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Abstract

Given a sentence and a specific word or
phrase in that sentence, is it possible to re-
place that word or phrase with another and
have the sentence keep the same meaning?
Most paraphrasing work develops patterns
and templates that can replace other pat-
terns or templates in some context. But
what about a specific given context, how
do we know if a paraphrase rule applies?
Ideally if one knew the correct sense to ev-
ery word in the sentence, then one would
also know what other words or phrases
can replace a given word and have the sen-
tence keep its same or entailed meaning.
As it is there is no reliable way to tag
the sense of every word, and with current
sense repositories it is difficult (and per-
haps impossible) to determine what senses
can replace another for every word and ev-
ery domain. We will present a new task
and formalism that rests somewhere be-
tween these two approaches. Our system
will allow us to say if A can replace B in
a context sensitive way, even on unseen A
and B.

1 Introduction

Say you are given a sentence “The general com-
manded his troops.” Is that the same as saying “The
general spoke to his troops?” The goal of a para-
phrase system should be to detect or generate such

asymmetric pairs. Already many systems can gen-
erate rules or templates such as “X commanded Y”
can be rewritten as “X spoke to Y”. The problem
with these rules is how does one know when they can
be applied and in what order to truly keep the same
meaning. In the sentence “The Soloist commands
attention.”, is it still true that ‘commands’ can be re-
placed with ‘speaks to’? Alternatively, on a single
word level, one can ask, “could ‘speak to’ replace
‘command’ in the original sentence and not change
the meaning of the sentence.” This is really a word
sense disambiguation task: is the meaning of ‘com-
mand’ in the sentence the same as the meaning of
‘speak to.’ With a perfect sense tagger and perfect
sense repository our job would be nearly done.

What this project attempts is to learn when one
word can replace another in a specific sentence di-
rectly instead of learning an intermediate and possi-
bly more difficult word sense assignment or attempt-
ing to compile a list of complex rules for when and
if one phrase can replace a second. Our approach
lies somewhere in-between a template driven ap-
proach and straight word sense disambiguation since
it takes individual context into account and learns a
somewhat weaker, but hopefully still useful, sense
function.

The real impetus for this project is the need for
a word replacement component as part of a larger
entailment system (Ido Dagan and Magnini, 2005),
(de Salvo Braz et al., 2005), (R. Raina and Manning,
2005), (Oren Glickman and Koppel, 2005). In this
setup one is being asked specifically can a specific
word or phrase in the hypothesis replace a word or
phrase in the given sentence and keep the same or



entailed meaning as the given sentence. Such para-
phrasing requires knowledge of the specific context
and whether two words fit and do not disturb mean-
ing.

Previous paraphrase work generally viewed it as a
generative task, namely given a sentence or phrase,
generate paraphrases of that phrase which have the
same or entailed meaning. Often this would be rep-
resented as a fixed set of rules. Training these sys-
tems could require parallel or comparable corpora
(Barzilay and Lee, 2003) which ties the systems to
very specific topics. Other systems extract rules
from dependency trees built over a large corpora or
the web (Glickman and Dagan, 2003),(Idan Szpek-
tor and Coppola, 2004),(Lin and Pantel, 2001).
These create more general rules, but they still only
say that a context exists where the one phrase can
replace another. They do not indicate when a rule
can be applied.

Alternatively we can treat the single word re-
placement paraphrase task as a sense disambigua-
tion task. Knowing the sense of the target word
will take us most of the way to determining if an-
other word could replace it. But what if in our given
sense repository there is no easy to elicit connection
between words or senses? In Wordnet 2.1 (Miller,
1995) there is no connection (other than through
some analysis of gloss) between ‘leave’ and ‘with-
draw’, yet few would argue with “The troops with-
drew” being rewritten as “The troops left.” It may
never be possible to build an ontology that captures
all appropriate senses or sense relations.

2 Formal Model

Formally, we are learning a binary function
f(S, v, u): Given sentence S, can we replace target
word or phrase v in S with u and have S keep the
same or entailed meaning. Such a function f can be
applied either directly to decide if a word in the sec-
ond sentence of an entailment example can replace
a word in the first sentence, or it can be used as a
filter for a list of words to form a set of extended
synonyms for the target word v. This task captures
the usefulness of word sense disambiguation (being
able to tell if two words mean the same in a given
context) without having to know or rely on any spe-
cific set of senses. It also generalizes paraphrasing

rules, where a paraphrasing rule is just an instance
of a single positive judgment of the system, while
adding context sensitivity in the form of given sen-
tence S.

We tested two implementations of this function f .
The first is closer to the word expert approach used
in many WSD systems, a separate fu(S, v) classifier
for every u. Since v is given extra information in
the form of its context in S, we may need to know
something about u, and a separate fu classifier will
implicitly through training learn relevant senses of
u. This approach suffers though because the func-
tion cannot be applied to any u it was not trained for.
We cannot gather training data for all possible words
and phrases, so we would need to rely on some base-
line for any unseen and untrained words or phrases
if we were to use this implementation.

Instead, we may train a single binary classifier
for all word pairs v, u and given context S. If we
are able to represent some notion of what v and u

have in common, and what they jointly or individ-
ually have in common with the target sentence S,
then all words and more importantly all phrases do
not have to be seen during training. All the learner
needs to determine is which shared features indicate
replacability.

2.1 Features

As a base set of features we used the usual bag of
words (in lemmatized form), collocations, and lo-
cal syntactic structure (from Minipar (Lin, 1993)).
These features contain information about the local
context of v in S, but do not say anything about u.
For the fu classifiers this may be enough, these clas-
sifiers just need to determine which contexts u can
fit in, but they will provide little to no help for a
global classifier. If a single classifier is applied for
all words, it would need to know the contexts each
word can fit in, but these features do not provide that.

What we need is a more general representation
of similarity between u and v in S. To that end
we extend the local features mentioned above to in-
clude features specific to the pair u, v. For each
word pair we search a large corpora of text to deter-
mine all contexts that both words can appear (above
some frequency). Instead of relying on a fixed set of
senses to specify meaning of words, we use a more
fluid notion of context and word to represent mean-



ing of the word. The idea is that perhaps there are
shared contexts that are highly indicative that two
words share meaning, or more generally one word or
phrase can replace the other: contexts like the same
named entities as subject and object of target verbs.

With only the features above, the best our learner
could hope for is to learn weights for shared contexts
that say two words or phrases can replace each other
(Rion Snow, 2005). From pairwise features alone
a learner cannot determine directionality or context.
With the local features such as bag of words and col-
locations then the fu classifiers may learn what local
contexts represent ‘good’ contexts that u would fit
into, and the pairwise features would say whether u

and v are similar, so hopefully enough information
is captured. For the single global classifier, it has
no chance to identify what are good local contexts
for each u, without basically separating into differ-
ent u classifiers. For the single global classifier idea
to work, it needs to modify the set of features so that
they represent when the pair of words are similar to
each other, especially within the local context.

To this end, instead of adding more features to
indicate sense of local context (perhaps as a set of
informative words seen with this context in a large
corpus), we filtered the contexts shared by u, v to
only those that are also similar to S. Our current
notion of similarity is all those context features that
have been seen with the same words as the current
context. In other words for each local context we
find the set of words that have been seen at least
N times with this context in a large corpora. An-
other context is considered similar if it is also seen
N times with M of these words. The intuition is
that if the same words can be placed in two contexts
then their meaning may be related. Now the pair-
wise features of S, u, v are those contexts that may
indicate u could replace v (seen in similar contexts),
and that the contexts they can replace are similar to
the current local context S.

Having classifier and features defined, we still
need to train, and for this we need training data.
There is no standard corpus for this task, and it re-
lies on possibly subtle human judgments, so exam-
ples must be hand tagged for each sentence and word
pair. Trivially positive examples are easy to come by
in a large corpus (replacing a word with itself), but
still shed some light as to what contexts the replac-

ing word u can appear with. With high probability,
u cannot replace an unrelated word from a randomly
selected sentence, so we can form a pool of likely
negative examples. We still need good positive and
negative examples to capture the sort of distinctions
we are looking for. For this we use active learning
where the pool of example v’s (and their sentences
S) are drawn from a list of similar words to u (ex-
tracted from Lin’s dependency-based thesaurus(Lin,
1998)). In this way our training procedure is almost
a filtering of this set of possible word replacement
rules to find contexts where they do and do not ap-
ply for a given u. Training for the single pairwise
classifier uses the hand tagged examples from all u.

3 Experiments

For our experiments we restricted the class of words
and phrases that can be replaced to verbs and phrasal
verbs. Disambiguating verbs is a difficult task be-
cause of the fine grained and subtle distinctions be-
tween sense (Palmer, 2000). Context for the verb
in a sentence is defined as the dependency links
given by the Minipar dependency parser (Lin, 1993).
Minipar is run over sentences that have been tagged
with POS and named entities so links to named en-
tities and pronouns have been collapsed and added.
So in the sentence “Richard kicked him” the context
for ‘kicked’ is subj:Richard, subj:NE:PER, obj:him,
obj:PRONOUN. This way words or pairs can be as-
sociated with the more general notion of ‘appears of-
ten with a person as the subject’ as well as the more
specific ‘appears often with Richard as the subject’.

The most direct comparison to this work is that
of Glickman and Dagan (2003). They too experi-
mented with paraphrasing individual verbs and verb
phrases, based largely on common context as de-
fined by Minipar dependency links. The results of
their system though are existential verb pairs: they
can only say that there exists a sentence where one
of these verbs can replace another.

To compare our approach to theirs we randomly
selected 10 pairs that their system had output and
that humans had judged as being correct (where cor-
rect means some sentence exists where this rule can
be applied) (Table 1). Each verb pair was ordered
such that there was a reasonable direction (u replace
v). For each v, the goal was to have 10 sentences



v ← u

grow← increase *
derail← disrupt

offer← pay
enforce← police *

head← move
cut← trim

tighten← toughen
appoint← name
strike← attack *
join← support *

Table 1: Selection of verb replacement rules gener-
ated by Glickman and Dagan, judged by humans to
be correct for some context

either created or extracted from newswire as a test
set (100 total sentences). Each sentence for a given
v was hand tagged by two humans who determined
whether u could replace it and keep the same or en-
tailed meaning. Inter-annotator agreement was 85%,
with disputed examples adjudicated by a third an-
notator. Each test set was then pruned down to 10
sentences such that there would be an equal num-
ber of positive and negative examples. This pruning
does bias the results since the distribution of senses
is most likely not uniform, but this way there is no
advantage to always guessing a fixed positive or neg-
ative classification.

Using this test set we compare their rules (which
would say v can be replaced by corresponding u in
all cases) to both separate fu classifiers trained on
each u and single f classifier trained with examples
from all u. We use active learning to acquire train-
ing data for each fu classifier. Over this set of exam-
ples we train a SNoW based classifier (Roth, 1998),
tuned using 10 fold cross validation on the training
data. SNoW uses a variation of the winnow update
rule(Littlestone, 1988) that has shown to be useful
for tasks with a large number of features per exam-
ple, but relatively few useful features. This is ideal
for our situation where there can be over 1000 pair-
wise features representing contexts shared by two
verbs, but only a few may be indicative of similarity.
We want to be able to identify those features as fast
as possible.

3.1 Implicit classifier

Table 2 shows performance of the individual fu

classifiers as compared to the Glickman and Dagan
rules. If used as a simple decision list style classi-
fier (if v is seen, it can be replaced with u), the rules
would judge all examples to be positive, it has no
notion of context. For this reason, the Glickman re-
sults are exactly equivalent to a system that says yes
to all of these given examples. The trained classi-
fiers do better than the paraphrase rules overall, but
in only a few cases do they do something different
or better than making a constant decision for a given
pair.

The starred rules in table 1 represent systems that
never saw an example to replace v when training a u

classifier. These classifiers have to generalize about
the shared features of this new v, compared to the v

seen in training. For the most part these classifiers
seem to do a good job of it. In fact, these fu classi-
fiers are the only ones that improve over the Glick-
man rule baseline. It is possible that these classifiers
are doing better than those that have been trained
with these specific v’s because when a fu classifier
gets training data for a target v, its weights may be
set such that all examples with this v are fixed at pos-
itive or negative. With a classifier fu such as for in-
crease, it must be making decisions on context and
shared context alone because it has never seen the
target grow during training.

3.2 Global Classifier

Individual fu classifiers should ‘know’ more about
the u they are trained for than a single global clas-
sifier can be capable of. This is simply because in
training a single global classifier does not see u in
the features of the example as much as it sees the
features that represent similarity between u, v and S.
The word expert classifiers do not need this shared
feature representation as much, since it implicitly
learns it during training, and as we describe above
these features may in fact hurt the fu. On the other
hand, a global classifier needs such a representation
of shared features to learn a general similarity mea-
sure. After learning this, it can be applied to new
unseen pairs (both u and v unseen, not just unseen
v). It is assumed that global classifier may not be
able to make such fine distinctions that an expert fu



# Test examples Glickman fu classifier Global f

Total 100 50 53 59

Table 2: Classifier performance on 10 examples of each verb replacement rule. fu classifier uses a different
classifier for each rule and the Global f applies a single trained classifier to all examples.

v ← u

create← set up
carry out← conduct

call for← want
take up← accept

Table 3: Unseen phrasal verb pairs, generated and
judged correct by Glickman and Dagan

classifier can, but it hopefully will capture a more
general notion of similarity and paraphrasing.

To test the single f global classifier we trained a
single SNoW network over all the training data col-
lected for each fu. We compared the single classi-
fier to each fu on the test set in table 2, but we also
extend the test set with 4 additional totally unseen
rules (table 3). Each of these rules also incorporates
simple phrasal verbs, the sort that exist in WordNet
and that Minipar can recognize (when contiguous).
For these phrases the fu cannot be applied because
such an fu was not created. It is not clear whether it
would ever be meaningful to try to use an fu classi-
fier on a u it wasn’t trained for. Perhaps the function
fu classifiers learn can be applied to some set of sim-
ilar words outside of just u; perhaps there is a better
partitioning of classifiers between single words and
a single classifier overall.

Curiously, the global classifier does better over-
all on the trained u than the individual fu classi-
fiers, when trained with same data. One reason the
global classifier outperforms individual fu classi-
fiers is simply that it has more training data since
it has access to the training data for all the u. To test
this an extra 100 examples were tagged with the ac-
tive learning procedure for 4 u, which doubled the
training set size for these classifiers. With the ex-
tra training data the accuracy of these classifiers re-
mained constant, so it can’t be the case that it was
only the extra training data that helped.

The global classifier is using the extra data to in
fact not overfit, as opposed to the individual fu clas-

sifiers. The problem the global classifier must learn
is much broader than what each fu is presented with,
and the training data more varied. Since global clas-
sifier is presented many different pairs it is unable to
overfit any one.

Table 4 shows that on this small set of total un-
seen pairs the global classifier does reasonably, but
perhaps to be expected for unseen u and v, its not
spectacular. The one pair that the classifier performs
well on, take up← accept, is possibly most similar
to some of the pairs the global classifier was trained
on (notably offer← pay). The results are reasonable
though, showing that with even more, and more var-
ied, training data the global classifier can fulfill the
promise of generalizing to unseen.

3.3 Active Learning
Since training data was to be tagged by hand, active
learning was used to facilitate selecting what were
hoped to be good examples. Regularized perceptron
was used as the core classifier for the active learn-
ing system, an approximation of the support vector
machine approach in (Tong and Koller, 2001). New
examples were selected from a pool of unlabeled ex-
amples and presented to the user to be tagged. This
selection was based on the closeness to the current
linear hyperplane. 100 examples would be tagged
this way, and these examples would be saved and
used to train a separate SNoW classifier.

To use this active learning setup, for each u, three
pools of initially unlabeled examples were gener-
ated. The first pool are a small number (10) of sen-
tences that u actually occurs in. These are trivially
positive examples, used to prime the linear classi-
fier. The second pool are sentences with a verb from
Lin’s similarity list for the given u. The third pool
contains sentences with verbs of around the same
frequency (in the corpus used to draw examples) as
u, but are not related (either through Wordnet hyper-
nym hierarchy or on Lin’s list). It is generally safe
to assume the pool of random examples are almost
all negative, so we use a small random selection of



# Examples Glickman Global f

Total 35 19 22
Accuracy 54.3% 62.9%

Table 4: Global classifier on new phrasal verb pairs

these along with the trivially positive to initialize the
linear classifier used for active learning. The rest of
the random examples are combined with the simi-
lar examples to form the pool of unlabeled examples
that active learning selects from.

The hope with active learning is that good exam-
ples will be drawn more often and we’ll need to tag
fewer examples to learn a classifier. In this case the
good examples are assumed to come from the set
of similar examples, attempting to determine when
the notion of similarity from the Lin list applies. It
appears this does happen in execution with approxi-
mately 94% of examples selected being drawn from
the similar pool. The expected proportion of ran-
dom selections from the similar pool is about 85%,
because the method of extracting these pools of data
is already biased to form a larger set of similar verbs
than random.

There is a qualitatively interesting procession of
examples presented to the human annotator by the
active learner. The similarity measure used to create
Lin’s list is based on similar shared context features
as we are using in our classifier, so it makes sense
that these are presented as good examples, they were
put in the similarity list because they already have
more in common. The problem is there is still some
overly common verbs included in the list that at the
beginning dominate the examples presented. Words
such as ‘have’ and ‘say’ occur often enough in the
corpora that they will have very high context over-
lap with target word. For the first 50 or 60 examples
these words appear very frequently and are over-
whelmingly negative for the set of instances we are
training for. The end result for this is that pairwise
features are diminished in weight and so local con-
text features begin to factor more into the decision,
and better examples start to be presented and eventu-
ally pairwise features for real positive examples get
boosted.

3.4 Case Studies

A positive example for grow← increase that fu gets
right is the sentence “Last quarter, company profits
grew to 100.” If we look at the feature weights that
the linear classifier learns for increase we see that
a positive judgment is associated with seeing con-
text features such as subject congress, budget, force,
or objects such as attractiveness, spending, rate, or
more specifically, a passive verb with object profit,
as is the case here. Taking context into account,
the fu classifier also gets the negative example cor-
rect: “I grow grapes on the south slope.” fu for in-
crease was able to distinguish between grow as in
“get larger” and grow as in “age and mature” yet it
had never seen an example of grow in training.

Taking a look at a classifier that doesn’t do so
well, yet has seen this exact v in training, we can
look at the classifier for toughen, which only gets 4
of its 10 test examples correct. If we examine the
feature weight for the toughen classifier we see that
the target word being tighten has high weight, along
with words like security and policy, which are com-
mon contexts for when toughen can replace tighten.
So when in the test data the sentence “The recent
robberies made us reconsider tightening our security
a bit” is presented the classifier correctly predicts
positive. Yet, when given sentence “He tightened the
cinches over the saddle basket” there are not many
contextual clues that the toughen classifier has seen
before, so it falls back to the judgment that tighten
can be replaced. In effect, by the nature of the over-
lap features, when the fu classifiers are trained with
a specific v, they have a tendency to overfit, making
future context based decisions difficult.

An interesting case study for the global classifier
is on a case where it is not only applied to an unseen
word pair, but to a structure slightly more complex
than a single verb or phrasal verb. In the sentence
“I sent a request for a typewriter”, can “sent a re-
quest” be replaced by “asked”. In this case, yes it
can, and in fact the global classifier agrees. What it



send a request← ask
I sent a request for a typewriter.

The groom sent a request to the DJ.

Table 5: Small example of replacing slightly more
complicated structure than simple verbs or verb
phrases.

is really looking at is if “ask” can replace the target
verb “send” which has object “request”. If the same
query is made on the sentence “The groom sent a
request to the DJ”, the answer this time is no, its
a different sense of request and “send a request” in
general, and again the global classifier agrees.

4 Conclusion and Future Work

We have presented here a formalism that attempts
to abstract away notions of meaning and sense that
seem necessary to reasoning about any sort of para-
phrasing. It is not necessary to rely on a fixed no-
tion of what word can replace another or what one
word means. Instead it is better to ask what do these
words share, and can that be placed in our given con-
text. At this point the problem is pushed onto the
features. Can we capture shared meaning that is ap-
propriate, non-symmetric and context sensitive. We
demonstrated a notion of common features and local
context here that despite being trained on a relatively
small number of training examples showed promise
in our testing.

In the future we would like to see this work ex-
tended to more complicated structures, as hinted in
the “send a request” example. At some point phrases
become too rare to ever generate training data, but
we also hypothesize they have fewer possible mean-
ings. We will need to capture a notion of similarity
of structure as well as the words inside, plus expand
what context would mean in such cases.
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