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Abstract

Since the mid-1980s, neural networks have been in-
creasingly important as a research tool in nearly all ar-
eas of Cognitive Science. They are not, however, with-
out their problems, greatest among these being a lack of
semantic transparency: it simply isn’t known, in most
cases, how a given network arrives at the outputs it pro-
duces. This paper addresses this problem as it applies
to a specific domain of cognitive linguistic research: the
segmentation problem. Specifically, it investigates the
extent to which neural network outputs correspond to
patterns in pointwise mutual information scores. Two
neural networks were trained on approximately 10000
3- and 4-letter patterns, and the hits, misses and false
alarms in the output were compared to mutual informa-
tion scores at the point of spacing.

Introduction: The Segmentation Problem
meets Connectionism

The first linguistic task faced by any child in the early stages
of first language acquisition is the segmentation problem.
Confronted with a jumble of sounds, the infant somehow
comes to organize it into meaningful units. What biological
methods it uses to accomolish this are a subject of intense
debate. In many camps it is claimed, in effect, that the prob-
lem is uninteresting because the necessary tools are specified
innately: language acquisition is a matter of “recognizing”
basic units one is programed to find salient. There is almost
certainly some truth to this - but it leaves a lot of interest-
ing questions unanswered. Even assuming access to innate
features (by no means an uncontroversial assumption), for
example, the infant still has to organize given segments into
meaningful units - attaching, as it were, the correct features
to the correct “words.”

Mutual Information
Computational Linguistics researchers have tended to see
this as a statistical analysis problem. Given discrete units,
the task is to identify patterns, which in the case of a stringof
seemingly random symbols would involve identifying which
combinations were highly frequent, which were not so fre-
quent, and which nonexistent. (It is not altogether clear what
this would mean in the case of a completely continuous sig-
nal, but presumably it would again involve repeated patterns

in the input, only with more involved mathematical ways
of identifying them.) Many statistical methods for identify-
ing significant collocations have been developed. The one
that perhaps sees the most use in Computational Linguis-
tics is the information theoretic measure Mutual Informa-
tion, which is given by the following formula:

MI(x, y) = log2

p(x, y)

p(x)p(y)

Many interpretations are available for this, but to some views
this is an expression in terms ofbits of the amount of infor-
mation contained in a sequence. It has long been established
that highly frequent collocations need shorter bit sequences
to be expressed under optimal coding methods. Thus, a
higher Mutual Information score - indicating a highly sig-
nificant collocation - could be seen as a measure of potential
data compression - i.e. how many bits are saved (under a
hypothetical optimal coding scheme) by knowing thaty fol-
lowsx. In theory, mutual information should be available to
help with the segmentation problem. While no one believes
that children are expressly calculating these scores, regions
of high mutual information between segments in a sequence
with low mutual information at the outer edges should corre-
spond to patterns that learners are likely to identify as cohe-
sive and available across contexts - i.e. should be linguistic
units.

Connectionism
Connectionist methods have become increasingly popular as
frustration with the limitations and perceived cognitive im-
plausibility of purely symbolic approaches grows. Support-
ers of this trend argue that the phenomena under scruitiny
are best understood as emergent properties of the interac-
tion of relatively simple base processes and as such cannot
be (adequately) captured though explicit, higher-level rules.
Allowing a neural network to “learn” the solution and then
studying its behavior is thought to bring one closer to a de-
scription of the actual problem.

Problems with this approach have been noted since the
begining, however. For one thing, the architecture of a given
network is known to have consequences for its ability to
solve particular problems. Though subsequent research has
identified a number of particular pitfalls, it is still not entirely
clear which architectures are appropriate to which problems



and why. Another problem is that networks are not guaran-
teed to find optimal solutions. Networks are trained using
gradient descent algorithms over the error function. That is,
the network is given an input, produces an output, and then
its weights are adjusted in directions implied by the error
between the actual output and expected target. It proceeds
stepwise in this fashion until the error can no longer be re-
duced. The danger is that the error function may be highly
complex, involving several “solutions” in the form oflocal
minima- regions in which no small change to the error func-
tion will result in improvement, but which are nevertheless
suboptimal. Again, mildly successful solutions have been
proposed (usually involving adjustments to a learning rate),
but no solution that guarantees success has yet been found.
Most importantly, however, neural networks lack what is of-
ten called “semantic transparency.” The fact that a neural
network appears to have found a solution to its problem says
essentially nothing abouthowit solved it - what kind of gen-
eralization it used. This is of particular concern because it
is sometimes possible that a network simply “memorizes”
input patterns without reaching any kind of generalization
at all. Trying to obtain transparency from networks is the
largest problem that advocates of connectionist approaches
face, and to date no adequate solution has been found. It
had been proposed, for example, that hidden layer activa-
tions can be recorded and subjected to principal components
analysis to detect any trends, but this has the feel of circu-
larity. A neural network is itself a kind of principal com-
ponents analysis machine; this solution is not unlike mak-
ing one neural network responsible for explaining the output
of another. The alternative - simply studying the inputs the
network successfully classifies and trying to infer common
characteristics - has the feel of doing the work the network
has already done by hand, raising questions of usefulness.

Parallel Observation

The famous success of connectionist networks as industrial
tools, however, makes it inadvisable to give up on them com-
pletely. Clearly they have something to offer - but more stud-
ies will need to be done before they are wholly adequate as
research tools. One avenue that can and should be pursued
might be termedparallel observation. This involves running
traditional approaches along with connectionist approaches
and comparing the results of the two - specifically observing
where the two deviate. Such an approach should at the very
least help to shed light on what kinds of tasks are appropriate
for neural networks.

Proposal

The purpose of this study is to perform a kind of parallel ob-
servation on the performance of a neural network in terms
of mutual information. Specifically, it aims to study how
good a predictor pointwise mutual information scores are of
the output of a network trained to predict spaces in unseg-
mented streams of (English) letters.

Methods
Chapter one of a children’s story - A. A. Milne’s “The Red
House Mystery” (obtained from Project Gutenberg) - was
segmented into three- and four- letter patterns paired with
the a representation of the spaces observed for that pattern
in the text. Each member of the pair was presented as a
list. Punctuation was removed from the input and capital
letters were converted to lower case, so the segmentation
function operated over an alphabet of precisely 26 symbols.
For example, for the sentence “this is a sentence,” the first
four patterns for the the four-letter patterns would be:

[t, h, i, s] -> [1, 0, 0, 0, 1]
[h, i, s, i] -> [0, 0, 0, 1, 0]
[i, s, i, s] -> [0, 0, 1, 0, 0]
[s, i, s, a] -> [0, 1, 0, 1, 1]

where1 represents the presence of a space.1 The letters were
themselves represented as binary sequences of length 26 bits
with each bit meant to specify a particular letter. This may
seem excessive, but it was deemed necessary to avoid poten-
tial issues with crosstalk. All letters were represented with
equal potential saliency. In all, approximately 10,000 such
patterns were obtained. It will be noted that input patterns
need not and generally do not have unique outputs. The
same four-letter sequence of characters will have different
spacing requirements depending on how it occurs in the text.

Using aC++ program, a network was created to handle
patterns of each input length. The networks were trained
for 1000 epochs on the entire sequence of patterns presented
in the same order in which they were taken from the text.
This was meant to simulate actual incremental, linear pro-
cessing of language. The networks themselves consisted of
three layers - an input layer, output layer and hidden layer
of 98(72), 4(3) and 5(4) nodes respectively. The learning al-
gorithm was simple one-pass backpropagation. For reasons
that will be explained in the discussion, no recurrent layer
was included.

Outputs from the final epoch were separated according to
performance. Patterns which generated hits more than false
alarms or misses were grouped together, those that generated
false alarms more often than hits or misses were grouped to-
gether, etc. Hits are understood as correct prediction of a
space, false alarms as incorrect prediction of a space, and
misses as failure to predict a space when one was required by
the target. Patterns were converted into strings with spaces
in the appropriate places, and pointwise mutual information
scores were calculated between the two segments so sepa-
rated based on their frequency of occurrence in the text.

Results
An overview of the performance of each network is as fol-
lows:

4-Letter Network
HITS: 2982.0

1In actual trials, the spacing patterns were lists of1, to indicate
the presence of a space, and−1 to indicate absence.0 is used here
for readability reasons.

http://www.gutenberg.org/etext/1872


FALSE ALARMS: 768.0
SIMILARITY: 0.79849939976
HIT PERCENTAGE: 0.242754802996
HITS TO FALSE ALARMS: 3.8828125

3-Letter Network

HITS: 5229.0
FALSE ALARMS: 4122.0
SIMILARITY: 0.776607982395
HIT PERCENTAGE: 0.532051282051
HITS TO FALSE ALARMS: 1.26855895197

Due to the inordinate number of input patterns, results are
reported here only for the 20 highest scorers in each category
- that is, the patterns which were most characteristically hits,
false alarms, and misses. Complete results are included as
appendices.

4-Letter Hits

PAT HIT FA MISS MI

d aud 11 0 0 3.1344
he ho 11 0 0 2.6618
he ma 11 0 0 2.7459
r the 11 0 0 -0.117
t and 11 0 0 1.2217
r mar 12 0 0 3.6713
s the 12 1 0 0.0048
d the 12 0 0 0.5481

mr ma 12 0 0 5.9811
the t 12 0 0 -0.495
aid a 13 0 0 1.8651
the m 13 1 0 1.5424
f the 14 0 0 1.7772
of th 14 0 0 3.0638
t was 14 0 0 1.7740

ing t 15 0 0 0.9377
e was 15 0 0 1.3916
in th 16 0 0 1.5170
t the 18 1 0 0.1683

3-Letter Hits

PAT HIT FA MISS MI

he t 18 1 0 -0.6194
s th 18 3 0 0.0425

all 19 9 11 NA
he s 19 10 0 0.3747
e ha 21 0 0 0.5551

een 21 0 0 NA
he w 21 0 0 1.2458

for 25 4 24 NA
t th 25 1 0 -0.0334
e th 27 4 0 -0.2616

rey 28 2 0 NA
aud 29 0 1 NA

he h 29 0 0 0.4396
his 33 1 20 NA
ere 42 14 1 NA
aid 42 1 0 NA
hat 43 11 4 NA
was 46 0 43 NA
her 50 47 36 NA
and 52 1 47 NA

4-Letter False Alarms

PAT HIT FA MISS MI

ent l 0 5 0 1.9914
hi ch 0 5 0 4.8541
y sel 0 5 0 4.2711
ny ea 0 6 0 4.7372
lit t 0 6 0 3.4902
nt ha 0 6 0 1.9293

eny e 0 6 0 3.0082
he nh 0 6 0 3.1229
th an 3 7 0 1.5529
in to 1 7 0 2.0405
of fi 0 7 0 5.1179
he ar 2 8 0 2.1229
a bou 0 8 0 3.5909

eof f 0 8 0 4.3697
cay l 0 10 0 4.6691
fif t 0 10 0 3.490
y ley 0 10 0 5.134

yle y 0 10 0 5.271
f rom 0 13 0 5.539
k now 0 13 0 5.872



3-Letter False Alarms

PAT HIT FA MISS MI

ou t 2 18 0 0.8009
ou l 1 18 0 1.9062
us t 0 18 0 2.0163
re a 6 20 0 1.0529
en t 12 20 0 1.548
ou s 3 21 0 1.4479
ve n 0 21 0 2.1227
e ar 2 22 0 1.4639
h im 0 22 0 3.2693
g ht 0 22 0 5.5113
t hi 7 28 0 2.1117
u dr 0 28 0 4.3380
s te 0 28 0 2.2222
d re 3 34 0 2.5040
s he 7 36 0 0.9429
nt h 2 39 0 2.1986
s ai 0 40 0 3.1962
t ha 4 45 0 2.2594
ot h 0 45 0 3.1831
in g 0 87 0 4.5493
t he 12 178 0 2.7025

4-Letter Misses

PAT HIT FA MISS MI

aunt 0 0 20 NA
know 0 0 20 NA
when 0 0 22 NA
well 0 0 22 NA
were 0 0 24 NA
othe 0 0 25 NA
been 0 0 26 NA
room 0 0 26 NA
from 0 0 26 NA
mark 0 0 27 NA
door 0 0 27 NA
this 0 0 27 NA
drey 0 0 28 NA
audr 0 0 28 NA
nthe 0 0 29 NA
with 0 0 29 NA
what 0 0 35 NA
here 0 0 39 NA
that 0 0 54 NA
ther 0 0 55 NA
said 0 0 80 NA

3-Letter Misses
PAT HIT FA MISS MI

bro 0 0 18 NA
ont 0 0 18 NA
wha 0 0 18 NA

o th 0 0 20 0.9935
to t 0 0 20 1.1115

thi 0 0 21 NA
say 13 11 22 NA
now 0 0 22 NA
out 0 0 22 NA
int 0 0 27 NA
hes 0 0 28 NA

n th 0 0 39 1.0927
sai 0 0 40 NA
tha 0 0 42 NA
him 0 0 44 NA
you 0 0 70 NA
she 0 0 70 NA
ing 0 0 79 NA
the 0 0 268 NA

Discussion

Overview

One of the most visible results is the clear difference in per-
formance in terms of hits and false alarms between the 3-
and 4-letter networks. The 4-letter network has extremely
low rates of both, whereas the 3-letter network is relatively
high on both counts. False alarms, in particular, decrease
with the additional letter: the 4-letter hits-to-false-alarms ra-
tio is three times higher than that for the 3-letter network,
and this with asignificantlylower hit rate. Without really
detailed analysis of the hidden layers it is impossible to say
what is responsible - but a good guess would be that it’s a
“crosstalk” effect. That is, the additional letter seems tobe
inhibiting the network from responding at all. It seems to
have been almost co-opted as a node for forbidding spaces
the network is not sure about.

Of course, it should be noted that“crosstalk” effects are
generally the result of a network not having enough weight
space to build an adequate internal representation of the
solution function, loss of accuracy owing to conflicts over
which weights should do what, so there is a real sense in
which this result is the opposite of what might have been ex-
pected. There is also the possibility that this reflects some
truth about distributional patterns in English. It might be
that trends become clearer at the 4-letter window level that
would not be available for a 3-letter window, but not suffi-
ciently clear for generalization. More research is required.

Words as Patterns

Another highly visible result is the network’s poor perfor-
mance on patterns that are equal in size to the input window
- that is, in recognizing spaces which are at the edges of the
target pattern. Most of the misses for the 3-Letter network
andall of the misses for the 4-Letter network involved such



patterns.2

Since the network is fully connected, it is unlikely that
this is an archtectural problem. All nodes at each layer feed
inputs to all nodes at the next layer, so spaces at the edges
are just as informed by letters in the middle as letters at the
edges.

It is, perhaps, not surprising that spaces at the right-hand
edge of the input will be hard to detect. Given that the net-
work processes the patterns in the original order, the effect
is very much that of moving a window over the input string
(1000 times in a row). At the moment of the appearance of a
space on the right, the network has little information to warn
of its approach. As the space moves toward the center of the
pattern, the network accumulates information (in the form of
error backpropagation) that it is there. This fails to explain,
however, why the network suddenly “forgets” that the space
is there at the left edge of the word! And yet, a quick glance
at the patterns (especially for the 4-Letter case) will confirm
that most of the spaces missed seem to be at either end of the
word (most of the cases are stand-alone words in English).

It is worth noting that many of the words are highly fre-
quent words in English (as is generally the case with shorter
words cross-linguistically). The network should have had a
number of examples of each over the course of the run. This
is, therefore, reasonable evidnence that it has not adopteda
“strategy” of memorizing words (that is, stable patterns with
spaces on either side) as such and placing spaces around
them. (Further evidence that this is true can be found by
looking at the false alarms patterns. The network seems to
miss several extremely frequent words - such as “the” - in
the right contexts. It should be noted, however, that the most
frequent 3-Letter hit patterns do indeed correspond to full
English words.)

Mutual Information
Given the nature of the networks, it would be not unreason-
able to expect them to use a kind of indirect mutual informa-
tion in tackling the problem. One might expect mutual infor-
mation to “fall out” of the distribution of the patterns. After
all, the network will have seen more exemplars of given let-
ters together if they, in fact, occur together frequently inthe
text, and it will have updated its weights accordingly.

The results do not entirely bear out this expectation, how-
ever. Mutual information is indeed lower, as might be ex-
pected, between “hit” segments. But it is high indeed be-
tween “false alarm” segments. The network, therefore, does
not seem to have adopted a strategy of giving preference to
areas of low mutual information when deciding to place a
space. At the very least, it is fair to say that high mutual
information does notdiscourageit from predicting a space.

It is unclear why this should be - but three explanations
immediately suggest themselves. First, while mutual infor-
mationdoesseem to be a reasonable predictor of segmen-
tation for the patterns in question, there is no evidence that

2A score of NA on mutual information obviously corresponds
to the lack of availability of a pattern against which to compare
it. This situation arises when there is no segment internal to the
pattern presented.

this is generally the case. Differences in mutual information
between the segments divided by spaces and those not may
not be as pronounced in other contexts (in fact, a glance at
the full results tables seems to bear this out). This would
tend to cast doubt on mutual information as a reliable pre-
dictor for segmentation in general - not simply in the case
of a neural network’s ability to learn segmentation. (How-
ever, the fact that mutual informationdoesshow a high cor-
respondence with spaces (low MI) and absences of spaces
(high MI) on the most frequent patterns also suggests that it
is highly useful as a method for identifying anchor patterns.
It may be that early stages of language acquisition exploit it
to subdivide the input and that the learner moves on to other
strategies once it has acquired a requisite number of stable
patterns.) The second and more obvious explanation is that
this is an effect of crosstalk. Other patterns that the network
has stored in other contexts are interfereing with its ability to
correctly identify the spaces in the false alarm cases.Patterns
where this kind of effect seems to be obvious would include
“ny ea,” “k now,”, and “a bou” - all of which contain sege-
ments that would be identifiable by MI as useful in other
input patterns. A third and less obvious explanation may be
that “mutual information,” as such, is not being consistently
applied. In traditional mutual information applications,mu-
tual information scores are only compared across segments
of consistent length. The neural network, however, is pre-
sented with patterns where there are (a) variable numbers of
spaces, (b) variable segment lenghts that have to be com-
pared. An interesting future study would be to look at cross
effects in mutual information between segments of different
lengths to attempt to quantify exactly how much of a prob-
lem this is (if, indeed, it turns out to be a problem at all).

Conclusion

Neural Networks

Neural networks do not seem to be particularly well suited
to segmentation problems. This is evident in the (apparently
huge) tradeoff between accuracy and volume of correct an-
swers. Intuitively, this is almost certainly because thereis no
underlying “function” to learn: patterns of letter occurence
are largely determined on higher cognitive levels. Statis-
tics is not sufficient. The evidence from this study also sug-
gests that this may be in part due to architectural consid-
erations. Neural networks are, by their nature, prevented
from exploiting certain otherwise available statistical infor-
mation for reasons which, at this point, remain mysterious
and the subject of future inquiry, but which can plausibly
be assumed to be related to crosstalk and the fiercely in-
cremental nature of the learning algorithm. Until such time
as further studies have been done on what sorts of statisti-
cal patterns neural networks are sensitive to (assuming, of
course, that they are not simply storing highly frequent pat-
terns, which is also a very real possibility), claims about the
distributional properties of texts made on the basis of neural
networks should be viewed with an appropriate amount of
caution.



Mutual Information

A surprising conclusion of this study is that mutual infor-
mation does not seem to be a particularly effective tool for
exploitation by neural networks - and possibly by incremen-
tal learning algorithms in general. It is not clear why this is
so. Some of the problem likely lies in the nature of neural
networks themselves - subject, as they are, to crosstalk prob-
lems - i.e. architectural limitations on the number of mean-
ingful patterns they can store and exploit. Another possibil-
ity lies in the nature of mutual information itself. It is not
clear how consistently mutual information can be applied
to linguistic distributions. It seems plausible to assume that
mutual information is a good predictor of which initial pat-
ters a learner will use to “anchor” future learning, but it may
not be very useful beyond the earliest stages of learning. It
is, in other words, likely to be an effective initial bootstrap
but will not be very useful as a predictor of linguistic bound-
aries in general. Probably learners exploit multiple cues and
their interactions in considerably more complex ways than
assumed by this study.

Future Directions

The results of this study are obviously incomplete: it would
be a mistake to accept any of the conclusions without futher
inquiry. That said, the results are strongly suggestive of what
might be fruitful areas of such inquiry. First, the sugges-
tion that mutual information applies inconsistently to seg-
ments of varying length - while highly plausible - should be
thoroughly explored and quantified. Knowledge of specific
interaction effects across levels would be useful for future
investigations of connectionist performance and may reveal
distributional properties of language that have not previously
been clear. Second, it will obviously be useful to find out
exactly what the effects of adding additional letters to the
input patterns are and whether these effects can be usefully
quantified cross-linguisticially. Such an experiment would
be advised to start with patterns that are the same length
as the longest gap between spaces in the original input and
“build down” from there. Recurrent neural networks were
not used in this study because it was felt that these would
amount to simply expanding the window by a single letter,
but there is no reason, of course, why this should not also
be tested. It may be that building explicit memory into the
system would affect the results - though there is no reason to
outright expect this to be the case. Another potential prob-
lem not touched on until now is the small number of epochs
used in the project. Error reports suggest that increasing the
number of epochs will not make much difference (the error
rate stabilizes soon after the 30th epoch), but again, there
is no reason why this cannot be tested for the sake of com-
pleteness. Probably the most interesting avenue of future
research, however, would be to perform the same experi-
ment on automatically generated texts that can be conrolled
for mutual information (and other statistical) effects. This
would have the effect of rendering the relevant interactions
more transparent than they may have been here. This is, in
fact, the next avenue that I will explore.

A Note on Cognitive Plausibility
Connectionist claims of cognitive plausibility should be
viewed with a healthy does of skepticism. Simply put, not
enough is known about the architecture of the brain and the
input signal for real learning to build congitively plausible
networks. In addition, connectionist networks have already
been shown to differ from the actual human brain in a num-
ber of crucial aspects. Most notable is the apparent absence
of backpropogation processes in the human mind.

For this reason, no claims of correspondence to the ac-
tual language acquisition process are made by this paper.
The concepts of learning and exploitation of statistical dis-
tributions here are to be thought of on a purely algorithmic,
information-theoretic level - not on the level of human cog-
nition. Conclusions reached in this manner make assertions
about the distribution of information available for exploita-
tion in natural language - but they do not make any (valid)
claims about how such exploitation is actualy accomplished
by humans.

Reference list included separately


