
Incrementally Segmenting Incoming Speech into Pragmatic Fragments

Gregory S. Aist
Computer Science Department

University of Rochester
gaist@cs.rochester.edu

1 Introduction

The state-of-the-art in spoken dialog systems is, in
general, to process incoming speech one utterance
at a time, and then respond. We have been work-
ing to move computer understanding closer to con-
temporary models of human language understand-
ing, which operate incrementally, with information
shared across multiple levels of processing. Such
incremental methods have been shown to have var-
ious advantages over their nonincremental counter-
parts, such as better parsing (Stoness et al. 2005)

In this paper we describe work on a level of pro-
cessing which operates early on in language under-
standing: speech segmentation. Our algorithm has
a number of distinct features. First, it is incremen-
tal, operating on incoming speech one word at a
time. Second, it is pragmatic, making use of
knowledge of the specific domain in order to make
predictions. Third, it is linguistically based, mak-
ing predictions of fragments based on a
lightweight unification grammar. And finally, the
predictions are both syntactically and pragmatical-
ly relevant – the advice of the segmentation mod-
ule is passed on to the parser and to the user inter-
face, for further action as needed.

2 Segmentation Algorithm

The segmentation algorithm has several compo-
nents. There is a lookahead word which allows a
“peek” at the word ahead of the current word be-
ing processed. There is a cache which stores in-
coming words until they are consumed (or discard-
ed). There is a queue which stores the identified
fragments. There is a fragment finder which uses a
small unification grammar to identify Xbar frag-
ments such as the vbar move or the nbar large tri-

angle. A prefix inspector invokes the fragment
finder to calculate whether a given word sequence
is a valid prefix of a fragment. Reporting code no-
tifies the other components in the dialog system
(such as the parser and user interface) of fragments
that have been identified.

The segmentation algorithm operates as follows.

1. The cache and queue are set to the empty list.
2. In response to an incoming token, if the token is end-of-ut-
terance, go to step 1. Otherwise continue to step 3.
3. The fragment finder runs over the cache plus the current to-
ken.
4. If a fragment is found (move), and the words in that frag-
ment plus the lookahead do not yield a fragment (move a),
then report the fragment, add the fragment to the rightmost
side of the queue, and clear the cache – that is, close off the
current fragment and move on.
5. If no fragment is found and the words are a valid prefix,
then add the current token to the rightmost side of the cache.
(e.g. central is not itself a fragment, but is a valid prefix for
the region name central park) – that is, save a word for later.
6. If no fragment is found (a large) and the words are not a
valid prefix (a large is a prefix to an np, but not an nbar,
which is what we seek here), then remove the leftmost word
from the cache and add the current token to the right side of
the cache – that is, skip a word.
7. Go to step 2.

Figure 1 shows an example of a fragment being
used to indicate the results of incremental under-
standing to the user, in a testbed domain (Aist et
al. 2005). If the user had meant to specify one of
the triangles with a star or a circle on it, the word
following large triangle would not have been to
but rather something like with or that (has). It is
true that a later phrase might modify the large tri-
angle – such as the one with the star on it – but the
system as a whole could treat such refinements as
a repair.

A trace for move a large triangle to central park:

Words: MOVE a
Cache: []
Queue: []
Fragment(move)? Yes – vbar
Fragment(move a)? No
Report: vbar(move)

Words: move A large
Cache: []
Queue: [vbar(move)]
Fragment(a)? No
Valid prefix(a)? No

Words: move a LARGE triangle
Cache: [a]
Queue: [vbar(move)]
Fragment(a large)? No
Valid prefix(a large)? No

Words: move a large TRIANGLE to
Cache: [large]
Queue: [vbar(move)]
Fragment(large triangle)? Yes – nbar(large triangle)
Report: nbar(large triangle) ------- (See Figure 1)

Words: move a large triangle TO central
Cache: []
Queue: [vbar(move), nbar(large triangle)]
Fragment(to)? Yes – pbar(to)
Fragment(to central)? No
Report: pbar(to)

Words: move a large triangle to CENTRAL park
Cache: []
Queue: [vbar(move), nbar(large triangle), pbar(to)]
Fragment(central)? No
Valid prefix(central)? Yes – nbar(central X)

Words: move a large triangle to central PARK </s>
Cache: [central]
Queue: [vbar(move), nbar(large triangle), pbar(to)]
Fragment(central park)? Yes – nbar(central park)
Report: nbar(central park)

Words: move a large triangle to central park </s>
Cache: []
Queue: [vbar(move), nbar(large triangle), pbar(to), nbar(cen-
tral park)]

Currently the segmentation algorithm handles am-
biguity issues such as prepositional phrase attach-
ment by deferring to the general parser. That is, a
sequence such as “a large triangle with a star on
the corner” would be segmented into the stream

[a, nbar(large triangle),
 pbar(with), a, nbar(star),
 pbar(on), the, nbar(corner)]

and the decision about whether the appropriate ref-
erent(s) were

(a) a large triangle decorated with a star, or
(b) (1) a large triangle
 and (2) a star up in the corner of the screen

would be deferred to later processing, where a
complete deep parse is calculated.

3 Related Work and Future Directions

This algorithm is related to work in determinis-
tic parsing (e.g. Marcus 1980) in that it uses looka-
head to make its decisions. It is not itself deter-
ministic since the fragments need not make it into
the final parse. (That depends on the decisions of
the parser itself).

The present algorithm is similar to left-corner
parsing in that it integrates bottom-up and top-
down information in order to make its decisions.
The classic formulation of left-corner parsing uses
alternating top-down and bottom-up steps. The
current algorithm uses a cache of as-yet-unpro-
cessed words that represent, in a sense, its bottom-
up data; as further evidence comes in, the entire
cache is reanalyzed to check for the top-down
match of a fragment. (This is fast since in practice
the fragments are small.)

Figure 1. In response to the nbar large triangle, the
(plain) large triangle has been highlighted. The

middle flag is in Central Park.

Finally, the relationship of the present algorithm
to current parsing methods such as probabilistic
chart parsing and head-driven parsing (e.g. Collins
2003, Charniak 2001, van Noord 1997) is at the
present time one of producer and consumer. It is
possible that the queue of Xbars might be
amenable to reanalysis to yield a complete parse,
but that remains ground for future exploration.

Acknowledgements
This material is based upon work supported by the
National Science Foundation under Grant No.
0328810. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily re-
flect the views of the National Science Founda-
tion.

References
G.S. Aist, E. Campana, J. Allen, M. Rotondo, M. Swift,

and M. Tanenhaus. 2005. Variations along the con-
textual continuum in task-oriented speech. Proceed-
ings of the 27th Annual Conference of the Cognitive
Science Society, Stresa, Italy, July. Paper number
769.

E. Charniak. 2001. Immediate-head parsing for lan-
guage models. ACL 2001.

M. Collins. 2003. Head-driven statistical models for nat-
ural language parsing. Computational Linguistics.

M. P. Marcus. 1980. Theory of Syntactic Recognition
for Natural Languages. MIT Press.

G. van Noord. 1997. An efficient implementation of the
head-corner parser. Computational Linguistics 23(3):
425-456.

S.C. Stoness, J. Allen, G. Aist, and M. Swift. 2005. Us-
ing real-world reference to improve spoken language
understanding. AAAI Workshop on Spoken Lan-
guage Understanding, Pittsburgh, Pennsylvania, July.
pp. 38-45.

