Package | Description |
---|---|
edu.illinois.cs.cogcomp.lbjava | |
edu.illinois.cs.cogcomp.lbjava.infer | |
edu.illinois.cs.cogcomp.lbjava.learn | |
edu.illinois.cs.cogcomp.lbjava.util |
Modifier and Type | Field and Description |
---|---|
protected Learner |
Train.TrainingThread.learner
The learning classifier being trained.
|
Modifier and Type | Field and Description |
---|---|
protected Learner |
PropositionalVariable.classifier
The classifier being applied.
|
Modifier and Type | Method and Description |
---|---|
Learner |
PropositionalVariable.getClassifier()
Retrieves the classifier.
|
Learner |
FirstOrderVariable.getClassifier()
Retrieves the classifier.
|
Modifier and Type | Method and Description |
---|---|
Normalizer |
Inference.getNormalizer(Learner c)
Returns the normalization function associated with the given classifier in this inference.
|
abstract String |
Inference.valueOf(Learner c,
Object o)
Retrieves the value of the specified variable as identified by the classifier and the object
that produce that variable.
|
String |
ILPInference.valueOf(Learner c,
Object o)
Retrieves the value of the specified variable as identified by the classifier and the object
that produce that variable.
|
Constructor and Description |
---|
FirstOrderVariable(Learner c,
Object e)
Initializing constructor.
|
PropositionalVariable(Learner c,
Object e,
String p)
Initializing constructor; the
value member variable is set to false
. |
Modifier and Type | Class and Description |
---|---|
class |
AdaBoost
Implementation of the AdaBoost binary classification learning algorithm.
|
class |
AdaGrad
AdaGrad - Adaptive Stochastic Gradient Method
AdaGrad alters the update to adapt based on historical information, so that frequent occurring
features in the gradients get small learning rates and infrequent features get higher ones.
|
class |
BinaryMIRA
The Binary MIRA learning algorithm implementation.
|
class |
LinearThresholdUnit
A
LinearThresholdUnit is a Learner for binary classification in which a
score is computed as a linear function a weight vector and the input example, and the
decision is made by comparing the score to some threshold quantity. |
class |
MultiLabelLearner
A simple implementation of a learner that learns from examples with multiple labels and is
capable of predicting multiple labels on new examples.
|
class |
MuxLearner
A
MuxLearner uses one of many Learner s indexed by the first feature in
an example to produce a classification. |
class |
NaiveBayes
Naive Bayes is a multi-class learner that uses prediction value counts and feature counts given a
particular prediction value to select the most likely prediction value.
|
class |
PassiveAggressive
The Passive Aggressive learning algorithm implementation.
|
class |
SparseAveragedPerceptron
An approximation to voted Perceptron, in which a weighted average of the weight vectors arrived
at during training becomes the weight vector used to make predictions after training.
|
class |
SparseConfidenceWeighted
This is an implementation of the approximate "variance algorithm" of Confidence Weighted
Linear Classification, Dredze, et.al (ICML, 2008).
|
class |
SparseMIRA
An implementation of the Margin Infused Relaxed Algorithm of Crammer and Singer.
|
class |
SparseNetworkLearner
A
SparseNetworkLearner uses multiple LinearThresholdUnit s to make a
multi-class classification. |
class |
SparsePerceptron
Simple sparse Perceptron implementation.
|
class |
SparseWinnow
Simple sparse Winnow implementation.
|
class |
StochasticGradientDescent
Gradient descent is a batch learning algorithm for function approximation in which the learner
tries to follow the gradient of the error function to the solution of minimal error.
|
class |
SupportVectorMachine
Wrapper class for the
liblinear library which supports support vector machine classification. |
class |
WekaWrapper
Translates LBJava's internal problem representation into that which can be handled by WEKA
learning algorithms.
|
Modifier and Type | Field and Description |
---|---|
protected Learner |
MuxLearner.baseLearner
Instances of this learning algorithm will be multiplexed; default
null . |
Learner |
MuxLearner.Parameters.baseLearner
Instances of this learning algorithm will be multiplexed; default
null . |
static Learner |
MuxLearner.defaultBaseLearner
Default for
MuxLearner.baseLearner . |
static Learner |
AdaBoost.defaultWeakLearner
Default for
AdaBoost.weakLearner . |
protected Learner |
BatchTrainer.learner
The learning classifier being trained.
|
protected Learner |
AdaBoost.weakLearner
The weak learning algorithm to be boosted.
|
protected Learner |
AdaBoost.Parameters.weakLearner
The weak learning algorithm to be boosted.
|
protected Learner[] |
AdaBoost.weakLearners
Will be filled with trained copies of the weak learner.
|
Modifier and Type | Method and Description |
---|---|
Learner |
Learner.emptyClone()
Returns a new, emtpy learner into which all of the parameters that control the behavior of
the algorithm have been copied.
|
Learner |
BatchTrainer.preExtract(String exampleFile,
boolean zip,
Lexicon.CountPolicy countPolicy)
Performs labeled feature vector
pre-extraction into the specified file (or memory), replacing
BatchTrainer.parser with one that
reads from that file (or memory). |
Learner |
BatchTrainer.preExtract(String exampleFile,
Lexicon.CountPolicy countPolicy)
Performs labeled feature vector
pre-extraction into the specified file (or memory), replacing
BatchTrainer.parser with one that
reads from that file (or memory). |
static Learner |
Learner.readLearner(edu.illinois.cs.cogcomp.core.datastructures.vectors.ExceptionlessInputStream in)
Reads the binary representation of any type of learner (including the label lexicon, but not
including the feature lexicon) from the given stream.
|
static Learner |
Learner.readLearner(edu.illinois.cs.cogcomp.core.datastructures.vectors.ExceptionlessInputStream in,
boolean whole)
Reads the binary representation of any type of learner (including the label lexicon, but not
including the feature lexicon), with the option of cutting off the reading process after the
label lexicon and before any learned parameters.
|
static Learner |
Learner.readLearner(String filename)
Reads the binary representation of any type of learner (including the label lexicon, but not
including the feature lexicon) from the given file.
|
static Learner |
Learner.readLearner(String filename,
boolean whole)
Reads the binary representation of any type of learner (including the label lexicon, but not
including the feature lexicon), with the option of cutting off the reading process after the
label lexicon and before any learned parameters.
|
static Learner |
Learner.readLearner(URL url)
Reads the binary representation of any type of learner (including the label lexicon, but not
including the feature lexicon) from the given location.
|
static Learner |
Learner.readLearner(URL url,
boolean whole)
Reads the binary representation of any type of learner (including the label lexicon, but not
including the feature lexicon), with the option of cutting off the reading process after the
label lexicon and before any learned parameters.
|
Modifier and Type | Method and Description |
---|---|
void |
BatchTrainer.pruneDataset(String exampleFile,
boolean zip,
Lexicon.PruningPolicy policy,
Learner preExtractLearner)
Prunes the data returned
by
BatchTrainer.parser according to the given policy, under the assumption that feature counts
have already been compiled in the given learner's lexicon. |
void |
BatchTrainer.pruneDataset(String exampleFile,
Lexicon.PruningPolicy policy,
Learner preExtractLearner)
Prunes the data returned by
BatchTrainer.parser according to the given policy, under the assumption that feature counts have
already been compiled in the given learner's lexicon. |
void |
MuxLearner.setBase(Learner base)
Sets
MuxLearner.baseLearner . |
void |
SparseMIRA.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
PassiveAggressive.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
MuxLearner.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
BinaryMIRA.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
SupportVectorMachine.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
SparseWinnow.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
SparseNetworkLearner.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
SparseConfidenceWeighted.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
NaiveBayes.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
WekaWrapper.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
StochasticGradientDescent.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
SparseAveragedPerceptron.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
LinearThresholdUnit.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
Learner.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
AdaBoost.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
SparsePerceptron.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
void |
MultiLabelLearner.Parameters.setParameters(Learner l)
Calls the appropriate
Learner.setParameters(Parameters) method for this
Parameters object. |
Constructor and Description |
---|
AdaBoost(Learner w)
Instantiates member variables.
|
AdaBoost(Learner w,
int r)
Instantiates member variables.
|
AdaBoost(String n,
Learner w)
Instantiates member variables.
|
AdaBoost(String n,
Learner w,
int r)
Instantiates member variables.
|
BatchTrainer(Learner l,
Parser p)
Creates a new trainer that doesn't produce status messages.
|
BatchTrainer(Learner l,
Parser p,
int o)
Creates a new trainer that produces status messages.
|
BatchTrainer(Learner l,
Parser p,
int o,
String i)
Creates a new trainer that produces status
messages with the specified indentation spacing for status messages.
|
BatchTrainer(Learner l,
String p)
Creates a new trainer that doesn't produce status messages.
|
BatchTrainer(Learner l,
String p,
boolean z)
Creates a new trainer that doesn't produce status
messages.
|
BatchTrainer(Learner l,
String p,
boolean z,
int o)
Creates a new trainer that produces status
messages.
|
BatchTrainer(Learner l,
String p,
boolean z,
int o,
String i)
Creates a new trainer that produces status
messages with the specified indentation spacing for status messages.
|
BatchTrainer(Learner l,
String p,
int o)
Creates a new trainer that produces status messages.
|
BatchTrainer(Learner l,
String p,
int o,
String i)
Creates a new trainer that produces status
messages with the specified indentation spacing for status messages.
|
MuxLearner(Learner base)
Instantiates this multiplexed learner using the specified base learning algorithm.
|
MuxLearner(Learner base,
String d)
Instantiates this multiplexed learner using the specified base learning algorithm.
|
MuxLearner(String n,
Learner base)
Instantiates this multiplexed learner using the specified base learning algorithm.
|
MuxLearner(String n,
Learner base,
String d)
Instantiates this multiplexed learner using the specified base learning algorithm.
|
Modifier and Type | Method and Description |
---|---|
static Learner |
ClassUtils.getLearner(String name)
Retrieve a
Learner by name using the no-argument constructor. |
static Learner |
ClassUtils.getLearner(String name,
boolean exit)
Retrieve a
Learner by name using the no-argument constructor. |
static Learner |
ClassUtils.getLearner(String name,
Class[] paramTypes,
Object[] arguments)
Retrieve a
Learner by name using a constructor with arguments. |
static Learner |
ClassUtils.getLearner(String name,
Class[] paramTypes,
Object[] arguments,
boolean exit)
Retrieve a
Learner by name using a constructor with arguments. |
Copyright © 2016. All rights reserved.