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Abstract

In  a  conversational  system,  determining  the
user’s focus of attention is crucial to the suc-
cess  of  the  system.  Motivated  by  previous
psycholinguistic findings, we are currently ex-
amining how eye gaze contributes to automat-
ed identification of user attention during con-
versation.  In  particular,  we  are  developing
techniques that can predict an objects’ activa-
tion in a given time frame based on user eye
gaze behavior.  The  predicated  object  activa-
tion can be combined with speech input to bet-
ter  identify  user  attention.  This  paper  de-
scribes our on-going effort on this topic.

1 Introduction

Previous studies have shown that eye gaze is one
of  the  reliable  indicators  of  what  a  person  is
“thinking about” (Henderson, 2004). The direction
of gaze carries information about the focus of the
user’s  attention  (Just,  1976).  In  human language
processing  tasks  specifically,  eye  gaze  is  tightly
linked to processing. The perceived visual context
influences spoken word recognition and mediates
syntactic processing (Tanenhous, 1995). Addition-
ally,  directly  before  speaking  a  word,  the  eyes
move to the mentioned object (Griffin, 2000). Not
only is eye gaze highly reliable, it is also an im-
plicit,  subconscious  reflex  of  speech.  The  user
does not  need to make a conscious  decision;  the
eye automatically moves towards the relevant ob-
ject, without the user even being aware. 

Motivated  by  these  psycholinguistic  findings,
we are currently investigating the role of eye gaze
in human machine conversation,  in particular  for

spoken  language  understanding.  This  research  is
conducted in a conversational system where users
can look at a graphical interface and converse with
the system through speech. This is different from
traditional spoken dialog systems in that the sys-
tem receives  eye gaze information in addition to
speech utterances.  It is also different from multi-
modal  dialog  systems  in  that,  instead  of  being
proactively provided by a user (as a pen-based ges-
ture), eye gaze in the proposed work is a subcon-
scious  input  which  naturally  occurs  with  speech
utterances. Since eye movements are executed au-
tomatically and involuntarily, this unique setting is
fundamental  to  understanding any human speech
communication with graphical interfaces. 

As a first step in our investigation, we are cur-
rently examining how eye gaze contributes to auto-
mated identification of user attention during con-
versation.  In  particular  we  are  developing  tech-
niques that can predict an object's activation in a
given time frame based on user eye gaze behavior.
The distribution of object activation can be used to
disambiguate  speech  recognition  results  and  im-
prove input  interpretation. This paper reports our
work on this  topic—primarily addressing the ob-
ject activation problem—and the current results.

2 Related Work

There have been several attempts to use eye gaze
to facilitate interaction in human-machine commu-
nication.

Kaur, et. al. (2003) explores the temporal align-
ment between eye gaze and speech during a simple
on-screen object movement task. Users move des-
ignated objects, in a potentially ambiguous setting



—to new locations by using speech and gaze as a
pointing mechanism. The results have shown that
the eye fixation that most likely identifies the ob-
ject to be moved occur 630 ms (on average) before
the onset of the commanding utterance.

In the iTourist project, Qvarfordt et. al. (2005a)
attempt  to  determine  object  activation  as  a  user
views a map interface designed to facilitate a trip
planning  task.  As  people  gaze  at  objects  on  the
screen,  an  “arousal”  score  (IScore)  is  calculated
for each object. Once this score reaches a prede-
fined threshold, the object becomes activated and
the system provides information about this object
to the user.  In this  project,  object  activation was
determined by a quadratic combination of eye gaze
intensity along with a linear combination of auxil-
iary features extracted from eye gaze data. The in-
fluence weights of the factors were empirically de-
termined. The IScore calculation is shown in Fig-
ure 1.

αi = Absolute Fixation Intensity
αf = Fixation Frequency
αc = Categorical Relationship
αs = Object Size
αa = IScore of the previous active object
ci, cf, cc, cs, ca = empirically determined constants
Figure 1.  IScore calculation

In this paper we investigate various features as-
sociated with eye gaze that contribute to attention
prediction. In particular, we extend the model de-
veloped in Qvarfordt  (2005a)  and present  an ap-
proach that automatically learns the weights asso-
ciated with different features for the prediction.  

3 Identifying Object Activation

The object activation problem is addressed by for-
mulating it as a binary classification problem for
each object that appears on the interface at a spe-
cific time period. Here, the class label for each ob-

ject is true if the user is, in fact, attending to the
object and false otherwise.

This  model  can  be  a  regression  model  (So,
1993)  rather  than  a  classification  model.  Such  a
model can be used to create an N-best ranking of
activated  objects  during  a  given  time  window
rather than dividing the objects  into an activated
and a non-activated set.

In this paper we describe an extension of the IS-
core  function  that  we  use  to  create  our  N-best
ranking. Our goal is twofold. Our first aim is to ex-
amine the features that are useful for prediction of
object  activation.  Our second aim is  to learn the
optimal  weight  for  each  feature  in  our  ranking
function.  The  activation  ranking  function  de-
scribed in this paper is based on the likelihood of
object activation.

3.1 Logistic Regression

Logistic  regression  uses  a  well-known  objective
function to determine the likelihood that  a  given
data instance contains a particular class label. The
logistic regression model assumes that the log-ra-
tio of the positive class to the negative class can be
expressed as a linear combination of features. The
result  of  this  assumption  is  shown  in  Figure  2.
Here, y refers to the class label,  x  refers to the
feature  vector,  and  w  refers  to  the  influence
weight constants.

p  y=true∣x 
p  y=false∣x 

=ex ∙w +c

p  y=true∣x +p  y=false∣x =1
Figure 2. Logistic Regression Model

We are interested  in ranking data instances based
on their  likelihood of  activation  (y = true).  This
can  be  done  by  solving  for  p  y=true∣x   as
shown in Figure 3.

p  y=false∣x =1− p  y=true∣x =
p  y=true∣x 
ex ∙w +c

1
p  y=true∣x 

−1=1

ex ∙w +c
=e−x ∙w−c

p  y=true∣x =1

1+e−x ∙w−c

Figure 3. Likelihood of Activation
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3.2 Standard Feature Set

It is important to consider the features that can be
useful for this regression task. While fixation in-
tensity is likely to be the most important factor, we
hypothesize that the other listed factors will have a
strong contribution towards our model’s accuracy.
Our regression model currently uses the following
features: 

• Absolute  Fixation  Intensity  (AFI):  the
amount of time spent fixating on an object
during a particular time window W. In or-
der to normalize this feature to maintain a
range of values between 0 and 1, AFI is di-
vided by W. Objects that are fixated for a
long period  of  time are  considered  to  be
more likely to be activated than those fix-
ated for a short period of time.

• Relative Fixation Intensity (RFI): AFI of a
candidate object  in time window W rela-
tive to the candidate object with the maxi-
mal  AFI  in  W.  This  feature  inherently
ranges  between  0  and  1.  Given  that  our
goal is  to rank the candidate  objects,  we
want  to  consider  the  fixation  intensities
only of  those  objects  appearing in W. A
user may look away from the screen dur-
ing a  portion  of  this  time window while
clearly signaling the  activation of an ob-
ject. Thus, this object may have a low AFI.
RFI compensates for such a situation.

• Fixation  Frequency:  the  number  of  times
an object was fixated in W. For example;
if  a  user  looks  at  an  object,  then  looks
away from it, and then looks back; the fix-
ation frequency for this  object  will  be 2.
This  feature  constitutes  a  discrete  value
ranging from 0 to infinity (though 10 was
the highest value encountered in practice).
When a user looks back and forth toward
an object,  it  seems likely that  the user  is
interested in this object.

• Object Size: the area of a candidate object
relative to a baseline object  (the smallest
object  in  the  scene).  This  feature  ranges
from 1  to  infinity  (capping  out  at  about
100 in practice).  Each object  is specified
by a  list  of  (x,  y)  scene  coordinates.  An
object’s area is represented by the bound-
ing box considering only the minimal and
maximal x and y coordinates. Size is con-
sidered to be a useful feature because it is

difficult to fixate on small objects for long
periods of time. People instinctively make
small jerky eye movements. Large objects
are  unaffected  by  these  movements  be-
cause these movements are unlikely to es-
cape the object boundary. Thus, it would
seem that a lower fixation intensity is nec-
essary  to  activate  a  small  object  than  a
large object.

• Object “Frontness”: the number of objects
appearing in W that  obstruct  a candidate
object from the users viewpoint. This val-
ue ranges between 0 and infinity (no more
than 10 in practice). We hypothesize that
when users simultaneously look at two ob-
jects,  they are more interested in the ob-
jects  appearing in front.  Thus,  the  likeli-
hood of activation of objects appearing be-
hind other objects should be discounted. 

The categorical relationship (between the previ-
ous activated object and the current candidate ob-
ject) feature was ignored because categories have
not been assigned to the objects in our domain.

Figure  4  shows  the  ranking  function  for  our
model applied to the standard feature set. Here, y
refers to the class label,  x  refers  to the feature
vector,  αx  refers  to  a  particular  feature  in  x ,

and c x  refers to the influence weight of this fea-
ture.

p y=true∣x = 1

1exp∑
x= 0

N

αx c x 

Figure 4. Logistic Regression Applied to Standard
Feature Set

3.3 Extended Feature Set

The IScore feature set can be incorporated into the
logistic  regression  framework  by  viewing  each
combination of features as a single complex fea-
ture. The IScore can be decomposed as shown in
Figure 5a. 

Each feature αx (except αi) can be split into two
features as shown in Figure 5b. Thus, if there are
originally N auxiliary features to fixation intensity,
the extended data set  will  contain 2N+1 features
(the fixation intensity feature plus double the aux-
iliary  features).  Figure  5c.  shows  the  resulting



ranking function after  the extended feature set is
applied to our model.

Using  this  feature  set  with  logistic  regression
will find the optimal values for the constants. One
thing to note is that we do not ensure that

c x
' =−c x

''

for all x.

Figure 5a. IScore Reformulation
αi

for each feature {β x
' =αi αx

β x
'' =αi 

2 αx
}

Figure 5b. Feature Extension

p  y=true∣x = 1

1expαi exp∑
x=1

N

c x
' β x

'  c x
'' β x

'' 

Figure 5c. Logistic Regression Applied to Extend-
ed Feature Set
Figure 5. Extended Feature Set

The  extended  feature  set  may outperform the
standard feature set because it centers around fixa-
tion  intensity.  All  other  features  are  considered
secondary. The standard feature set assumes each
feature has equivalent predictive power. We do not
expect this to be the case.

3.4 Model Training and Testing

Our goal  is  to  build  a  computational  model  that
can rank objects of interest in a given time frame
based on their likelihood of activation (they are the
focus of attention). Thus, the goal of the training
phase is  to build a model that can determine the
probability that an object is activated. The goal of
the testing phase is to rank candidate objects for
activation according to the model.

The logistic regression framework consists of an
objective  function  that  allows  us  to  estimate  the
likelihood that an object is activated. In the train-
ing phase  we learn  the  influence  weights  of  our
various features that maximize this function’s cor-
respondence with our data (or equivalently, mini-
mize deviation from our data).

In our framework, training data consists  of in-
stances with features pertaining to a particular ob-
ject’s activation as well as a binary class label de-
noting whether the object is activated or idle. Test
data consists of frames of the same type of data in-
stances. Each data instance in a frame relates to a
single  candidate  object  for  activation.  These  in-
stances are ranked according to our model for each
frame supplied in our test data. 

4 Data Collection

4.1 User Study

We have conducted user studies to collect data in-
volving  user  speech  and  eye  gaze  behavior.  In
these studies, users interact with a graphic display
to describe an interior scene and answer questions
about  the  scene in  a conversational  manner.  The
Eyelink  II  head-mounted  eye  tracker  is  used  to
track gaze fixations.

4.1.1 Experimental Design

A  simplified  conversational  interface  is  used  to
collect speech and gaze data.  Users view a static
scene of a room containing objects such as a door,
a bed, desks, chairs, etc. Some of the objects in the
room are  arranged in  a typical  expected fashion,
while other objects are out of place. Many objects
visually overlap (are in front or behind) other ob-
jects.  Users  are  asked  to  answer  a  series  of  14
questions about various objects in the scene. These
questions range from factual questions about par-

IScore=αi +αi

∑
x=1

N

ci c x αx

∑
x=1

N

c x

−αi 
2
∑
x=1

N

ci c x αx

∑
x=1

N

c x
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N
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∑
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N
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−αi 
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∑
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∑
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n
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2 αx 



ticular objects to open-ended questions about col-
lections of objects. 

The image used in this experiment is a 2-dimen-
sional  snapshot  of  a  3-dimensional  virtual  bed-
room. This scene is shown in Figure 6.  The ratio-
nal behind using this image lies in the fact that the
scene  contains  a  conglomeration  of  distinct  ob-
jects, most of which users are familiar with. Each
object is defined as a Region of Interest and forms
a candidate for  activation during each user utter-
ance. Here, activation refers to object(s) that a user
attends to during an utterance. No visual feedback
is given to the user about which object is activated.

Figure 6. Bedroom Scene

4.1.2 Equipment

User  eye gaze is  recorded using the Eye Link II
eye tracker sampled at 250 Hz. Eye fixations were
garnered  using  only  pupil  reflection  (rather  than
pupil and corneal reflection). Eye gaze is deemed
to be a fixation when five consecutive gaze points
appear within a threshold distance of each other.
All  regions  of  interest  circumscribing  a  fixation
point are considered to be fixated.

User speech is recorded using a noise-canceling
microphone. The Audacity toolkit along with a hu-
man annotator is used to timestamp each word in
the resulting speech file.

4.1.3 Procedure

SR  Experiment  builder  is  used  to  construct  the
flow of the experiment.  Our experiment involves
14 trials (one per question) that are randomly split
into 3 sessions.  Each session is  preceded by eye

tracker calibration. Re-calibration of the eye track-
er at least every 10 minutes ensures accuracy.

A particular trial  involves displaying the scene
to the user,  asking the user  a question about  the
scene, and recording their response as well as eye
gaze. The user decides when he or she is finished
with the trial by pressing any key on the keyboard.
Each  trial  is  followed  by  drift  correction  that
forces the user to look at the center of the screen.
This has two purposes. First, it acts as a mini-cali-
bration that compensates for the drift between the
eye and the crosshairs on the eye tracker. Second,
it ensures that all trials begin with the user looking
at the same point in the image. This eliminates any
user bias of looking at  a particular  object  before
speech onset.

4.2 Data Corpus

The collected eye gaze data consists of a list fixa-
tion,  each  of  which  is  time-stamped and  labeled
with  a  set  of  regions  of  interest.  Speech  data  is
manually transcribed and time-stamped using the
freeware Audacity tool.  Each reference to an ob-
ject  or  multiple objects  is manually labeled with
the IDs of the objects; these IDs correspond to the
IDs of the regions of interest found in the eye gaze
data. 

A frame of training/testing data is derived from
each  spoken  reference.  For  each  frame,  features
mentioned  in  section  3.2  are  extracted  from the
eye gaze data and labeled using the id of the refer-
enced object.  As seen in Table 1, a single frame
may consist of multiple data instances.

The  fixation  intensity,  fixation  frequency,  and
object frontness are calculated within a particular
time-window from the gaze data log. This window
ends when a reference to an area of interest is ut-
tered and begins W milliseconds before the utter-
ance.  Currently  we  have  set  time  window W to
-1500 ms. However, other time windows are possi-
ble. The fixation intensity, fixation frequency, and
object  frontness  are calculated relative to W and
all  of the objects that are fixated during W. This
procedure can be more easily understood with the
following example:

Imagine  that  the  {dresser}  object  was  refer-
enced  at  time  6050  (ms).  This  means  that  time
window W is set to [4550..6050]. During this time,
imagine that the user fixates {dresser} throughout
most of W, looks away, and fixates it again. Dur-
ing W, the user also looks at {bed}, {bed lamp},



and {photo frame}. The 4 resulting data instances
for this frame are shown in Table 1.

Object {dresser} {photo
frame}

{bed} {bed
lamp}

Absolute
Fixation
Intensity

0.602 0.0953 0.2807 0.1967

Relative
Fixation
Intensity

1.0000 0.1584 0.4662 0.3267

Fixation
Frequency

2 1 2 1

Size 21.6155 1.0738 50.1286 1.2481
Frontness 2 0 0 0
Class  La-
bel

TRUE FALSE FALSE FALSE

Table 1. Sample Data Frame with 4 instances

4.3 Activation Models

In total,  we have collected 84 frames containing
244 data  instances.  This  data  can  easily  be  con-
verted to the extended feature set.  All  results  re-
ported in this paper make use of this data.

The resulting data frames are randomly divided
into five sets used in a five-fold cross validation.
Four of these sets are used for training, while the
remaining set is used for testing. This procedure is
repeated five times and the averaged results are re-
ported in section 5. 

The  Bayesian  Logistic  Regression  Toolkit
(Genkin,  2004)  provided  by  Rutgers  University
was used to  create  all  logistic  regression models
presented in this  paper.  The resulting logistic re-
gression  models  are   used  to  rank  the  data  in-
stances in each test data frame. 

5 Results

The evaluation  was conducted  by computing the
Mean Reciprocal  Rank (MRR) of  each  frame as
ranked  by  the  algorithm  relative  to  the  correct
ranking. Given that  a single test  data frame may
contain multiple positive instances (corresponding
to multiple  activated objects)  the  MRR was nor-
malized by the upper bound (highest  achievable)
MRR. Figure 7 shows the Normalized MRR calcu-
lation of the sample frame appearing in Table 2.

Our  logistic  regression  models  with  both  the
standard and extended feature sets are compared to
a  baseline  of  ranking  the  test  frame  instances

based on the absolute fixation intensity. Note that
the baseline ranking would be exactly the same if
relative  fixation intensity was used because each
frame is evaluated independently of other frames.
Given two objects, the one with the higher AFI is
guaranteed to have a higher RFI.

Object {dresser} {lamp} {bed
lamp}

{bed}

Class
Label

FALSE TRUE TRUE FALSE

Rank 1 2 3 4
Table 2. Sample Test  Data Frame with 4 ranked
instances

The MRR for this frame is 

Normalized
MRR

=MRR
Upper Bound
MRR

=

1
2
 1

2
1

3


1
2
11

2

=0. 417

0 .75
=0 .556

Figure 7. Normalized MRR Calculation for Sam-
ple Test Data Frame

The result comparing our models with the stan-
dard as well as the extended feature set is shown in
Table 3.

Logistic Regression 

Feature Set
Standard Extended

Absolute Fixation
Intensity (AFI) Only

0.582

Relative Fixation In-
tensity (RFI) Only

0.776

RFI + Size 0.634 0.736
RFI + Frontness 0.762 0.770
RFI + Frequency 0.637 0.743
ALL 0.642 0.775

Baseline
Rank  by  AFI  (or
equivalently RFI)

0.769

Table 3. MRR evaluation

Table  3 also  shows that  the  Extended Feature
set outperforms the Standard feature set regardless
of which individual features are used. This finding
may mean that the Extended Feature set better rep-
resents the data in the object activation detection
problem or that logistic regression models employ-
ing this feature set are less sensitive to noisy data.

The overall results show that fixation intensity
alone is a good indicator of object activation. This
is  the  feature  used  to  construct  our  baseline  of



ranking  the  test  frame instances.  Using only  the
Relative Fixation Intensity in our logistic  regres-
sion  framework  achieves  slightly  better  results
than this baseline. Most auxiliary features do not
appear to aid the object activation detection. Modi-
fying these features along with the time window in
which they are collected may lead to better results.
Thus,  there  is  still  much  potential  for  improve-
ment.

5.1 Feature Set Evaluation

Logistic regression with the extended feature set
seems  to  perform better  than  logistic  regression
with the regular feature set regardless of the fea-
tures  used.  Clearly,  if  only the  fixation  intensity
feature  is  used,  the  algorithms  are  exactly  the
same. We cannot conclude that the extended fea-
ture set is necessarily better than the regular fea-
ture set, we can only conclude that it is less sensi-
tive to noisy data. Given our results it appears that
the size and frequency features consist of a large
amount of noise and even the frontness feature is
somewhat noisy. These features cause logistic re-
gression with the extended feature set to perform
only slightly worse than using only the fixation in-
tensity. However, these features cause logistic re-
gression  with  the  regular  feature  set  to  perform
significantly worse than fixation intensity alone.

5.2 Individual Feature Evaluation

It  appears  that  the  auxiliary  features  do  not
improve object  activation  detection  performance.
Models  combining  RFI  with  either  Size  or
Frequency alone perform worse than models using
all  listed  features  (with  the  exception  of  AFI,
which is considered a redundant feature when RFI
is used). The frontness feature does not appear to
help or hinder model performance.

One potential folly of our feature set is that both
the  frequency  and  frontness  features  are  too
coarse.  These  are  discrete  valued  features  that
have a limited range of values in practice. It may
be  difficult  to  fit  a  regression  model  to  these
discrete  values.  A  possible  way  to  improve  the
frontness feature is to determine the percentage of
the area of the candidate object that is obstructed
rather  than  counting  the  number  of  objects
obstructing  this  candidate.  Making  frequency  a
continuous value is a more difficult task. The best

we  can  do  is  to  normalize  frequency  over  the
average or maximal frequency over an entire user
session. Even this case will result in relatively few
distinct frequency values making it difficult to fit a
function curve to this data.

As  we  already  mentioned,  the  single  fixation
intensity feature is outperforms almost every other
configuration. This feature is the key to successful
identification  of  object  activation.  Even  a  small
improvement to this feature is likely to lead to an
improvement  in  overall  performance.  Fixation
intensity  can  potentially  be  improved  by  further
using  psycholinguistic  knowledge  to  aid  in
identifying object activation. According to (Kaur,
2003), an object is fixated about 600 ms before it
is  referenced.  This  seems  to  mean  that  objects
fixated  closer  to  600  ms  before  a  reference  are
more  likely  to  be  activated  than  other  objects.
Fixation  intensity  can  likely  be  improved  by
weighting it by a function that gives higher weight
to  objects  fixated  closer  to  600 ms.  The  current
algorithms give each fixation in the 1500 ms time
window equal weight.

6 Discussion

We have shown that fixation intensity can be used
to  predict  object  activation.  Moreover,  there  is
much  potential  for  improvement.  Other  features
are  yet  to  be  explored.  The  current  features  can
still  be  augmented  to  improve  performance.  The
time window W has not yet been optimized. Addi-
tionally,  the  results  described  in  this  paper  were
evaluated only on 84 frames with  244 instances.
More data needs to be collected and evaluated to
obtain  conclusive  results.  This  work is  currently
ongoing.

This preliminary work has set up a framework
that can use eye gaze for predicting object activa-
tion. Even if it  is determined that logistic regres-
sion along with feature auxiliary to fixation inten-
sity are not very useful, we have shown that using
the baseline of fixation intensity can achieve fairly
accurate results. This activation model, alone, can
be used as a cornerstone for improving interpreta-
tion  in  speech  and  eye-gaze  conversational  sys-
tems.

This work can be extended to consider how to
combine  our  activation  model  with  spoken  lan-
guage processing  to  improve  interpretation.  This
question can be addressed by constructing an N-
best  list  of  spoken  input  with  an  Automated



Speech  Recognizer  (ASR).  The  speech-based
ranked  lists  of  utterances  and  the  gaze-based
ranked lists of activations can be used to mutually
disambiguate (Oviatt, 1999) each other in order to
more accurately determine the object(s) of interest
given an  utterance  and a  graphical  display.  This
knowledge can be used to plan dialog moves (e.g.
detect topic shifts, detect low-confidence interpre-
tations,  determine  the  need  for  confirmation  and
clarification  sub-dialogs,  etc.)  as  well  as  to  per-
form  multimodal  reference  resolution  (Chai,
2005). We believe that this work will open new di-
rections for using eye gaze in spoken language un-
derstanding.
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