Package | Description |
---|---|
edu.illinois.cs.cogcomp.lbjava | |
edu.illinois.cs.cogcomp.lbjava.learn |
Modifier and Type | Field and Description |
---|---|
protected TestingMetric |
Train.TrainingThread.testingMetric
The metric with which to measure the learner's performance on a test set.
|
Modifier and Type | Class and Description |
---|---|
class |
Accuracy
Returns the accuracy of a discrete classifier with respect to the oracle as the fraction of
examples for which its prediction was correct.
|
Modifier and Type | Method and Description |
---|---|
double[][] |
BatchTrainer.crossValidation(int[] rounds,
int k,
FoldParser.SplitPolicy splitPolicy,
double alpha,
TestingMetric metric,
boolean statusMessages)
Performs cross validation, computing a confidence interval on the performance of the learner
after each of the specified rounds of training.
|
protected double |
BatchTrainer.crossValidationTesting(FoldParser foldParser,
TestingMetric metric,
boolean clone,
boolean statusMessages)
Tests the learner
as a subroutine inside cross validation.
|
protected double |
BatchTrainer.testMidTraining(Parser testParser,
TestingMetric metric,
boolean clone)
Tests
BatchTrainer.learner on the
specified data while making provisions under the assumption that this test happens in between
rounds of training. |
Learner.Parameters |
BatchTrainer.tune(Learner.Parameters[] parameters,
int[] rounds,
int k,
FoldParser.SplitPolicy splitPolicy,
double alpha,
TestingMetric metric)
Tune learning algorithm parameters using cross validation.
|
Learner.Parameters |
BatchTrainer.tune(Learner.Parameters[] parameters,
int[] rounds,
Parser devParser,
TestingMetric metric)
Tune learning algorithm
parameters against a development set.
|
Copyright © 2016. All rights reserved.