public class AdaGrad extends Learner
Modifier and Type | Class and Description |
---|---|
static class |
AdaGrad.Parameters
A container for all of
AdaGrad 's configurable parameters. |
Modifier and Type | Field and Description |
---|---|
static double |
defaultLearningRate |
static String |
defaultLossFunction |
protected double |
learningRateA |
protected String |
lossFunctionA |
candidates, encoding, extractor, labeler, labelLexicon, lcFilePath, lexFilePath, lexicon, lossFlag, predictions, readLexiconOnDemand
containingPackage, name
Constructor and Description |
---|
AdaGrad()
Constructor
The learning rate takes the default value, while the name of the classifier gets the empty
string.
|
AdaGrad(AdaGrad.Parameters p)
Constructor
Sets all member variables to their associated settings.
|
AdaGrad(double r)
Constructor
Sets the learning rate to the specified value, while the name of the classifier gets the
empty string.
|
AdaGrad(String n)
Constructor
The learning rate takes the default value.
|
AdaGrad(String n,
AdaGrad.Parameters p)
Constructor
Sets all member variables to their associated settings.
|
AdaGrad(String n,
double r)
Constructor
Set desired learning rate
|
Modifier and Type | Method and Description |
---|---|
FeatureVector |
classify(int[] exampleFeatures,
double[] exampleValues)
Simply computes the dot product of the weight vector and the feature vector extracted from
the example object.
|
Feature |
featureValue(int[] f,
double[] v)
Returns the classification of the given example as a single feature instead of a
FeatureVector . |
double |
getConstantLearningRate()
Getter - get the constant learning rate
|
String |
getLossFunction()
Getter - get loss function
|
String |
getOutputType()
Returns a string describing the output feature type of this classifier.
|
double[] |
getWeightVector()
Getter - get weight vector
|
void |
learn(int[] exampleFeatures,
double[] exampleValues,
int[] exampleLabels,
double[] labelValues)
AdaGrad's Learning Function: Each row of feature vector + label feed in as arguments; Update
internal parameters;
Note: 1.
|
double |
realValue(int[] exampleFeatures,
double[] exampleValues)
Simply computes the dot product of the weight vector and the example
|
ScoreSet |
scores(int[] exampleFeatures,
double[] exampleValues)
Produces a set of scores indicating the degree to which each possible discrete classification
value is associated with the given example object.
|
void |
setParameters(AdaGrad.Parameters p)
Sets the values of parameters that control the behavior of this learning algorithm.
|
void |
write(PrintStream printStream)
Writes the learned function's internal representation as text.
|
classify, classify, classify, classify, clone, countFeatures, createPrediction, createPrediction, demandLexicon, discreteValue, discreteValue, discreteValue, doneLearning, doneWithRound, emptyClone, featureValue, featureValue, forget, getCurrentLexicon, getExampleArray, getExampleArray, getExtractor, getLabeler, getLabelLexicon, getLexicon, getLexiconDiscardCounts, getLexiconLocation, getModelLocation, getParameters, getPrunedLexiconSize, initialize, learn, learn, learn, learn, read, read, readLabelLexicon, readLearner, readLearner, readLearner, readLearner, readLearner, readLearner, readLexicon, readLexicon, readLexiconOnDemand, readLexiconOnDemand, readModel, readModel, readParameters, realValue, realValue, save, saveLexicon, saveModel, scores, scores, scoresAugmented, setCandidates, setEncoding, setExtractor, setLabeler, setLabelLexicon, setLexicon, setLexiconLocation, setLexiconLocation, setLossFlag, setModelLocation, setModelLocation, setParameters, setReadLexiconOnDemand, unclone, unsetLossFlag, write, write, writeLexicon, writeModel, writeParameters
allowableValues, classify, discreteValueArray, getCompositeChildren, getInputType, realValueArray, test, toString, valueIndexOf
protected double learningRateA
protected String lossFunctionA
public static final double defaultLearningRate
public static final String defaultLossFunction
public AdaGrad()
public AdaGrad(double r)
r
- The desired learning rate value.public AdaGrad(AdaGrad.Parameters p)
p
- The settings of all parameters.public AdaGrad(String n)
n
- The name of the classifier.public AdaGrad(String n, double r)
n
- The name of the classifier.r
- The desired learning rate value.public AdaGrad(String n, AdaGrad.Parameters p)
n
- The name of the classifier.p
- The settings of all parameters.public void setParameters(AdaGrad.Parameters p)
p
- The parameters.public double[] getWeightVector()
public String getLossFunction()
public double getConstantLearningRate()
public void learn(int[] exampleFeatures, double[] exampleValues, int[] exampleLabels, double[] labelValues)
public double realValue(int[] exampleFeatures, double[] exampleValues)
public Feature featureValue(int[] f, double[] v)
FeatureVector
.featureValue
in class Learner
f
- The features array.v
- The values array.public FeatureVector classify(int[] exampleFeatures, double[] exampleValues)
public ScoreSet scores(int[] exampleFeatures, double[] exampleValues)
real
feature or more than one feature may implement this method by simply returning
null
.public void write(PrintStream printStream)
public String getOutputType()
getOutputType
in class Classifier
"real"
Copyright © 2016. All rights reserved.