Dependency Parsing with a Linear Pipeline Model

Ming-Wei Chang

Quang Do

Dan Roth

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801
{mchang21l, gquangdo2, danr}@uiuc.edu

Abstract

Pipeline computation, in which a task is
decomposed into several stages that are
solved sequentially, is a common compu-
tational strategy in NLP. The key problem
of this model is that it results in error ac-
cumulation and cannot correct mistakes in
previous stages. We develop a framework
for decisions in pipeline models which ad-
dresses these difficulties and apply it in the
context of bottom up dependency parsing
for English. We show significant improve-
ments in the accuracy of the inferred trees
relative to existing models. Interestingly,
the proposed algorithm shines especially
when evaluated globally, where our results
are significantly better than those of exist-
ing approaches.

1 Dependency Parsing by Pipeline Models

We are interested in this paper in deep pipelines —
in the sense that a large number of predictions are
being chained. We define pipeline to be a process
in which (1) decisions made in stage ¢th depend on
decisions made earlier, and (2) the input supplied to
stage ith depends on decisions made earlier.

Our work is done in the context of developing a
dependency parser for projective languages. Depen-
dency trees provide a syntactic representation that
encodes functional relationships between words; it
is relatively independent of the theory of grammar
and can be used to represent the structure of sen-

tences in different languages. Dependency struc-
tures are more efficient to parse (Eisner, 1996) and
are believed to be easier to learn, yet they still cap-
ture much of the predicate-argument information
needed in applications (Haghighi et al., 2005). This
is one reason for the recent interest in learning de-
pendency structures (Eisner, 1996; McDonald et al.,
2005; Yamada and Matsumoto, 2003).

Eisner developed a generative algorithm with
O(n?) parsing time. His model, however, seems to
be limited in dealing with complex and long sen-
tences. (McDonald et al., 2005) build on this work,
and learn to re-rank the top trees proposed by Eisner.
A completely different approach is proposed by (Ya-
mada and Matsumoto, 2003), that develop a bottom-
up approach and learn the parsing decisions between
consecutive pairs of words in a sentence. Local ac-
tions are used to generate a dependency tree using
a shift-reduce parsing approach (Aho et al., 1986).
This is a true pipeline approach, in that the classi-
fiers are trained on individual decisions rather than
on the overall quality of the parse, and chained to
yield the global structure.

The key in a pipeline model is that making a de-
cision with respect to the edge (i, j) may gain from
taking into account decisions already made with re-
spect to neighboring edges. Clearly, if the edge pre-
dictor is correct, n? predictions are sufficient to con-
struct the correct tree. In reality this isn’t the case,
and there is a need to devise a robust policy.

This policy is exemplified in the work of (Yamada
and Matsumoto, 2003), a bottom up approach, that
is most related to the work presented here. Their
model is a “traditional” pipeline model — a classifier

suggests a decision that, once taken, determines the
next action to be taken (as well as the input the next
action observes).

Like the shift-reduce parsing algorithm in (Aho et
al., 1986), our dependency parsing algorithm uses
the actions to build to tree. We suggest a new (hier-
archical) set of actions: Shift, Left, Right, WaitLeft,
WaitRight. The new set of actions also better sup-
ports our improved parsing algorithm. In our work,
machine learning is used to predict the appropriate
actions in parsing. We suggest that for a pipeline
algorithm to be accurate, it needs to reduce the num-
ber of action it takes. We then use local search based
inference over consecutive actions and better exploit
the dependencies among them.

We propose a framework for improving pipeline
processing based on the following principles:

(1) Devise an algorithm that reduces the number of
actions taken when inferring the dependence tree,
and

(2) Use local inference in order to make more robust
local decisions.

2 Efficient Dependency Parsing

This section describes our dependency parsing (DP)
algorithm and justifies its advantages as a pipeline
DP model. We propose an improved pipeline frame-
work of (Yamada and Matsumoto, 2003) based on
the principles we proposed. First, improved accu-
racy of the predicted actions. Second, we claim that
the parsing algorithm does not perform the unneces-
sary actions.

For many languages such as English, Chinese and
Japanese (with a few exceptions), projective depen-
dency trees are sufficient to analyze most sentences.
Our work is therefore concerned only with projec-
tive trees, which we define below. For simplicity,
our definitions and notations are presented in the
context of English.

Let x, y be two words in the sentence 7. By x —
y we mean that x is the direct parent of y. x —* y
denotes that x is the ancestor of y; x < y denotes
that x — y or y — x; and, x < y represents that
isin frontof y in T.

Definition 1 (Projective Language) (Nivre, 2003)
Va,b,c € T,a < band a < c < b imply that
a—"corb—-"c

2.1 Efficient Dependency Parsing Algorithm

(Yamada and Matsumoto, 2003) proposed a bottom-
up dependency parsing algorithm. This is a bottom-
up approach that uses SVMs to learn the parsing de-
cisions between consecutive pairs of words in the
sentences. The local actions, chosen among Shift,
Left, Right, are used to generate a dependency tree
using a shift-reduce parsing approach. This is a true
pipeline approach in that the classifiers are trained
on individual decisions rather than on the overall
quality of the parsing, and chained to yield the
global structure. It suffers from the limitations of
pipeline processing, such as accumulation of errors,
nevertheless, yields very competitive parsing results.

In particular, we suggest that for a pipeline algo-
rithm to be accurate, it needs to minimize the num-
ber of actions it takes. In the rest of this section we
describe the algorithm, analyze it and prove that it
achieves this goal.

The parsing algorithm is a modified shift-reduce
parser that makes use of the actions described below
and applies them in a left to right manner on consec-
utive pairs of words (a, b) (a < b) in the sentence T'.
The actions are used as follows:

Shift: there is no relation between a and b,

Right: b is the parent of a,

Left: a is the parent of b.

In order to complete the description of the algo-
rithm we need to describe which edge to consider
once an action is taken. We describe it via the no-
tion of the focus point. In fact, with a few excep-
tions, determining the focus point does not affect the
correctness of the algorithm. It is easy to show that
(almost) any edge in the sentence can be used to de-
termine the focus point and, if the correct action is
chosen for the corresponding edge, this will eventu-
ally yield the correct tree (but may necessitate mul-
tiple cycles through the sentence).

In practice, the actions chosen will be noisy, and
a wasteful focus point policy will result in a large
number of actions, and thus in error accumulation.
To minimize the number of actions taken, we want
to find a good focus point placement policy.

There are three natural placement policies that
we considered. In all cases, after S the focus point
moves one word to the right. After L or R we can
do one of the following:

Start Over The focus moves to the first word in 7.

Stay The focus moves to the next word to the right.
That is, for T' = (a, b, ¢), and focus being a, an L
action will result is the focus being a, while R action
results in the focus being b.

Step Back The focus moves to the previous word
(on the left). That is, for T" = (a,b, c), and focus
being b, in both cases, a will be the focus point.

Note that the different placement policies affect
the final accuracy a lot. In (Yamada and Matsumoto,
2003), they mention that they move the focus point
back after R is performed, but it is not clear the
movement after executing L actions in their algo-
rithms. ! We claim that if Step Back is used, the
algorithm will not waste the action. Therefore, we
achieve the goal of reducing the number of actions
in pipeline algorithms. Notice that using the this pol-
icy, when L is taken, the pair (a, b) is reconsidered,
but with new information, since now it is known that
c is the child of b. Although this seems wasteful, we
will show this to be the best policy, as it allows us to
parse the sentence using a single left to right pass.

As mentioned above, each of these policies yields
the correct tree. Table 1 compares the three policies
in terms of the number of actions required to build a
tree.

Policy || #Shift | #Left | #Right |
Start over || 156545 | 26351 | 27918
Stay 117819 | 26351 | 27918
Step back | 43374 | 26351 | 27918

Table 1: The number of actions required to build
all the trees for the sentences in section 23 of Penn
Treebank (Marcus et al., 1993). These statistics is
taken with correct (gold-standard) actions.

It is clear from Table 1 that the policies are very
different and Step Back is a best choice. Note also
that the number of L and R actions used is the same
across models since the actions are the gold-standard
actions. Algorithm 2 depicts the parsing algorithm.

By private communication, we realize that they also move
the focus point back after L is performed. However, it is not
clear why they made this choice from their paper. In other word,
we provide some insight and build the framework for analyzing
this type of algorithms in this paper.

Algorithm 2 Pseudo Code of the dependency pars-
ing algorithm. getFeatures extracts the features
describing the currently considered pair of words;
getAction determines the appropriate action for the
pair; assignParent assigns the parent for the child
word based on the action; and deleteEdge deletes
the edge in 1" at focuspoint once the action is taken.
Let ¢ represents for a word and its part of speech
For sentence 1" = {t1,t2,...,tn}
focus=1
while focus< |T'| do
U = getFeatures(t focus, t focus+1)
a = getAction(t focus, t focus+1; V)
ifa =L ora =R then
assignParent(t focus, t focus+1,)
deleteEdge(T, focus, &)
/l performing Step Back here
focus = focus — 1
else
focus = focus + 1
end if
end while

2.2 Correctness and Pipeline Properties

We can prove two properties of our algorithm. First
we show that the algorithm requires only one pass
over the sentence to build the dependency tree.
Then, we show that the algorithm does not waste ac-
tions in the sense that it never considers a pair twice
in the same situations. Consequently, this shows that
under the assumption of a perfect action predictor,
our algorithm makes the smallest number of actions,
among all algorithms that build a tree sequentially in
one pass.

Note that this may not be true if the action clas-
sifier is not perfect, and that one can contrive exam-
ples in which an algorithm that makes several passes
on a sentence can actually make less actions than a
single pass algorithm. In practice, however, this is
unlikely to occur.

Claim 1 A dependency parsing algorithm that uses
the Step Back policy completes the tree when it
reaches the end of the sentence for the first time.

In order to prove the algorithm we need the fol-
lowing definition. We call a pair of words (a,b) a

free pair if and only if there is relation between two
consecutive words a and b and the algorithm can per-
form L or R action on that pairs right after they are
considered. Formally,

Definition 2 (free pair) A pair (a,b) considered by
the algorithm is a free pair, if it satisfies the follow-
ing conditions.

1. a<—b
2. a, b are consecutive
3. the child word is a complete subtree.

Proof. : It is easy to see that there is at least one free
pair in T', with [T'| > 1. The reason is that if no
such pair exists, there must be three words {a, b, c}
where a < b,a < ¢ < band ~(a — cV b — c).
However, this violates the properties of a projective
language.

Now, we claim that, when using Step Back, the
focus point is always to the left of all free pairs in 7'.
This is clearly true when the algorithm starts. As-
sume that (a, b) is the first free pair in T' and let ¢
be just to the left of @ and b. Then, the algorithm
will not make a L or R before the focus point meets
(a,b), and will make one of these actions then. It’s
possible that (a V b, ¢) becomes a free pair after re-
moving bV a inT. We also know that there is no free
pair to the left of c. Therefore, during the algorithm,
the focus point will always remain to the left of all
free pairs. So, when we reach the end of the sen-
tence, every free pair in the sentence has been taken
care of, and the sentence has been parsed completed.
g

Claim 2 All actions made by a dependency parsing
algorithm that uses the Step Back policy are neces-

sary.

Proof. : We will show that a pair will be considered
only once in a given a situation.

A pair (a, b) will never be considered again if the
action taken on it is R or L, since either a or b will
become a child word. Assume that the action taken
is S, and, w.l.o.g. that this is the rightmost S action
taken before a non S action happens. There are two
cases when S happens. First, b itself is a parent and
cannot be attached to a at this time. Second, there

is no relationship between them. Assume the first
case happens. The focus point will continue moving
to the right, but cannot meet any R until it meets an
L action. At this point it will go back to solve the
pair (a, b). Otherwise, it contradicts the fact that the
sentence is projective. When considering (a, b) this
time, b is a parent, so the information given about
the pair (a,b) now is different than what it was in
the previous consideration. This shows that we must
reconsider (a, b) again to build a tree. Therefore, no
actions are wasted. O

2.3 Improving the Parsing Action Set

To improve the accuracy, we suggest a new (hier-
archical) set of actions: Shift, Left, Right, WaitLeft,
WaitRight. Predicting these turns out to be easier
due to finer granularity.

Waitleft: a < b. a is the parent of b, but it’s
possible that b is a parent of other nodes. Action is
deferred. If we perform Left instead, the child of b
can not find its parents later.

WaitRight: a < b. b is the parent of a, but it’s
possible that a is a parent of other nodes. Similar to
WL, action is deferred.

The new set of actions better supports our pars-
ing algorithm. While testing on different placement
policies, the new action set is always helpful. When
WaitLeft or WairRight is performed, the focus will
move to the next word in Step Back placement pol-
icy. However, it is very interesting to notice that
WairRight is not needed in projective languages if
Step Back is used. This give us another strong
reason to use Step Back, since the classification
becomes much easier when number of classes are
fewer.

Once the parsing algorithm, along with the focus
point policy, is determined, we can train the action
classifiers. Given an annotated corpus, the parsing
algorithm is used to determine the action taken for
each consecutive pair; this is used to train a classifier
to predict one of the four actions. The details of the
classifier and the feature used are given in Section 4.

When the learned model is evaluated on new data,
the sentence is processed left to right and the pars-
ing algorithm, along with classifier, is used to pro-
duce the dependency tree. The evaluation process is
somewhat more involved, since the action classifier

is not used as is, but rather via a local search infer-
ence step. This is described in Section 3.

3 A Pipeline Model with Local Search

The advantage of a pipeline model is that it can use
more information in a given prediction, information
that is taken from the outcomes of previous predic-
tion. However, this may result in accumulating er-
ror. The results of Section 2 show that it is essential
for our algorithm to use a reliable action predictor.
This motivates the following approach for making
the local prediction in a pipeline model more reli-
able. Informally, we devise a local search algorithm
and use it as a look ahead policy, when determining
the predicted action.

This approach can be used in any pipeline model
but we illustrate it below in the context of our de-
pendency parser.

The following example illustrates a situation in
which an early mistake in predicting an action cause
chain reaction and results in further mistakes. This
stresses the importance of correct early decision, and
motivates our look ahead policy.

Assume there are four words w, x, y and 2z in a
sentence. The correct dependency is shown in the
top part of Figure 1. If the system gives a wrong
prediction and makes x a child of w before y and
z becomes z’s child, we can only consider the re-
lationship between w and y in the next stage. Then,
we will never find the correct parent for y and z. The
previous prediction error indeed propagates to the
next prediction. On the other hand, if the algorithm
makes a correct prediction, in the next stage, we do
not need to consider w and y. In the pipeline model,
we can get additional information if we can avoid
errors. Therefore, it is necessary to have a search
or an inference framework to help resolve the error
accumulation problem.

In order to improve the accuracy, we might want
to examine all the combination of actions proposed
and choose the one that maximizes the score. It is
clearly not tractable to find the global optimal pre-
diction sequence in pipeline model of the depth we
consider. The size of the possible label sequence
increases exponentially so that we can not examine
every possibility. Since in this work, the feature vec-
tors are depend on previous predictions, we cannot

=

Figure 1: Top figure: the correct dependency be-
tween w, x, y and z. Bottom figure: if the algorithm
makes a mistake to put x as a child of w before y
and z become z’s children, we can not find the cor-
rect parent for y and z.

consider the dynamic programming here. Therefore,
a local search framework which uses additional in-
formation, however, is suitable and tractable.

The local search algorithm is presented in Fig. 3.
The algorithm accepts two parameters, model and
depth. We assume a classifier that can give a confi-
dence in its prediction. This is represented here by
model.

In this work we use as our learning algorithm a
regularized variation of the perceptron update rule
as incorporated in SNoW (Roth, 1998; Carlson et
al., 1999), a multi-class classifier that is specifically
tailored for large scale learning tasks. SNoW uses
softmax over the raw activation values as its confi-
dence measure, and it can be shown to be a reliable
approximation of the labels’ probabilities.

depth is the parameter the determines the depth of
the local search. State encodes the configuration of
the environment (in the context of the dependency
parsing this includes the sentence, the focus point
and the current parent and children for each node).
Note that State changes when a prediction is made
and that the features extracted for the action clas-
sifier also depend on State. GoalTest is a function
which tests if the State is the goal state or not.

The search algorithm will perform a search of
length depth. Additive scoring is used to score the
sequence, and the first action in this sequence is per-
formed. Then, the State is updated, determining the
next features for the action classifiers and search is
called again.

One interesting property of this framework is that
we use future information in addition to past infor-
mation. The pipeline model naturally allows access

Algorithm 3 Pseudo code for the local search al-
gorithm. In the algorithm, y represents the a action
sequence. The function search considers all possible
action sequences with |depth| actions and returns
the sequence with highest score.

Algo predictAction(model, depth, State)
x = getNextFeature(Srate)

y = search(x, depth, model, State)

lab = y/[1]

State = update(State, lab)

return lab

Algo search(x, depth, model, State)
maxScore = —o0
F={y |yl = depth}
for y in F' do
s = 0, TmpState = State
for i =1...depthdo
x = getNextFeature(TmpState)
s = s + log(score(y|[i], z))
TmpState = update(TmpState, y|i])
end for
if s > maxScore then
y=y
maxScore = s
end if
end for
return y

to all the past information. But, since our algorithm
uses the search as a look ahead policy, it makes use
also of future predictions. The significance of this is
clear becomes the experiments in Section 4.

Our algorithm also considers constraints among
actions in a sequence. The constraints were ex-
tracted automatically from the training action se-
quences. It turns out that some action sequences are
illegal for a projective language and our algorithm
exploits that in the local search process, by eliminat-
ing these from consideration.

4 Experiments and Results

In our experiment, we used SNoW learning archi-
tecture (Roth, 1998) with the perceptron algorithm.
We used as training and test data the standard cor-
pus for this task, the Penn Treebank (Marcus et al.,
1993). The training set consists of sections 02 to 21,

[System || Dependency [Sentence | Leaf |

Y&MO3 90.3 384 93.5
N&S04 87.3 304 -
M&C&PO5 90.9 37.5 -

Our Alg. 90.7 40.4 94.0

Table 2: Comparing the performance of different de-
pendency parsing systems.

the development set is section 22, and the test set is
section 23.

We use the same evaluation metrics with (Mc-
Donald et al., 2005). Dependency accuracy (De-
pendency) is the proportion of non-root words that
are assigned the correct head. Complete accuracy
(Sentence) indicates the ratio of number of complete
correct sentences divided by number of sentences.
(Leaf) is the dependency accuracy on the leaf nodes.
Table 2 show the performances of other dependency
parsing systems and ours.

When comparing with other dependency pars-
ing systems it is especially worth noticing that our
system gives significantly better accuracy on com-
pletely parsed sentences.

5 Conclusion

The results of our bottom up dependency parsing
show significant improvements in the accuracy of
the inferred trees relative to existing models and, in-
terestingly, is doing especially well when evaluated
globally, at a sentence level, where our results are
better than those of existing approaches — perhaps
showing the design goals were achieved.

References

A. V. Aho, R. Sethi, and J. D. Ullman. 1986. Compilers: Prin-
ciples, techniques, and tools. In Addison-Wesley Publishing
Company, Reading, MA.

A. Carlson, C. Cumby, J. Rosen, and D. Roth. 1999. The
SNoW learning architecture. Technical Report UIUCDCS-
R-99-2101, UIUC Computer Science Department, May.

Jason Eisner. 1996. Three new probabilistic models for de-
pendency parsing: An exploration. In Proceedings of the
16th International Conference on Computational Linguistics
(COLING-96), pages 340-345, Copenhagen, August.

A. Haghighi, A. Ng, and C. Manning. 2005. Robust textual in-
ference via graph matching. In Proceedings of Human Lan-
guage Technology Conference and Conference on Empirical
Methods in Natural Language Processing, pages 387-394,

Vancouver, British Columbia, Canada, October. Association
for Computational Linguistics.

M. P. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The Penn
Treebank. Computational Linguistics, 19(2):313-330, June.

R. McDonald, K. Crammer, and F. Pereira. 2005. Online
large-margin training of dependency parsers. In Proceed-
ings of the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), pages 91-98, Ann Arbor,
Michigan, June. Association for Computational Linguistics.

Joakim Nivre. 2003. An efficient algorithm for projective de-
pendency parsing. In 8th Int’l Workshop on Parsing Tech-
nologies (IWPT 03), Nancy, France.

D. Roth. 1998. Learning to resolve natural language ambi-
guities: A unified approach. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI), pages
806-813.

H. Yamada and Y. Matsumoto. 2003. Statistical dependency
analysis with support vector machines. In IWPT2003.

