et al., 2014; Peng et
al., 2016) have shown improvements in within document event coreference by exploiting event specific
sub-structure (viz. sub-event or information propagation to arguments) and new event representations.

In comparison, cross document event coreference has been a less well-studied problem. Early work on
cross document event coreference was done by Bagga and Baldwin (1999), who showed preliminary re-
sults on small exploratory datasets. To encourage research in this direction, Bejan and Harabagiu (2010)
created the Event Coreference Bank (ECB), the first dataset with both within and across document event
coreference annotations. ECB contained 482 documents, obtained from the Google News archive. Bejan
and Harabagiu (2010) also showed encouraging results on ECB with several unsupervised Bayesian ap-
proaches. Later, ECB was augmented by Lee et al. (2012), to include entity level coreference annotations
as well. On the new dataset, which they named EECB, they showed how entity and within document
event coreference can benefit from making joint coreference decisions. Using EECB, Wolfe et al. (2015)
formulated event coreference as an predicate alignment problem. Cybulska and Vossen (2014) noted that
ECB and EECB did not have enough lexical diversity, thus oversimplifying the cross document corefer-
ence task. To get around this, they augmented the ECB corpus with 502 documents and released a larger
corpus with event coreference annotations, named ECB+.

While there have been other works which use multi-modal supervision signals (Zhang et al., 2015)
for CDEC, at present, ECB+ is the sole public dataset with cross document coreference annotations for
events, leading to its popularity (Bejan and Harabagiu, 2014; Cybulska and Vossen, 2015; Yang et al.,
2015). The most recent work using the ECB+ corpus is that of Yang et al. (2015), who developed a
novel Bayesian clustering framework, which clusters event within and across documents, by modeling
the clustering process as a Hierarchical Distance Dependent Chinese Restaurant Process (HDDCRP).

3 Cross Document Event Coreference

We view CDEC as a clustering task aimed at event-specific information aggregation. The clustering
generated by a CDEC system allows one to examine all appearances of an event over a large corpus,
shedding light on how the same event gets described in different documents.

We first describe our notation and the layout of the ECB+ dataset, and use Figures 2a and 2b to
illustrate our definitions. Some statistics for the splits are shown in Table 1. We use the train, dev and
test splits of Yang et al. (2015).

Event Mention A phrase which describes the action associated with an event. eg, in Figure 2a, fired is
the event mention of the event “76ers fired coach Maurice Cheeks”. We denote event mentions in bold.

Event Argument An event can have several arguments associated with it, describing its participants,
location, or time of occurrence. eg., in Figure 2a, for the event “76ers fired coach Maurice Cheeks”,
“76ers” and “Maurice Cheek” are participant arguments and “Saturday” is the time argument. We col-
lectively refer to these as the event arguments associated with the event mention (shown in [brackets]).

Event An event mention together with its arguments constitute an event, which describes an action
and its arguments (location, time, participant etc.). An events in ECB+ can be in one of 3 categories:



Head	coach[PER]	fired	

[76ers]	fired	
coach	

[Maurice	

Cheeks]	on	

[Saturday]	...	

Waitrose	Fire	at	[LOC]	

A	fire	ripped	
through	a	

[Waitrose	store]	

in	[Surrey]	…	

Topic 5! Topic 14!

A	fire	broke	out	
at	the	[Waitrose	

supermarket]	in	

[Wellington]	

town	

[King]	decided	

to	fire	
[O'Brien]	

from	the	

[Sixers]	…	

Sub-topic α Sub-topic β Sub-topic α Sub-topic β

[Maurice	

Cheeks]	has	

been	fired	as	
head	coach	of	

…	

basketball	

coach	[Jim	

O'Brien]	,	who	

was	fired	…	

…	scene	of	a	fire	
which	guhed	a	

[Waitrose	

supermarket]	in	

[Surrey]	…	

A	fire	damaged	

the	[Waitrose	

supermarket]	in	

[Wellington's	

High	Street]	

(a) Layout of the ECB+ corpus.

★	

★	

DOC 1

DOC 2

(b) Event Types

Figure 2: (a) Documents in ECB+ are divided into topics and sub-topics, and coreference links can exist across documents in
the same sub-topic. However, a coreference system is not aware of the topic (or sub-topic) partition at test time. (b) Coreference
clusters are enclosed by a dotted line. Solid circles denote singleton mentions, solid crosses and stars denote cross document
mentions, and solid plus denotes within document mentions.

(a) Singleton Event - an event with only one mention in the entire corpus. Shown as solid circles in
Figure 2b, (b) Within-Document (WD) Event - an event with multiple mentions all of which appear in
one document only. Shown as solid plus signs in Figure 2b, (c) Cross-Document (CD) Event - an event
with multiple mentions spanning several documents. Shown as solid crosses and stars in Figure 2b.

Two events are coreferent if they represent the same situation. In particular, the text representation of
the event should involve the same action and (some of the) arguments (Yang et al., 2015).

3.1 The ECB+ Corpus

In this section we discuss the specifics and layout of the ECB+ corpus.

Topics The documents in ECB+ are partitioned into several topics {T1, T2, ..., Tk} each of which con-
tains documents describing events of the same event type. For example, topic T5 contains documents
describing the firing of the head coach of a sports team. Figure 2a shows topics T5 and T14 and the event
types they described (“Head Coach [PER] fired” and “Waitrose Fire at [LOC]”).

Sub-Topics A collection of documents that describe the same event within a topic, constitute a sub-
topic. For example, the α sub-topic in topic 5 in Figure 2a, contains all documents describing the “firing
of Maurice Cheeks”, while those in the β sub-topic describe the “firing of O’Brien”. Every topic Ti
contains two sub-topics.1 The documents in the β sub-topic were added by Cybulska and Vossen (2014)
to increase the difficulty of the task, as a naive cross document event coreference system may incorrectly
link a mention of the ”O’Brien fire” event with a mention of the ”Cheek fire” event.

3.2 Problem Formulation

Input: A collection of documents, each of which containing several event mentions.
Output: The system outputs an assignment of a cluster-id to each event mention, such that event
mentions belonging to different documents but sharing the same cluster-id are coreferent.

Note that at test time, the CDEC system is not aware of the layout of the dataset so that it does not
exploit the partitioning of documents into topics and sub-topics when making coreference decisions. As
a result, a system can (incorrectly) link two event mentions across topics (or sub-topics), for which it
should be appropriately penalized in evaluation. However, we will see in the next section that current
evaluations do not meet this requirement.

1In principle, we can have more than 2 sub-topics per topic, but this does not occur in ECB+.



Train Dev Test Total

docs 462 73 447 982
topics 20 3 20 43
sub-topics 40 6 40 86

ev. mentions 5443 608 8951 14874
singleton 1866 167 5572 7605
WD 23 0 89 112
CD 3554 441 3290 7285
WD chains 2502 316 2138 4956
CD chains 691 47 479 1217

Table 1: Statistics of the ECB+ dataset. WD, CD refer to within document and cross document mentions respectively. WD
(CD) Chains count the number of mention clusters that refer to the same event within (across) document(s). See text for details.

4 Evaluation Settings

All evaluation settings transform the cross document coreference problem to a within document coref-
erence problem, by merging documents to create meta-document(s), such that cross document event
coreference chains correspond to within document chains in the meta-document(s). We first revisit the
evaluation settings that have been used in previous work. All these rely on the layout of the corpus,
which affects their strictness.

Bejan and Harabagiu (2014) (B&H) In this case, the documents belonging to each topic are merged
together to form a single meta-document M(Ti). In this way, we have k meta-documents, one for each
topic. Each meta-document is then evaluated separately for within document coreference, and the scores
are aggregated by taking the micro-average. This evaluation is also followed by other works (Cybulska
and Vossen, 2014; Cybulska and Vossen, 2015).

In this setting each topic’s meta-document is evaluated in isolation, assuming that there were no coref-
erence links made by a system across topics. However, a system can potentially link mentions across
topics, as the input to the system does not describe the topic (or sub-topic) layout. As a result, this eval-
uation is oblivious to incorrect coreference made across topics. For example, it will ignore a (incorrect)
link between the fire event mentions in topic T5 and topic T14 in Figure 2a.

Yang et al. (2015) (YCF) In their case, all documents which belong to the same sub-topic (say α) of
topic Ti are merged to create a meta-document M(Ti, α) for each sub-topic. Each such meta-document
is then evaluated separately for within document coreference. In addition, all singleton event mentions
are removed from the keys of all documents. 2

This setting implicitly makes two simplifying assumptions. First, it ignores singletons (referred to as
I.S.) during evaluation, this making the coreference task considerably simpler (singletons constitute over
60% of the test mentions) as the system does not get penalized for making incorrect links to mentions of
singleton events. Furthermore, by creating separate meta-document per sub-topic, this setting disregards
the inclusion of documents from the β sub-topic into the corpus (see § 3), since incorrect coreference
links across the sub-topics will not be penalized. This limitation (referred in Table 2 as S.T.) is similar,
but more lenient, to the one in the B&H setting. (see § 7).

4.1 Our Proposals

We now discuss our proposed evaluation methodologies which address the limitations discussed above.

Proposal 1 (SIMPLE-CDEC) In this case, we merge all documents, across topics, into a single meta-
document M . Unlike (Yang et al., 2015), we consider all event mentions (including singletons) in the
corpus, and do not create a separate meta-document for each sub-topic, making our evaluation closer to
what Cybulska and Vossen (2014) envisioned.

2We confirmed the YCF setting through personal communication with the authors and also examining the key and response
files they provided.



System 1 System 2 System 3

(a) Enclosing rectangles denote documents, solid crosses
(and circles) denote coreferent mentions of the same
event (gold clustering). Polygon regions denote
system response.

MUC B3 CEAFe BLANC

System 1 88.8 87.0 75.5 80.5
System 2 88.8 87.0 75.5 80.5
System 3 74.9 74.9 58.3 63.7

(b) Performance of different systems as evaluated under
SIMPLE-CDEC. Systems performing WD coreference are
awarded equally or more than system performing CD corefer-
ence.

Figure 3: (a) Outputs of three different systems. System 1 only performs within-document (WD) coreference. System 2 and
3 performs cross-document(CD) coreference and correctly identify the cross document link of the solid cross event, but make
mistake in the WD coreference. (b) SIMPLE-CDEC evaluation awards System 1 and System 2 same scores, and System 3 lower
scores. Note that this issue is not limited to SIMPLE-CDEC, but also B&H and YCF.

SIMPLE-CDEC fulfills the requirement that the evaluation of a CDEC system should not be aware of
the corpus layout into topics (as in ECB+) and all output links should be appropriately evaluated, unlike
what is currently done in B&H and YCF. 3

However, the SIMPLE-CDEC setting (just like B&H and YCF) does not distinguish the cross docu-
ment performance from the within document performance. For example, in Figure 3a, a system which
performs only within document coreference can get the same score as a system that performs both within
and across document coreference (see Table 3b). However, it is desirable to have an evaluation setting
that facilitates this distinction, and focuses on the ability of a CDEC system to aggregate information
across documents in a large corpus, that is, evaluate on purely cross document coreference links. A
CDEC system which performs within document event coreference only is not fully exploiting the large
corpus and does not discover links between documents.

Proposal 2 (PURE-CDEC) In this setting, we first preprocess each document so that all within docu-
ment mentions of the same event are reduced to a single meta-mention in that document. In this way,
we discount the within document coreference links and focus on the cross document coreference links.
Then, we follow the SIMPLE-CDEC setting to evaluate a single meta-document M generated from the
preprocessed system response and the gold key documents.

5 Evaluation Metrics

We briefly describe the coreference evaluation metrics that are used in our experiments.

MUC (Vilain et al., 1995) A link-level metric, MUC counts the minimum number of edge-insertions
or edge-deletions required to obtain the gold clustering (key) from the predicted clustering (response). A
known limitation of MUC is that it does not reward a system for correctly identifying singletons.

B3 (Bagga and Baldwin, 1998) A mention-level metric, B3 calculates precision and recall for each
mention by measuring the proportion of overlap between the predicted and gold coreference chains. The
final score is an average over the scores for all mentions. Although it overcomes the limitations of MUC,
it uses mentions of the same entity (coreference chain) more than once.

CEAFe (Luo, 2005) An entity-level metric which first finds an optimal alignment between entities in
the key to the entities in the response by maximizing an entity similarity objective. This alignment is
then used to calculate the CEAF precision and recall.

Blanc (Luo et al., 2014) First described in (Recasens and Hovy, 2011) and later extended in (Luo et
al., 2014). Blanc is based on the Rand Index (Rand, 1971), and computes two F-scores, one evaluating
the quality of coreference decisions (Pairwise) and another evaluating the quality of the non-coreference

3While evaluation should not rely on the corpus layout, we do not in any way suggest that this is the ideal approach for
performing coreference. Indeed, considering coreference decisions over the entire corpus will be prohibitively expensive.



decisions (Pairwise-Negative). The Pairwise (PW) and the Pairwise-Negative (PWN) F-scores are then
averaged to compute the final Blanc F-score.

Each of the above metrics have some drawbacks. B3 and CEAF scores rapidly approach 100 if
many singletons are present, and the same can drive the Blanc-PWN score to dominate the Blanc-PW
score (Recasens and Hovy, 2011). This is why the entity coreference literature reports the CoNLL av-
erage, which is average of MUC, B3 and CEAFe F-scores (Pradhan et al., 2011). Following previous
work, we report CoNLL F1 and also the F-score averaged across all metrics.
Coreference Scorers For running evaluations under the YCF and B&H setting we use the standard
within-document coreference scorer of Pradhan et al. (2014). However, in the SIMPLE-CDEC and PURE-
CDEC setting, creating a single meta-document for the entire test split leads to a document with over 8000
mentions, which causes runtime issues for metrics like CEAFe and Blanc with Pradhan et al. (2014)’s
scorer.4 We use Hachey et al. (2014)’s scorer instead, which provides more efficient implementations.5

6 Baselines

We evaluate the following event coreference baseline models under the different evaluation settings,

Lemma In this model two events are coreferent if the head lemmas of their event mentions match.

Lemma-WD In this model we consider two event mentions coreferent if their head lemmas match and
they belong to the same document. This is the within document variant of the Lemma model.

Lemma-δ In this model two event mentions are considered coreferent only if their head lemmas match
and the tf-idf document similarity of the documents containing them exceeds a threshold (we use δ = 0.3
after tuning on dev). For δ = 0 this reduces to the Lemma baseline.

Supervised Agglomerative Clustering (SAC) Performs greedy agglomerative clustering, using a
learned pairwise classifier to score if two cluster of mentions are coreferent. Inter-cluster similarity
score is computed as the average of the similarity score of their mentions. Like Lemma-δ, two clusters
are considered for linking if the document similarity exceeds a threshold (we use 0.3 as above).

We re-implemented the pairwise classifier of Yang et al. (2015) using the same feature set. Mention
heads were found using dependency parses obtained by Stanford CoreNLP (Manning et al., 2014). We
identify the Framenet (Baker et al., 1998) frame evoked by an event mention, we use the SEMAFOR (Das
and Smith, 2011). For identifying the arguments for an event mention we use Illinois-SRL (Punyakanok
et al., 2008). The pairwise classifier was trained using the Illinois-SL package (Chang et al., 2015).

7 Experiments

We first show the limitations of using current evaluation settings by showing how they can produce a
wide range of results for the same baseline system. Next, we show the value of isolating the performance
on predicting cross document coreference links. Finally, we assess the quality of the dataset and de-
scribe how we semi-automatically detected different types of annotation errors. Since we focus here on
evaluation and not on developing an end-to-end CDEC system, we use the gold event mentions provided.

7.1 Comparing Evaluation Settings
We evaluate the lemma baseline under B&H, YCF, and SIMPLE-CDEC as described in §4. We aim to
show that the same baseline approach can achieve highly variable results depending on the evaluation
setting employed. We also isolate the effect of the two assumptions made by the YCF setting – first
by creating a meta-document per sub-topic (S.T. in Table 2), and then by ignoring singletons (I.S. in
Table 2) in SIMPLE-CDEC setting.

The results are shown in Table 2. Compared to SIMPLE-CDEC, all other settings assign the lemma
baseline unrealistically high scores. B&H does not penalize links predicted across topics and therefore
the F-score of the lemma baseline across all metrics increases. In addition to above, S.T. does not

4The CEAFe and Blanc evaluation did not finish after > 30 hours.
5Available at github.com/wikilinks/neleval.



Eval. Setting MUC B3 CEAFe Blanc CoNLL Avg of 4

P R F P R F P R F PW PWN F avg. avg.

Settings that include singletons.

SIMPLE-CDEC 30.5 75.7 43.4 28.4 81.9 42.2 65.6 18.6 29.0 11.1 98.4 54.8 38.2 42.3
B&H 37.4 75.3 50.0 49.4 81.6 61.5 39.9 70.8 51.0 30.5 93.4 62.0 54.2 56.1
S.T. 40.9 75.9 53.2 58.8 82.7 68.7 71.3 45.7 55.7 37.0 95.4 66.2 59.2 61.0

Settings that ignore singletons.

I.S. 79.5 76.1 77.8 50.7 54.0 52.3 39.9 46.7 43.1 31.0 98.4 64.7 57.7 59.5
YCF (=IS+ST) 94.5 75.8 84.2 92.0 53.6 67.8 36.2 75.2 48.9 53.3 98.7 76.0 67.0 69.2

Table 2: Evaluating the lemma baseline in different settings. S.T. creates a separate meta-document for each sub-topic,
while I.S. ignores singleton event mentions during evaluation. Note that the evaluation becomes more lenient from top to
bottom, with SIMPLE-CDEC being the most strict. Best values in each column under different settings are shown in bold.

Baseline MUC B3 CEAFe Blanc CoNLL Avg of 4

P R F P R F P R F PW PWN F avg. avg.

SIMPLE-CDEC

Lemma-WD 38.0 20.4 26.5 88.7 68.4 77.2 67.5 80.8 73.6 5.3 98.5 51.9 59.1 57.3
Lemma 30.5 75.7 43.4 28.4 81.9 42.2 65.6 18.6 29.0 11.1 98.4 54.8 38.2 42.3
Lemma-δ 40.9 72.5 52.3 59.0 81.1 68.3 73.6 45.5 56.2 32.8 98.5 65.6 58.9 60.6
SAC 44.2 52.9 48.2 75.2 76.0 75.6 70.5 62.6 66.3 28.6 98.5 63.5 63.4 63.4

PURE-CDEC

Lemma-WD 0.0 0.0 0.0 90.1 65.6 75.9 67.0 80.2 73.0 0.0 76.2 38.1 49.6 46.8
Lemma 18.7 62.7 28.8 27.2 74.8 39.9 65.7 18.6 29.0 7.2 76.2 41.7 32.6 34.9
Lemma-δ 29.4 42.4 34.7 68.6 71.6 70.1 70.6 56.8 62.9 26.5 76.2 51.3 53.0 52.6
SAC 30.5 42.0 35.3 70.6 74.5 72.5 71.2 63.2 67.0 25.3 79.0 52.2 58.3 56.7

Table 3: Comparing the baseline approaches under SIMPLE-CDEC and PURE-CDEC. Best values in each column under
different settings are shown in bold.

penalize cross sub-topic predictions as well, which boosts the performance further. This confirms that
settings like B&H do not penalize certain incorrect coreference links by exploiting the corpus layout.

Next, we compare the settings that ignore singleton event mentions (which constitute over 60% of
the test data) during evaluation. When ignoring singletons (I.S.), the F-score for all metrics improves
compared to SIMPLE-CDEC. Under I.S., incorrect coreference links to singleton events are discounted,
resulting in high scores. Finally, with YCF, which combines the assumptions of I.S. and S.T., the scores
again improve dramatically.

This experiment clearly shows that the assumptions made by B&H and YCF lead to lenient evaluations.
SIMPLE-CDEC is a more appropriate evaluation setting since it remains unaware of the corpus layout and
correctly penalizes all incorrect coreference link predictions when evaluating a CDEC system.

7.2 Understanding Cross Document Coreference Performance

In this experiment we evaluate all the baselines using SIMPLE-CDEC and PURE-CDEC. The aim is to
show that if we do not evaluate the cross document coreference separately, a system can exploit the
evaluation by only focusing on correctly predicting within document coreference links.

The results are shown in Table 3. Lemma-WD predicts lots of singletons as it only links mention in
the same document. This results in high B3 and CEAF scores in both SIMPLE-CDEC and PURE-CDEC

since over 60% event mentions in the test data are singletons.
For SIMPLE-CDEC, the lemma-WD baseline performs surprisingly well, second to the SAC model.

All metrics reward Lemma-WD for identifying the within document links, which leads to the high
CoNLL score. Surprisingly, its CoNLL score is slightly higher than Lemma-δ, which is a model which
does both within and across linking. This is because the latter may incorrectly link some singletons across
documents. Note that this behavior is not exclusive to the SIMPLE-CDEC – a system which exclusively



predicts within document links can achieve such high scores under the B&H and YCF settings.
However, we can get a clearer assessment of cross document coreference performance by evaluat-

ing the models under the PURE-CDEC setting. As this evaluation only rewards finding correct cross
document links, Lemma, Lemma-δ and SAC model are the only models which get non-zero MUC and
Blanc-PW scores. As a result, the Lemma-WD average F-score drops considerably (by almost 10%) in
comparison to the Lemma-δ and SAC model (around 6%), revealing that these models indeed do bet-
ter cross document coreference. It is evident that to accurately assess the cross document coreference
performance, we should report both PURE-CDEC and SIMPLE-CDEC results.

It should be noted that Lemma performs worse than Lemma-WD because it makes incorrect cross
document links, due to the naive nature of the lemma match. On the other hand, Lemma-WD does not
make any across document links, avoiding incurring these penalties. It gets rewarded for “identifying”
singletons as described earlier in SIMPLE-CDEC. This conservative nature of Lemma-WD gets better
average scores than Lemma, even in the PURE-CDEC setting. Overall, SAC and Lemma-δ are the two
best models in Table 3.

Choice of Baseline Besides the aforementioned insights, Table 3 offers a better choice of baselines.
Bejan and Harabagiu (2014) and Yang et al. (2015) claimed that Lemma is a strong baseline for CDEC.
We believe that this claim held in these works only due to the lenient evaluation settings of B&H and
YCF, which did not appropriately penalize the incorrect across topic (and sub-topic) links made by the
Lemma baseline. However, the SIMPLE-CDEC and PURE-CDEC evaluations show that Lemma-δ is a
stronger baseline. For future comparisons, using Lemma-δ as a baseline is more appropriate.

7.3 The Annotation Quality of ECB+
Evaluating with singletons also helped in discovering annotation errors in the dataset. In addition to iden-
tifying annotation errors, as described below, we found that several documents were partially annotated,6

which is consistent with a similar observation made in (Liu et al., 2014).
We used the approach of Goldberg and Elhadad (2007) to semi-automatically detect annotation errors,

by training an anchored SVM. First, for each pair of mention (mi,mj) in the training data, we added a
unique anchor feature aij , thus making the data linearly separable. Next, we trained a SVM classifier on
all of the data with a high penalty parameter C. The classifier uses the anchor features to memorize the
hard to classify examples, which are either genuine hard coreference pairs, or incorrect annotations. By
thresholding the features weights for the anchor features |aij | > δ (we use δ = 0.95), we generated a
short-list of these hard cases, which we then examined by a annotator for mistakes. The errors we found
can be categorized as one of:
Missing Singleton-to-Singleton Link Two gold event mentions which should have been marked as
coreferent, but were marked as singletons. For example:

Aceh was hit extremely hard by the massive Boxing Day earthquake and tsunami in 2004, killing 170,000 people

A massive quake struck off Aceh in 2004 , sparking a tsunami that killed 170,000 people ...

Both mention pairs (earthquake,quake) and (tsunami,tsunami) refer to the same event, but their corefer-
ence links were missing in the annotation. Both the enclosing documents belong to the same topic.
Missing Singleton-to-Cluster Link A singleton event mention which should have been linked to an
existing cluster of mentions describing the same event.

LaRue , a Mississippi oil heir who became the first person found guilty of participating in the Watergate coverup

... strategy for capturing Southern votes and then a significant participant in the Watergate scandal .

The Watergate scandal mention is marked as singleton. However, the watergate scandal event appears in
several other documents to which the Watergate mention is marked as being coreferent. Again, both the
mentions belong to documents in the same topic.

We found over 300 such annotation errors which were incorrectly not linking singleton men-
tions. The list of errors detected is available at http://cogcomp.cs.illinois.edu/page/
publication_view/801.

6For example, Only 5 sentences out of 40 in a document were marked with events.



8 Conclusion

Accurate evaluation and high-quality annotations are crucial to our ability to measure progress in any
task. We showed that past work for CDEC have resorted to widely different evaluation approaches,
making several implicit assumptions, which simplify the coreference task and lead to overlooking coref-
erence mistakes. In particular, as we showed, excluding singleton mentions from the evaluation does
not seem justified. Furthermore, current evaluation methods heavily rely on the corpus being organized
into topics and sub-topics, but this may not always be available, especially for evaluation corpora. To
accurately measure CDEC performance, it is necessary to drop these assumptions. We recommend that
future evaluations report results using both SIMPLE-CDEC and PURE-CDEC settings.

Beyond these assumptions, the annotations in the current dataset are incomplete in several respects.
Indeed, we showed that over 300 annotation errors in the dataset can be detected semi-automatically,
and also noted that many documents were partially annotated. As this dataset is presently the only
dataset with cross document coreference annotations for events, such annotation errors make evaluation
difficult. We believe that to correctly evaluate this task and make progress, efforts must be made to create
thoroughly annotated datasets with high quality annotations.
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