public class MultiLabelLearner extends SparseNetworkLearner
LinearThresholdUnit
is
learned independently to predict whether each label is appropriate for a given example. Any
LinearThresholdUnit
may be used, so long as it implements its clone()
method
and a public constructor that takes no arguments. During testing, the Learner.classify(Object)
method returns a separate feature for each LinearThresholdUnit
whose score on the example
object exceeds the threshold.Modifier and Type | Class and Description |
---|---|
static class |
MultiLabelLearner.Parameters
Simply a container for all of
MultiLabelLearner 's configurable parameters. |
baseLTU, conjunctiveLabels, defaultBaseLTU, network, numExamples, numFeatures
candidates, encoding, extractor, labeler, labelLexicon, lcFilePath, lexFilePath, lexicon, lossFlag, predictions, readLexiconOnDemand
containingPackage, name
Constructor and Description |
---|
MultiLabelLearner()
Instantiates this multi-label learner with the default learning algorithm:
SparsePerceptron . |
MultiLabelLearner(LinearThresholdUnit ltu)
Instantiates this multi-label learner using the specified algorithm to learn each class
separately as a binary classifier.
|
MultiLabelLearner(MultiLabelLearner.Parameters p)
Initializing constructor.
|
MultiLabelLearner(String n)
Instantiates this multi-label learner with the default learning algorithm:
SparsePerceptron . |
MultiLabelLearner(String n,
LinearThresholdUnit ltu)
Instantiates this multi-label learner using the specified algorithm to learn each class
separately as a binary classifier.
|
MultiLabelLearner(String n,
MultiLabelLearner.Parameters p)
Initializing constructor.
|
Modifier and Type | Method and Description |
---|---|
FeatureVector |
classify(int[] exampleFeatures,
double[] exampleValues)
Returns a separate feature for each
LinearThresholdUnit whose score on the example
object exceeds the threshold. |
String |
getOutputType()
This learner's output type is
"discrete%" . |
Learner.Parameters |
getParameters()
Retrieves the parameters that are set in this learner.
|
clone, conjunctiveScores, conjunctiveValueOf, discreteValue, doneLearning, doneWithRound, featureValue, forget, getBaseLTU, getLTU, getNetwork, getNumExamples, getNumFeatures, initialize, isUsingConjunctiveLabels, learn, read, scores, scores, scores, setExtractor, setLabeler, setLTU, setNetworkLabel, setParameters, valueOf, valueOf, write, write
classify, classify, classify, classify, countFeatures, createPrediction, createPrediction, demandLexicon, discreteValue, discreteValue, emptyClone, featureValue, featureValue, getCurrentLexicon, getExampleArray, getExampleArray, getExtractor, getLabeler, getLabelLexicon, getLexicon, getLexiconDiscardCounts, getLexiconLocation, getModelLocation, getPrunedLexiconSize, learn, learn, learn, learn, read, readLabelLexicon, readLearner, readLearner, readLearner, readLearner, readLearner, readLearner, readLexicon, readLexicon, readLexiconOnDemand, readLexiconOnDemand, readModel, readModel, readParameters, realValue, realValue, realValue, save, saveLexicon, saveModel, scores, scores, scoresAugmented, setCandidates, setEncoding, setLabelLexicon, setLexicon, setLexiconLocation, setLexiconLocation, setLossFlag, setModelLocation, setModelLocation, setParameters, setReadLexiconOnDemand, unclone, unsetLossFlag, write, writeLexicon, writeModel, writeParameters
allowableValues, classify, discreteValueArray, getCompositeChildren, getInputType, realValueArray, test, toString, valueIndexOf
public MultiLabelLearner()
SparsePerceptron
.public MultiLabelLearner(LinearThresholdUnit ltu)
ltu
- The linear threshold unit used to learn binary classifiers.public MultiLabelLearner(MultiLabelLearner.Parameters p)
MultiLabelLearner.Parameters
object.p
- The settings of all parameters.public MultiLabelLearner(String n)
SparsePerceptron
.n
- The name of the classifier.public MultiLabelLearner(String n, LinearThresholdUnit ltu)
n
- The name of the classifier.ltu
- The linear threshold unit used to learn binary classifiers.public MultiLabelLearner(String n, MultiLabelLearner.Parameters p)
MultiLabelLearner.Parameters
object.n
- The name of the classifier.p
- The settings of all parameters.public Learner.Parameters getParameters()
getParameters
in class SparseNetworkLearner
public String getOutputType()
"discrete%"
.getOutputType
in class Classifier
public FeatureVector classify(int[] exampleFeatures, double[] exampleValues)
LinearThresholdUnit
whose score on the example
object exceeds the threshold.classify
in class SparseNetworkLearner
exampleFeatures
- The example's feature indices.exampleValues
- The feature values.Copyright © 2016. All rights reserved.