Package | Description |
---|---|
edu.illinois.cs.cogcomp.lbjava.learn |
Modifier and Type | Class and Description |
---|---|
class |
BiasedRandomWeightVector
Same as the
RandomWeightVector class that it extends, except that this vector also
contains a bias term (also initialized randomly) which is added to every dot product and affected
by every vector addition operation. |
class |
BiasedWeightVector
Same as the
SparseWeightVector class that it extends, except that this vector also
contains a bias term which is added to every dot product and affected by every vector addition
operation. |
protected class |
NaiveBayes.NaiveBayesVector
Keeps track of all the counts associated with a given label.
|
class |
RandomWeightVector
This weight vector operates similarly to its parent in the class hierarchy, but it halucinates
(and sets) random values for weights corresponding to features it has never been asked about
before.
|
static class |
SparseAveragedPerceptron.AveragedWeightVector
This implementation of a sparse weight vector associates two
double s with each
Feature . |
Modifier and Type | Field and Description |
---|---|
static SparseWeightVector |
StochasticGradientDescent.defaultWeightVector
Default for
StochasticGradientDescent.weightVector . |
static SparseWeightVector |
LinearThresholdUnit.defaultWeightVector
Default for
LinearThresholdUnit.weightVector . |
protected SparseWeightVector |
SparseConfidenceWeighted.variances
The inverses of the current variances of the parameters.
|
protected SparseWeightVector |
SparseConfidenceWeighted.Parameters.variances
The current variances of the parameters; default
LinearThresholdUnit.defaultWeightVector . |
protected SparseWeightVector |
StochasticGradientDescent.weightVector
The hypothesis vector; default
StochasticGradientDescent.defaultWeightVector . |
SparseWeightVector |
StochasticGradientDescent.Parameters.weightVector
The hypothesis vector; default
StochasticGradientDescent.defaultWeightVector . |
protected SparseWeightVector |
LinearThresholdUnit.weightVector
The LTU's weight vector; default is an empty vector.
|
SparseWeightVector |
LinearThresholdUnit.Parameters.weightVector
The LTU's weight vector; default is an empty vector.
|
Modifier and Type | Method and Description |
---|---|
SparseWeightVector |
RandomWeightVector.emptyClone()
Returns a new, empty weight vector with the same parameter settings as this one.
|
SparseWeightVector |
BiasedWeightVector.emptyClone()
Returns a new, empty weight vector with the same parameter settings as this one.
|
SparseWeightVector |
NaiveBayes.NaiveBayesVector.emptyClone()
Returns a new, empty weight vector with the same parameter settings as this one.
|
SparseWeightVector |
SparseWeightVector.emptyClone()
Returns a new, empty weight vector with the same parameter settings as this one.
|
SparseWeightVector |
SparseAveragedPerceptron.AveragedWeightVector.emptyClone()
Returns a new, empty weight vector with the same parameter settings as this one.
|
SparseWeightVector |
BiasedRandomWeightVector.emptyClone()
Returns a new, empty weight vector with the same parameter settings as this one.
|
SparseWeightVector |
LinearThresholdUnit.getWeightVector() |
static SparseWeightVector |
SparseWeightVector.readWeightVector(edu.illinois.cs.cogcomp.core.datastructures.vectors.ExceptionlessInputStream in)
Reads the binary representation of a weight vector of any type from the given stream.
|
Constructor and Description |
---|
BinaryMIRA(double r,
double B,
SparseWeightVector v)
Sets the learning rate, beta and the weight vector to the specified values.
|
BinaryMIRA(String n,
double r,
double B,
SparseWeightVector v)
Sets the name of the classifier, the learning rate, beta and the weight vector to the
specified values.
|
LinearThresholdUnit(String n,
double r,
double t,
double pt,
double nt,
SparseWeightVector v)
Initializing constructor.
|
PassiveAggressive(double t,
double pt,
double nt,
SparseWeightVector v)
Use this constructor to specify an alternative subclass of
SparseWeightVector , while
the name of the classifier gets the empty string. |
PassiveAggressive(String n,
double t,
double pt,
double nt,
SparseWeightVector v)
Use this constructor to specify an alternative subclass of
SparseWeightVector . |
SparseConfidenceWeighted(double c,
double v,
SparseWeightVector vm)
Sets the
SparseConfidenceWeighted.confidence , SparseConfidenceWeighted.initialVariance , and
LinearThresholdUnit.weightVector parameters. |
SparseConfidenceWeighted(double c,
double v,
SparseWeightVector vm,
SparseWeightVector vv)
|
SparseConfidenceWeighted(String n,
double c,
double v,
SparseWeightVector vm)
Sets the
SparseConfidenceWeighted.confidence , SparseConfidenceWeighted.initialVariance , and
LinearThresholdUnit.weightVector parameters. |
SparseConfidenceWeighted(String n,
double c,
double v,
SparseWeightVector vm,
SparseWeightVector vv)
|
SparsePerceptron(double r,
double t,
double pt,
double nt,
SparseWeightVector v)
Use this constructor to specify an alternative subclass of
SparseWeightVector , while
the name of the classifier gets the empty string. |
SparsePerceptron(String n,
double r,
double t,
double pt,
double nt,
SparseWeightVector v)
Use this constructor to specify an alternative subclass of
SparseWeightVector . |
SparseWinnow(double a,
double b,
double t,
double pt,
double nt,
SparseWeightVector v)
Use this constructor to specify an alternative subclass of
SparseWeightVector , while
the name of the classifier gets the empty string. |
SparseWinnow(String n,
double a,
double b,
double t,
double pt,
double nt,
SparseWeightVector v)
Use this constructor to specify an alternative subclass of
SparseWeightVector . |
Copyright © 2016. All rights reserved.